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Introduction
There are many general-purpose programming languages today, but few
can claim to be the language of the millennium. C++ can make that
claim, and for good reason:

It’s powerful. You can write almost any program in it.
It’s fast, and it’s fully compiled. That’s a good thing.
It’s easy to use — if you have this book.
It’s object oriented. If you’re not sure what that is, don’t worry. You
can find out about it by reading this very book you’re holding.
It supports functional programming techniques, which makes
modeling math problems considerably easier and makes parallel
processing easier. This book covers functional programming
techniques, too.
It’s portable. Versions are available for nearly every computer.
It’s standardized. The American National Standards Institute (ANSI)
and the International Standards Organization (ISO) both approve an
official version.
It’s continually updated to meet the changing challenges of the
computer community.
It’s popular. More people are using C++ because so many other
people use it.

Sure, some people criticize C++. But most of these people don’t truly
understand C++ or are just having a bad day. Or both.

About This Book
This book is a hands-on, roll-up-your-sleeves experience that gives you
the opportunity to truly learn C++. This edition starts out by helping you
get a great C++ installation in place. A lot of readers wrote to tell me



that they simply couldn’t get C++ to work for them, and I listened by
adding configuration instructions in Book 1, Chapter 1. You can find
instructions for working with the Mac, Linux, and Windows throughout
the book. The examples are also tested to work on all three platforms.

C++ All-in-One For Dummies, 4th Edition, is devoted to working with
C++ wherever you want to use it. Book 1, Chapter 2 even includes
techniques for writing C++ code on your mobile device, although
writing a complex application on your smartphone would be
understandably difficult because of the small device size.

At the very beginning, I start you out from square one. I don’t assume
any programming experience whatsoever. Everybody has to start
somewhere. You can start here. Not to brag, but you are in the hands of a
highly successful C++ developer who has shown thousands of people
how to program, many of whom also started out from square one.

You already know C++? This book is great for you, too, because
although I start discussing C++ from the beginning, I cover the
important aspects of the language in depth. Even if you’ve used C++ in
the past, this book gets you up to speed with the latest in C++ 14 and
above innovations, including C++ 20 additions. Plus, this edition of the
book focuses on all the latest programming strategies while removing
some of the less used functionality of the past.

If you’re interested in using the time-tested Object Oriented
Programming (OOP) techniques that C++ developers have used for
years, then Book 2 is where you want to look. You start with a view of
classes, but eventually move into more advanced topics, including the
use of programming patterns in Book 2 Chapter 4.

One of the most exciting additions to this edition is the use of functional
programming techniques, which you can find in Book 3. Functional
programming has become extremely popular because it makes modeling
math problems significantly easier, and many people use functional
programming techniques to solve modern data science problems. More
important, functional programming can be a lot easier than earlier
programming paradigms.



Every application out there has a bug or two. If you doubt this statement,
just try to find one that is bug free—you won’t. Book 4 includes all sorts
of techniques you can use to make your application as bug free as
possible before it leaves your machine and then help you find the bugs
that others graciously point out later.

Book 5 is all about moving you from generalized programming
strategies into the advanced strategies used by modern developers. It
starts with a look at standardized structures for working with classes in a
safe manner. The minibook takes you through

Simple structures, such as arrays
More advanced data management
The use of constructors, destructors, and exceptions
Templatized programming
Use of the Standard Library (originally called the Standard Template
Library or STL).

Everyone needs to work with files at some point. You use local, network,
and Internet files today on a regular basis. Book 6 is all about working
with files in various ways. This book includes topics on working with
data streams as well.

The Standard Library is immense and there are entire books written
about its use. C++ All-in-One For Dummies, 4th Edition, focuses on
providing you with a really good overview that you can use to drill down
into more detailed topics later. Besides looking at the Standard Library
in more detail, you discover how to work with User Defined Literals
(UDLs) and how to create your own templates. This book also delves
into the Boost library, which is the library that has added more to
Standard Library than just about any other source. Check out Book 7,
Chapters 4 and 5 to learn about Boost. If you use C++ and don’t use
Boost, you’re really missing out!

C++ is standardized, and you can use the information in this book on
many different platforms. I wrote the samples using Mac OS X, SUSE



Linux (some of the beta readers used other flavors of Linux), and
Windows systems (with some testing on my ASUS tablet as well). In
order to make this happen, I used a compiler called Code::Blocks that
runs on almost every computer (Windows, Linux, and Macintosh) and
CppDroid for my tablet. It doesn’t matter which device you’re using!

To make absorbing the concepts easy, this book uses the following
conventions:

Text that you’re meant to type just as it appears in the book is in
bold. The exception is when you’re working through a step list:
Because each step is bold, the text to type is not bold.
Web addresses and programming code appear in monofont. If you’re
reading a digital version of this book on a device connected to the
Internet, you can click or tap the web address to visit that website,
like this: https://www.dummies.com.

When you need to type command sequences, you see them separated
by a special arrow, like this: File⇒  New File. In this example, you go
to the File menu first and then select the New File entry on that
menu.
When you see words in italics as part of a typing sequence, you need
to replace that value with something that works for you. For
example, if you see “Type Your Name and press Enter,” you need to
replace Your Name with your actual name.

Foolish Assumptions
This book is designed for novice and professional alike. You can either
read this book from cover to cover, or you can look up topics and treat
the book as a reference guide — whichever works best for you. Keep it
on your shelf, and have it ready to grab when you need to look
something up. However, I’ve made some assumptions about your level
of knowledge when I put the book together. The most important of these
assumptions is that you already know how to use your device and work
with the operating system that supports it. You also need to know how to
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perform tasks like downloading files and installing applications. A
familiarity with the Internet is also required, and you need to know how
to interact with it moderately well to locate the resources you need to
work with the book. Finally, you must know how to work with archives,
such as the ZIP file format.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate
material of interest (or not, as the case may be). This section briefly
describes each icon in this book.

 Tips are nice because they help you save time or perform some
task without a lot of extra work. The tips in this book are time-
saving techniques or pointers to resources that you should try so
that you can get the maximum benefit from C++. Most important,
many of these tips will help you make sense of the overwhelming
quantity of libraries and tools that C++ developers have created
over the years.

 I don’t want to sound like an angry parent or some kind of
maniac, but you should avoid doing anything that’s marked with a
Warning icon. Otherwise, you might find that your application fails
to work as expected, you get incorrect answers from seemingly
bulletproof code, or (in the worst-case scenario) you lose data.
Given where C++ appears, you might also send the next rocket off
to Mars prematurely, make someone’s thermostat misbehave, or
cause nationwide power outages. Really, warnings are for
everyone!



 Whenever you see this icon, think advanced tip or technique.
You might find these tidbits of useful information just too boring
for words, or they could contain the solution you need to get a
program running. Skip these bits of information whenever you like.

 If you don’t get anything else out of a particular chapter or
section, remember the material marked by this icon. This text
usually contains an essential process or a bit of information that you
must know to work with C++, or to perform development tasks
successfully.

Beyond the Book
If you want to email me, please do! Make sure you send your book-
specific requests to:

John@JohnMuellerBooks.com

I get a lot of email from readers, so sometimes it takes me a while to
answer. I try very hard to answer every book-specific question I receive,
though, so I highly recommend contacting me with your questions. I
want to ensure that your book experience is the best one possible. The
blog category at
http://blog.johnmuellerbooks.com/categories/263/c-all-in-one-

for-dummies.aspx contains a wealth of additional information about
this book. You can check out the website at
http://www.johnmuellerbooks.com/.

This book isn’t the end of your C++ programming experience — it’s
really just the beginning. I provide online content to make this book
more flexible and better able to meet your needs. That way, as I receive
email from you, I can address questions and tell you how updates to

mailto:John@JohnMuellerBooks.com
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either Code::Blocks or the C++ language affect book content. You can
also access other cool materials:

Cheat Sheet: You remember using crib notes in school to make a
better mark on a test, don’t you? You do? Well, a cheat sheet is sort
of like that. It provides you with some special notes on things you
can do with C++ that not every other developer knows. You can find
the cheat sheet for this book at www.dummies.com and typing C++
All-in-One For Dummies, 4th Edition in the search field. It
contains really neat information like the top ten mistakes developers
make when working with C++, a list of header files that you use in
most applications, and some of the C++ syntax that gives most
developers problems.
Updates: Sometimes changes happen. For example, I might not have
seen an upcoming change when I looked into my crystal ball during
the writing of this book. In the past, such a situation simply meant
that the book would become outdated and less useful, but you can
now find updates to the book at www.dummies.com. In addition to
these updates, check out the blog posts with answers to reader
questions and demonstrations of useful book-related techniques at
http://blog.johnmuellerbooks.com/.

Companion files: Hey! Who really wants to type all the code in the
book? Most readers would prefer to spend their time actually
working through coding examples rather than typing. Fortunately for
you, the source code is available for download, so all you need to do
is read the book to learn C++ coding techniques. Each of the book
examples even tells you precisely which example project to use. You
can find these files by searching this book’s title at
www.dummies.com.
Just in case you’re worried about Code::Blocks, you can find
complete download and installation instructions for it in Book 1,
Chapter 1. Don’t worry about which platform you use. This chapter
includes instructions for Mac OS X, Linux, and Windows.

http://www.dummies.com/
http://www.dummies.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com/


Where to Go from Here
If you’re just starting your C++ adventure, I highly recommend starting
at either Book 1, Chapter 1 (for desktop developers) or Book 1, Chapter
2 (for mobile developers). You really do need to create a solid
foundation before you can tackle the code in this book. If you’re in a
hurry and already have a C++ installation, you can always try starting
with Book 1, Chapter 3.

Readers with a little more experience, who already know some C++
basics, can skip some of these introductory chapters, but you definitely
don’t want to skip Book 1, Chapter 8 because it contains a lot of pointer-
related changes in current versions of C++. If you skip this chapter, you
may find later that you have a hard time following the example code in
the book because the newer examples use these pointer features.

An advanced reader with some idea of the current changes in C++ 20
could possibly skip Book 1, but scanning Book 2 is a good idea because
there are some OOP changes you definitely want to know about.
However, even for advanced readers, skipping Book 3 is a bad idea
because modern development really is moving toward functional
programming techniques.
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Chapter 1

Configuring Your Desktop
System

IN THIS CHAPTER
 Getting your own copy of C++ 20
 Getting a copy of Code::Blocks
 Creating a Code::Blocks work environment on your system
 Seeing how Code::Blocks helps you perform tasks
 Working with other IDEs

This chapter is for those of you who have a desktop system and want to
use it to create your application code. Chapter 2 discusses how to
perform the same task using a mobile device (and provides you with
some trade-offs between the two environments). Whether you use the
desktop or the mobile solution, you need a copy of a compiler that
supports C++ 20 features or some book examples won’t work at all. This
book relies on the GNU Compiler Collection (GCC) version 8.3
compiler because it provides great C++ 20 support (see
https://en.cppreference.com/w/cpp/compiler_support). The best
way to obtain the version 8.3 compiler for your desktop system is to
follow the steps in this chapter.

Before you can do anything interesting at all with C++, you need a copy
of it installed on your system. Of course, this means going online,
finding the location of the software that’s appropriate for your platform,
and then downloading it as necessary. If you use an Integrated
Development Environment (IDE) such as Code::Blocks (the IDE used
throughout this book), you get a copy of C++ with your installation, so
you don’t need to worry about reading the first section of this chapter.

https://en.cppreference.com/w/cpp/compiler_support


This book relies on your having a compiler capable of compiling C++ 20
code, which is the latest version of the language available at the time of
this writing.

 Even though this book focuses on working with C++ on the
Mac, Windows, and Linux platforms, you can actually use the
techniques it provides on a great many other desktop systems. With
this in mind, you’ll find an overview of using C++ with other IDEs.
As your platform becomes more esoteric, you’ll find that fewer of
the book examples work because your platform may require special
programming techniques. The best option for working with this
book is using a copy of Code::Blocks 17.12 with C++ 20 support
installed on the Linux, Mac, or Windows platform.

Obtaining a Copy of C++ 20
There is no product available named C++ 20. The C++ 20 standard
simply says what the language contains and how someone should
implement it. In other words, you can’t just go online and get a copy of
C++ 20; what you need to do instead is get a compiler vendor’s
implementation of the C++ 20 standard. For example, you can download
the GNU Compiler Collection (GCC) version of C++ 20 from
https://gcc.gnu.org/releases.html.

 Every vendor will have a slightly different interpretation of this
standard and could provide additions to the standard. In short, every
compiler provides a unique version of C++. However, you also
have the choice of not using the special features that the vendor
provides, which means your source code is less susceptible to
problems that occur when you use multiple compilers. The
examples in this book are strictly written to the C++ 20 standard, so
you shouldn’t have a problem using them anywhere you want.

https://gcc.gnu.org/releases.html


It’s important that you also understand that a compiler is not the same as
an Integrated Development Environment (IDE). The compiler is separate
from the IDE in many cases and maintained by two separate parties. For
example, the Code::Blocks IDE supports multiple compilers, and the
GCC compiler works within multiple IDEs. The compiler is the
important piece of software that turns your source code into an
executable file that the operating system can run to produce the output
you want.

The compiler you choose has to support the platforms you want to work
with. For example, GCC supports Mac, Windows, and Linux
development as well as some Acorn or (later) Advanced RISC Machine
(ARM) processors (ARM doesn’t officially stand for anything today). In
fact, it may support other platforms by the time you read this chapter.
Because it works in so many places, this book focuses on GCC, even
though the examples will work with other compilers with some
modification to overcome compiler differences.

Obtaining Code::Blocks
The Code::Blocks IDE provides an environment in which you can write
source code, compile it, test it, and debug it as needed. The IDE doesn’t
actually compile the source code, but it does provide support for a
compiler that does so. (It just so happens that it does its job in such a
way that makes it appear that the compiler is part of the IDE.) You can
choose from a number of compilers in Code::Blocks, but this book
focuses on using GCC to ensure that the examples will run on as many
platforms as possible. GCC comes with your copy of Code::Blocks
when working with Windows, so you don’t have to do anything special
to work with it except select it during the installation process. (When
working on a Mac or Linux system, you must install GCC separately —
the compiler doesn’t come with Code::Blocks.)



 This book is written using Code::Blocks version 17.12. That
doesn’t mean you can’t use it with earlier or later versions of
Code::Blocks. However, when working with other versions of
Code::Blocks, you may find that you need to modify the code
slightly. The modification is required in order to support the
compiler that comes with that version of Code::Blocks. The IDE
itself won’t affect your ability to work with C++ 20.

 Code::Blocks comes in both binary form and source code form.
You can download either form of version 17.12 from
http://www.codeblocks.org/downloads/5. The link leads you to
SourceForge, where you select the platform you want to use: Mac,
Linux, or Windows. Click the folder link and you see a list of
downloadable archive files for that platform. (Linux users will also
have to choose their particular version of Linux.) Choosing the
correct archive is important because different archives have
different features.

 When working with a Windows installation, make sure you use
the codeblocks-17.12mingw-setup.exe installer to obtain a copy
of GCC with Code::Blocks. Make absolutely certain that you don’t
install it to the Program Files folder on your system, because the
application won’t work there. Code::Blocks writes data to its host
directory, and Windows won’t allow applications to perform this
task in the Program Files folder. Create a folder to which you have
write privileges and install Code::Blocks there instead.

Now that you have an appropriate archive to use, it’s time to install
Code::Blocks on your machine. The “Installing Code::Blocks” section of

http://www.codeblocks.org/downloads/5


this chapter tells you more about getting Code::Blocks installed on your
particular system.

Installing Code::Blocks
Before you can use Code::Blocks as your IDE, you need to install it. The
following sections describe how to install Code::Blocks on each of the
main platforms supported by this book. The instructions in these sections
assume that you’ve downloaded the binary version of Code::Blocks and
that you aren’t using a custom compiled version of the product.

 If you have an older version of Code::Blocks installed on your
system, be sure to uninstall it before installing the new version.
Also make sure that you tell the uninstaller to delete any old custom
files in the folder so that you start with a fresh folder. Old files can
cause errors to appear when you start Code::Blocks or perform
common tasks.

Working with Windows
Code::Blocks comes with a Windows installer that will make the task of
installing the IDE easier. The following steps help you work with the
codeblocks-17.12mingw-setup.exe installer:

1. Double-click the file you downloaded from the Code::Blocks site.
You see the CodeBlocks Setup Wizard start. If you see a User
Account Control dialog box, give the application permission to
proceed by clicking Yes.

2. Click Next.
The licensing agreement appears. Read the licensing agreement so
that you know the terms of usage for Code::Blocks.

3. Click I Agree.



The wizard displays a series of configuration options, as shown in
Figure 1-1. This book assumes that you’ve performed the default,
full installation.

4. Click Next.
The installation program asks where to install Code::Blocks on your
system. Unlike many other applications, Code::Blocks will actually
write data to this folder from time to time. The best idea is to use a
folder to which you have write access. To ensure maximum
compatibility, the book uses the C:\CodeBlocks folder for
installation purposes. To keep from seeing any error messages, make
sure that the path doesn’t have any spaces in it (see the blog post at
http://blog.johnmuellerbooks.com/2016/04/20/spaces-in-

paths/ for details).

FIGURE 1-1: The wizard asks you to select the configuration options to use.

5. Type C:\CodeBlocks in the Destination Folder field. Click Install.
The installation program automatically creates the C:\CodeBlocks
folder for you when it doesn’t already exist. If the folder already

http://blog.johnmuellerbooks.com/2016/04/20/spaces-in-paths/


exists because you previously installed an older version of
Code::Blocks, you see a dialog box appear. Click Yes to allow
installation to continue. You see all the files installed into the
C:\CodeBlocks folder on your system.
The setup wizard may display a dialog box asking whether you want
to start Code::Blocks. Click No if you see this dialog box.

6. Click Next.
You see a completion dialog box.

7. Click Finish.
The setup wizard ends.

 If you find that the wizard has somehow managed not to select a
compiler and/or debugger for you, you can perform this task
manually. The “Selecting a compiler” section will help in this
regard. In addition, the blog posts at
http://blog.johnmuellerbooks.com/2011/04/06/checking-

your-compiler-in-codeblocks/ and
http://blog.johnmuellerbooks.com/2013/04/12/resetting-

your-codeblocks-configuration/ tell how to perform the
additional setup. However, in most cases, the wizard will perform
the required setup for you.

Working with Mac OS X
Installing Code::Blocks on a Mac requires a little extra work than it does
in Windows. Code::Blocks requires Mac OS X 10.6 or later to install.
You can get the version 17.12 file, codeblocks-17.12_OSX64.dmg, from
https://sourceforge.net/projects/codeblocks/files/Binaries/17

.12/Mac/. If you experience a Mac Gatekeeper error during installation,
please check out the blog post at
http://blog.johnmuellerbooks.com/2016/03/21/mac-gatekeeper-

error/.

http://blog.johnmuellerbooks.com/2011/04/06/checking-your-compiler-in-codeblocks/
http://blog.johnmuellerbooks.com/2013/04/12/resetting-your-codeblocks-configuration/
https://sourceforge.net/projects/codeblocks/files/Binaries/17.12/Mac/
http://blog.johnmuellerbooks.com/2016/03/21/mac-gatekeeper-error/


The following steps tell you how to get a functional Code::Blocks
installation on your Mac system.

1. Download and install Xcode from the App Store to obtain a copy
of GCC, if necessary.
You can verify that you have the GNU GCC compiler installed by
opening a terminal, typing gcc -v, and pressing Enter. If GCC is
installed, you should see some version information along with some
compiler instructions.

2. Extract the Code::Blocks files into a folder.
You see a number of files, including the Code::Blocks application, a
readme file containing the latest update information, and a PDF file
containing documentation.

3. Open the Applications folder.
You see the applications installed on your system.

4. Drag the CodeBlocks.app file from the folder you used for
extraction purposes to the Applications folder.
The operating system adds Code::Blocks to the list of usable
applications.

5. Navigate to https://developer.apple.com/downloads/.
This site requires that you sign up for a free developer ID. Simply
follow the prompts onscreen to obtain your Apple ID. The sign-up
process is free.

6. Click the Command Line Tools for Xcode link.
The operating system downloads the file and displays a package
folder for you.

7. Double-click the Command Line Tools package.
The operating system installs the package for you, which enables
access to GCC from Code::Blocks.

Using the standard Linux installation

https://developer.apple.com/downloads/


There isn’t a single set of steps for installing Code::Blocks on Linux,
because each flavor of Linux has its own requirements. Code::Blocks
directly supports:

Blag
Debian
Fedora
Gentoo
Platypux
Red Hat Package Manager (RPM)-based distributions (such as
SUSE, Red Hat, Yellow Dog, Fedora Core, and CentOS)
Ubuntu

Each distribution type has its own set of instructions that you can find at
http://wiki.codeblocks.org/index.php?

title=Installing_Code::Blocks. Make sure you download and install
the compiler, debugger, and IDE as needed by carefully following the
instructions (typed at the terminal). The file that you download from
http://www.codeblocks.org/downloads/26 contains the packages for
a Code::Blocks installation, so you don’t need to download each package
separately as part of the installation process.

 Some Linux installations have special requirements or
experience limitations when working with Code::Blocks. The only
apparent limitation that affects this book is the lack of Boost
support for Red Hat and CentOS. Because of this limitation, you
can’t use the examples found in Book 7, Chapters 4 and 5.
However, if you experience other limitations, please let me know
about them at John@JohnMuellerBooks.com and I’ll address them
as part of a blog post for this book.

http://wiki.codeblocks.org/index.php?title=Installing_Code::Blocks
http://www.codeblocks.org/downloads/26
mailto:John@JohnMuellerBooks.com


Using the graphical Linux installation
All versions of Linux support the standard installation discussed in the
“Using the standard Linux installation” section of this chapter. However,
a few versions of Debian-based Linux distributions, such as Ubuntu 12.x
and above, provide a graphical installation technique as well. You’ll
need the administrator group (sudo) password to use this procedure, so
having it handy will save you time. The following steps outline the
graphical installation technique for Ubuntu, but the technique is similar
for other Linux installations.

1. Open the Ubuntu Software Center folder (the folder may be
named Synaptics on other platforms).
You see a listing of the most popular software available for
download and installation, as shown in Figure 1-2. Your list will
probably vary from the one shown in the screenshot.

2. Select Developer Tools (or Development) from the All Software
drop-down list box.
You see a listing of developer tools, including Code::Blocks, as
shown in Figure 1-3.



FIGURE 1-2: The Ubuntu Software Center contains a list of the most popular
software when you open it.



FIGURE 1-3: The Developer Tools category contains an entry for Code::Blocks.

3. Double click the Code::Blocks entry.
The Ubuntu Software Center provides details about the
Code::Blocks entry and offers to install it for you, as shown in Figure
1-4.



FIGURE 1-4: It’s possible to obtain additional information about Code::Blocks if
necessary.

4. Click Install.
Ubuntu begins the process of installing Code::Blocks. A progress bar
shows the download and installation status. When the installation is
complete, the Install button changes to a Remove button.

5. Close the Ubuntu Software Center folder.
You see a Code::Blocks icon added to the Desktop. The IDE is ready
for use.

Touring the Essential Code::Blocks
Features

No matter how you install Code::Blocks for your platform, you
eventually end up with an IDE with standardized characteristics. This is



one of the best reasons to use an IDE such as Code::Blocks — you can
use the same IDE no matter which platform you use.

 Your screenshots may look different from the ones shown in this
book. Even though this book uses screenshots from the Windows
version of Code::Blocks, the same features are provided for
Code::Blocks installations on other platforms, though the IDE may
not look precisely the same on those other platforms. The following
sections describe the essential features you need to know about
when working with Code::Blocks.

Starting Code::Blocks for the first time
Open the Code::Blocks executable program using the technique your
platform usually requires. For example, when working with Windows or
the Mac, you double-click the CodeBlocks icon. The first time you start
Code::Blocks, you may see a Compilers Auto-detection dialog box.
Select the GNU GCC Compiler entry (it may be the only available entry
and selected by default), click Set as Default, and then click OK.

At this point, Code::Blocks displays a File Associations dialog box,
similar to the one shown in Figure 1-5. It’s a good idea to associate the
IDE with your C++ files so that opening the file also opens the IDE —
making it much easier to write applications and modify them later.



FIGURE 1-5: Associate Code::Blocks with your C++ files to make it easier to manage them.

Select either of the Yes options in this list. You can associate
Code::Blocks with other source code types, but for the purposes of this
book, you only need to associate it with C++ files. Click OK to complete
the action. At this point, you see the IDE.

After you set the file associations, Code::Blocks usually begins by
opening the IDE and placing a tip dialog box in it, as shown in Figure 1-
6. You can turn these tips off by clearing the Show Tips at Startup check
box. The Tip of the Day link on the Start Here page (which you can
display by choosing View ⇒  Start Page) also displays a tip when clicked.
The tip is a random bit of information about using Code::Blocks more
efficiently. You can see the next tip in the series by clicking Next Tip or
disable the display of tips by clearing Show Tips at Startup. After you
read the tip, click Close.

FIGURE 1-6: Code::Blocks provides a tips dialog box that contains helpful information.

In some cases, the IDE will display a message similar to the one shown
in Figure 1-7. What this message is saying is that you’ve made changes
to the Code::Blocks configuration. Click Yes to save the changes.



FIGURE 1-7: Save your changes to disk.

 Windows users may experience a problem at this point. If you
install Code::Blocks in the C:\Program Files folder and don’t
have Administrator access (or if you simply opened the application
as a regular user), you may find that you can’t save any
Code::Blocks settings, making using Code::Blocks an annoying
experience. To use Code::Blocks without problems, make sure you
have write access to the folder in which you installed it. The best
policy is to install Code::Blocks to the C:\CodeBlocks folder on
your system. As an alternative, you can right click the Code::Blocks
icon and choose Run As Administrator from the context menu to
run Code::Blocks with the required permissions.

Opening the sample projects
You obtain the source code for this book from the publisher site
described in the Introduction. After you download the .zip file
containing the source, you simply extract it to your hard drive. Don’t
attempt to run the source code inside the .zip file; doing so will display
confusing messages in Code::Blocks and won’t allow you to run the
code.

The source code for this book is divided into books, chapters within
books, and examples within chapters. To open the first example found in
Chapter 3 of this book, for example, start by locating the
\CPP_AIO\BookI\Chapter03\SayHello folder (or the equivalent on your
platform). Within this folder is SayHello.cbp. The Code Blocks Project
(.cbp) file extension contains everything that Code::Blocks needs to



open the project and present it to you. When you get to this first project,
you double-click SayHello.cbp and Code::Blocks automatically opens
the project for you, as shown in Figure 1-8.

FIGURE 1-8: Each example has a .cbp file associated with it that opens the example in
Code::Blocks for you.

If you have chosen to allow tips, you’ll actually see a Tip of the Day
dialog box first, like the one shown earlier, in Figure 1-6. Click Close
after you read the tip to see the project. Don’t worry about the contents
of this example for now. You’ll discover how it works in Chapter 3. The
only thing you need to know for now is how to open a project example
so that you can follow along with the examples in the book.

 When working with IDEs other than Code::Blocks, you can
open the C++ (.cpp) file instead of the .cbp file. Opening the .cpp



file will still display the code example for you. C++ stores source
code in .cpp files, not as part of the .cbp files.

Viewing the essential windows
There are some windows that you use with every example in the book.
As the book progresses, you’ll be introduced to other windows, but the
ones covered in the following sections are the windows that you need to
know about in order to get started with Code::Blocks.

Using the Start Here window
The Start Here window, shown in Figure 1-9, does precisely as its name
indicates — it gets you started with Code::Blocks. This window is
automatically displayed when you open Code::Blocks directly, without
opening a project first. It appears immediately after you clear the Tip of
the Day dialog box.

FIGURE 1-9: Use the Start Here window to start a new session.



This window is important because it also provides you with access to
various Code::Blocks features and makes it possible for you to request
changes. Here are the options you can access using this window:

Create a New Project: Before you can use Code::Blocks effectively,
you need to create a project. A project acts as a container to hold the
files used to create the application. It also stores settings used to
configure the development environment and present that
environment to you in a specific manner.
Open an Existing Project: Any time you want to re-create the
environment you used during a previous coding session, you open an
existing project. The project will automatically open any source code
files that you had open and perform other tasks to make it easy for
you to start right back up where you left off the previous day.
Tip of the Day: If you missed the Tip of the Day or you simply want
to reactivate the feature, click this link. Code::Blocks displays the
Tip of the Day dialog box, shown in Figure 1-6.
Visit the Code::Blocks forums: You can’t communicate directly
with the makers of Code::Blocks. However, you can communicate
directly with other users and get peer support. The makers of
Code::Blocks also monitor the forums, and you’ll see them actively
addressing issues that aren’t handled with peer support.
Report a Bug or Request a New Feature: Every application on the
planet has bugs (programming errors), including the Code::Blocks
IDE. It’s important to report bugs when you find them so that they
can be fixed.
Anyone who uses an application long enough will likely come up
with a spectacular idea for making it better. The makers of
Code::Blocks want to hear your phenomenal idea, so contact them
sooner than later.
Recent Projects: As you work with Code::Blocks, you’ll create
more than one project. Rather than look all over your hard drive for
the project you need, you can use this feature to find it immediately.
To open the project, just click on its link in the Recent Projects list.



 Even if you can’t see the Start Here window after you open a
project, you can always view it by selecting View ⇒  Start Page.
Keeping the Start Here window handy makes it easy to access
commonly used Code::Blocks features. However, you can also
access these features using menus. For example, to create a new
project, you choose File ⇒  New ⇒  Project.

Using the Management window
The purpose of an IDE is to help you manage your coding projects in
various ways, so it’s not surprising that Code::Blocks comes with a
Management window, as shown in Figure 1-10. The Management
window normally resides on the left side of the IDE’s main window, but
you can move it where you want by using the title bar to drag the
window.

FIGURE 1-10: The Management window helps you manage your Code::Blocks projects.

The Management window contains four tabs. (The Fortran Symbols,
FSymbols, tab is never used in this book.) The following list describes
the purpose of each tab:

Projects: Grouping in one place all of the files needed to create an
application is a helpful method for managing it. A grouping of
applications files is called a project, and helping you create and
maintain projects is just one way in which Code::Blocks makes
application development easier.



Symbols: Applications contain a number of symbols, such as the
names of functions (named blocks of code). You use the Symbols tab
to find specific symbols you need within an application. Don’t worry
too much about symbols now, but eventually you’ll find that this tab
helps save time and effort by making it easier to locate specific
pieces of your application.
Files: Locating code and resources you need to add to the current
project can be time consuming. The Files tab provides a method for
navigating the file system. You can then right-click on files you need
and use the context menu entries to perform tasks such as adding the
file to your current project.
Resources: Graphical applications require the addition of dialog
boxes and other visual elements that C++ treats as resources. The
Resources tab contains a list of these resources so that you can find
them easily and manage them in various ways.

 The Resources tab is a feature, used by advanced developers,
which you generally don’t need to worry about unless you decide to
create graphical applications using a combination of C++ and the
wxWidgets plug-in (installed automatically for Windows developers,
but separately for both Mac and Linux developers). An explanation
of how to create such applications is outside the scope of this book,
but you can see a simple example of such a project at
http://wiki.codeblocks.org/index.php?

title=WxSmith_tutorial:_Hello_world.

Using the Logs & Others window
Code::Blocks helps you track all sorts of activities. For example, when
you create a new application from source code you write (a process
called building), you see messages that tell you how the process went, as
shown in Figure 1-11 (your messages may vary slightly). The examples
in this book will help you understand when to use the various log tabs

http://wiki.codeblocks.org/index.php?title=WxSmith_tutorial:_Hello_world


and other tabs (such as the Debugger tab) to better determine how your
application works.

The tabs you see in this window depend on which options you have
enabled in Code::Blocks and what task you’re doing. Code::Blocks will
usually select the tab you need automatically. If you want to close a
particular tab, click the X next to its entry on the tab. To display a tab
that you don’t see, right-click any tab in the list and choose an entry
from the Toggle option on the context menu.

FIGURE 1-11: Using the Logs & Others window to understand how your application works.

Selecting a compiler
Code::Blocks supports a host of compilers. This book uses GCC because
it works on all of the target platforms and it provides great C++ 20
support. Most Code::Blocks installations also select this particular
compiler automatically. So there are all kinds of great reasons to use
GCC as a compiler. However, you might not have GCC selected on your
system, and that could cause problems when running the examples. Not
every compiler vendor provides great C++ 20 support, or your compiler
vendor might implement a particular detail differently than GCC does.
The following steps help you verify that GCC is the compiler selected
for your system, and they help you change your configuration if it isn’t:

1. Open Code::Blocks.
It doesn’t matter if you select a project or not. Configuring the
compiler will be the same whether you have a project loaded or not.

2. Choose Settings ⇒  Compiler.



You see the Compiler Settings dialog box, as shown in Figure 1-12.
3. Click Global Compiler Settings in the left pane to display the

global compiler settings.
4. Verify that the GNU GCC compiler (or an equivalent for your

platform) is actually selected in the Selected Compiler list.
The list could contain a number of GCC compiler entries. The best
option is the GNU GCC Compiler setting because it offers maximum
compatibility with the book examples. If the GNU GCC Compiler
option (or an equivalent for your particular platform) is selected,
proceed to Step 7.

5. Select the GNU GCC Compiler option (or the equivalent for
your platform) in the Select Compiler list.
The Set As Default button becomes enabled after you make your
selection.

6. Click Set As Default.
This step ensures that the GNU GCC compiler is used for all of your
projects, even if you only want to open the downloaded source code.



FIGURE 1-12: Set Code::Blocks to use the GCC compiler to run the examples in
this book.

7. Click OK.
8. Close Code::Blocks.

You see a Layout Changed dialog box.
9. Click Yes.

Your changes become permanent, and Code::Blocks closes.

Using Other IDEs
Even though this book will focus on the Code::Blocks IDE and the GCC
compiler combination, the knowledge you gain can be used with any
IDE and compiler combination. In fact, all you really need is the
compiler. Most developers use an IDE, just because it makes things easy
(and we all like things easy). You may find, though, that Code::Blocks



simply doesn’t provide the functionality you want or that it’s too hard to
use.

 The selection of an IDE is a personal thing, and most developers
have specific reasons for choosing a particular IDE. In fact, I use
several different IDEs and make my choice based on the needs of a
particular project. So it’s not even necessary to use the same IDE all
the time. IDEs provide management features, while compilers
control how the source code is interpreted and turned into an
executable file. The two applications perform completely different
tasks.

GCC is a great choice for a compiler because a number of IDEs support
it. If you decide to use a different IDE from the one found in this book,
that’s fine with us. In fact, we congratulate you on your desire to take a
different path! Here are some alternative IDEs that you might want to
consider:

CodeLite: https://codelite.org/

Dev-C++: https://dev-c.soft32.com/free-download/?dm=2

Eclipse: https://www.eclipse.org/downloads/ when used with
C/C++ Development Tooling (CDT)
(https://www.eclipse.org/cdt/)

Emacs: https://www.gnu.org/software/emacs/) when used with
the Emacs Code Browser (ECB) (http://ecb.sourceforge.net/)

Netbeans: https://netbeans.apache.org/download/index.html

Qt Creator: https://www.qt.io/developers/

OceanofPDF.com

https://codelite.org/
https://dev-c.soft32.com/free-download/?dm=2
https://www.eclipse.org/downloads/
https://www.eclipse.org/cdt/
https://www.gnu.org/software/emacs/
http://ecb.sourceforge.net/
https://netbeans.apache.org/download/index.html
https://www.qt.io/developers/
https://oceanofpdf.com/


Chapter 2

Configuring Your Mobile
System

IN THIS CHAPTER
 Getting and using CppDroid
 Working with other mobile IDEs
 Using CppDroid to write code
 Getting CppDroid help

At one time, developers relied exclusively on desktop systems to
perform useful tasks because desktops provided the required computing
power. Laptops came next, but essentially a laptop is a smaller form of a
desktop. Today, however, developers rely on all sorts of mobile devices
to write code. Even though someone could conceivably use a
smartphone for the task, the majority of this activity occurs on high-
powered tablet computers. The reason relates not so much to the power,
but the form factor. A tablet offers more screen real estate to see your
code and observe how it works. Keeping these two goals in mind and
looking at the available Integrated Development Environments (IDEs),
this chapter relies on Google CppDroid to make the leap from desktop
systems to Android-powered tablet systems, such as the ASUS ZenPad
3S 10.

However, you shouldn’t get the idea that CppDroid is the only game in
town. You also find a description of a few other offerings in this chapter,
and you can certainly try them if you like. The consistent issue with all
of these offerings, though, is that they all currently lack C++ 20 support,
so some book examples won’t run on your tablet at all. If you want to
ensure maximum compatibility with the book’s code, procedures, and
screenshots, you still need to rely on Code::Blocks running GCC.



After you get CppDroid installed, you need to know how to perform
some basic tasks with it. This chapter doesn’t provide a complete tutorial
on using CppDroid, which is why it also discusses how to obtain help.
However, you do discover how to interact with the book’s code in this
chapter, which is an essential part of the learning experience.

Obtaining CppDroid
Many IDEs are available for you to use to work with C/C++ code.
However, most of them rely on the Windows, Linux, Mac OS X, and
Solaris platforms (with Solaris appearing as an option far less often than
the others). In addition, most of them are paid options, with
Code::Blocks (http://www.codeblocks.org/) and Visual Studio Code
(https://code.visualstudio.com/) being notable exceptions.
However, to program on your Android device, you need an IDE that
works with Android and provides some sort of cloud-based storage for
the most part (PC-based IDEs use local storage). CppDroid offers a good
Android-based solution that you can use in both online and offline mode
without problem. Plus, the free option actually does work (but with
limits; see the “Free versus paid software” sidebar for details). The
following sections give you insights into working with CppDroid.

FREE VERSUS PAID SOFTWARE
You can often get by using free software on your mobile device. In some cases, you
don’t actually have a paid choice, but in other cases the paid option may offer features
you won’t use. Game software falls into this category, as do some kinds of productivity
software. The paid version of an app often lacks ads, offers additional storage space,
and frees up a few new features. You may also receive some level of support directly
from the vendor, rather than rely on community support. Whether the paid version is
worth your time depends on which features you use.

The free-versus-paid question skews toward paid when you start to work with an IDE.
Many of the CppDroid features discussed in this chapter come with only the paid
version, and the book assumes that you have the paid version when working with the
code. However, you can probably work with a majority of the examples using the free
version if you’re willing to put up with the loss of some functionality, like real-time
diagnostics and static analysis.

http://www.codeblocks.org/
https://code.visualstudio.com/


Understanding why CppDroid is such a great
choice
You can find a number of C/C++ IDEs for Android in the Google Play
Store. However, the choices come down to three products for most
people (in order of preference):

CppDroid
C4Droid
CxxDroid

 None of these products will completely replace a desktop IDE,
but CppDroid comes very close. For example, CppDroid is the only
one of the three products that has built-in support for graphics. You
can obtain graphics support in CxxDroid using Qt
(https://www.qt.io/) and a nonstandard header, graphics.h, but
this means working in a manner that doesn’t easily translate
between desktop and mobile device. You can also use CxxDroid
with Simple DirectMedia Layer (SDL)
(https://www.libsdl.org/). C4Droid supports SDL using only a
non-standard graphics.h file. You use Qt to develop business
graphics software, while SDL works great for 2-D games.

If you want to develop 3-D games, you must use DirectX through Wine
(https://www.androidpolice.com/2020/01/21/windows-
compatibility-layer-wine-hits-v5-0-on-android/) or OpenGL
(https://developer.android.com/guide/topics/graphics/opengl).
There are add-ons, such as Unity
(https://developer.android.com/games/develop/build-in-unity)
and Unreal (https://docs.unrealengine.com/en-
US/Platforms/Mobile/Android/index.html), but they actually layer on
DirectX or OpenGL, so you’re still using one of these two technologies,
despite using them indirectly. Using any of these products on Android is

https://www.qt.io/
https://www.libsdl.org/
https://www.androidpolice.com/2020/01/21/windows-compatibility-layer-wine-hits-v5-0-on-android/
https://developer.android.com/guide/topics/graphics/opengl
https://developer.android.com/games/develop/build-in-unity
https://docs.unrealengine.com/en-US/Platforms/Mobile/Android/index.html


difficult, and you should plan plenty of time to integrate these APIs into
your IDE.

It’s helpful to know precisely what CppDroid provides. Table 2-1 lists
basic functionality, whether this functionality comes only with the paid
version, and a brief overview of what you obtain with the basic
functionality. As you work with CppDroid, you encounter some
deficiencies, especially when running the standardized code in this book,
but you also discover that you can run a lot of it without any sort of
modification.

TABLE 2-1: CppDroid Features

Feature Paid
Only Description

Add-ons manager

Even though CppDroid comes with all the basics you need,
at some point you’ll want to go beyond the basics, which is
where add-ons come into play. An add-ons manager makes
the task of knowing what you need to add a lot easier. Plus,
you can easily get rid of items that you no longer need.

Auto indentation

Trying to keep your code readable means using indentation
to see things like the start and finish of an if statement or
other code block. Having configurable auto indentation
means that you can choose how the code is indented, but
you don’t have to indent it manually.

Auto pairing

Locating a missing parenthesis or brace can drive you slowly
nuts. Configurable auto pairing means that you determine
how elements are paired, but the IDE helps you ensure that
nothing needed to compile the code is missing.

Auto updates

Getting the latest software updates helps you write code that
works with the newest trends in C/C++ development. You
also get bug fixes, which is essential for the reliability and
security of the code you create.

C/C++ code
examples
included

X

Because working with tablet-based IDEs can sometimes
come with quirks, having a full set of C/C++ code examples
is essential. These examples show how to work around the
quirks so that you can execute your C/C++ code with just a
few small modifications when necessary.



Feature Paid
Only Description

C++ tutorial and
learn guide
included

X

If you plan to work offline, it’s essential to have a tutorial and
learning guide for those times when you almost, but not
quite, remember how to perform a particular task. Of course,
you’ll also want to keep this book handy.

Code complete X

Automatically suggests how to complete statements that you
type based on previous content. This feature reduces
potential typos and makes you considerably more efficient,
especially when working on the tiny keyboards found in
tablets.

Compile C/C++
code

In some cases, such as when working with a web-based IDE,
the C++ code you create is interpreted by ROOT (see
https://en.wikitolearn.org/ROOT_for_beginners for more
information about ROOT). Some tablet IDEs also require
ROOT, but with CppDroid you get fully compiled C/C++ code
output instead.

Dropbox support X Sharing your code with others is a lot easier when you have
Dropbox support.

File and tutorial
navigator

This feature provides an index into the documentation to tell
you about C/C++ code constructs, including variables and
methods.

Google Drive
support X

Working from anywhere on a single piece of code means
having access to that code from every environment you use.
If your desktop system also supports Google Drive, you can
switch between your desktop and tablet as the need arises.

Portrait/landscape
UI

A tablet presents a constrained screen real estate
environment. When an IDE forces you to use it in landscape
mode only, you often see the IDE informational panes at the
expense of seeing the code. Working in portrait mode lets
you ignore most of the IDE panes while focusing on the
code.

Problem fix
suggestions X

You get suggestions for a variety of coding issues, even if
those issues may not necessarily result in a compilation
error.

Real-time
diagnostics
(warnings and
errors)

X

Real-time diagnostics enable you to find certain classes of
errors in your code without having to compile it. The IDE
monitors what you type and can point out issues like typos
without compilation, which saves considerable time.

https://en.wikitolearn.org/ROOT_for_beginners


Feature Paid
Only Description

Smart syntax
highlighting

Highlighting makes your code stand out so that you can see
things like variables and keywords more easily.

Static analysis X

Static analysis helps locate truly difficult-to-find bugs that
include: memory leaks, mismatching allocation and
deallocation, uninitialized variables usage, and array index
out-of-bounds errors.

Theme-based
code syntax
highlighting

X

Themes let you highlight code syntax in a manner that
makes sense to you. If you have visual problems, using
themes can turn a difficult viewing experience into one that
works well with your vision. The use of themes means that
no one is stuck using a particular theme to highlight syntax;
you see it the way that works best for you.

Works offline

The ability to work without an Internet connection means that
you gain flexibility in where you can work. However, it also
means that you must have access to everything you need as
part of the local installation, which is something that
CppDroid provides at the expense of additional local storage
use.

Getting your copy of CppDroid
You obtain CppDroid from the Google App Store by searching for
CppDroid. Unfortunately, it doesn’t support every version of Android, so
you may not actually see it if your device doesn’t support it. Figure 2-1
shows how the page appears when you find it. To obtain a copy, all you
need to do is tap Install.



FIGURE 2-1: Locating CppDroid in the Google Play Store.

Ensuring you get a good install



After the CppDroid app installs on your tablet, you see the Open button
as usual. However, instead of opening the app, you see something like
the view in Figure 2-2. To work offline, CppDroid needs to install a
number of libraries on your system. This process can take a while, so
just wait for it to complete.

FIGURE 2-2: Loading the CppDroid libraries for offline use.

Considering Other Alternatives
You aren’t limited to working with CppDroid, even though it’s the tablet
IDE used for the book. Most tablet IDEs will let you perform a basic set
of tasks that will work well for the majority of the book examples. The
only time you’ll encounter difficulty is when working with examples
that use new C++ features, rely on graphics in some way, or employ
standard features not found in the tablet IDE. One of the advantages of
these alternatives is that they might support your device when CppDroid
doesn’t. The following sections tell you about the best alternatives that
provide maximum compatibility with the book examples.

Working with C4Droid
C4Droid has many of the same features as CppDroid. For example, it
compiles your C/C++ code, so you don’t need ROOT support. However,
you can use it if desired. As with CppDroid, the app targets the
educational market, but C4Droid doesn’t enjoy the strong community
support that CppDroid does (see the article at
https://www.androidrank.org/compare/c4droid_c_c_compiler_ide/

cppdroid_c_c_ide/com.n0n3m4.droidc/name.antonsmirnov.android.

cppdroid for details). In contrast to CppDroid, no free version of

https://www.androidrank.org/compare/c4droid_c_c_compiler_ide/cppdroid_c_c_ide/com.n0n3m4.droidc/name.antonsmirnov.android.cppdroid


C4Droid exists, but when compared to the price charged for most
desktop IDEs, C4Droid is a bargain.

 Beside the graphics limitations noted earlier in the chapter,
C4Droid has some other limits as well. The most important of these
is that it currently supports only C++ 11, which means that any
newer examples in the book won’t run on it. You also need to
download and separately install more products to get a fully
functional IDE. The limited number of examples can also be a
problem. Because the tablet environment can be different from
working on the desktop, having a great list of examples can really
help.

Getting multiple language support with AIDE
If you’re looking for a single IDE that can do everything you need on
your tablet, Android IDE (AIDE) (https://www.android-ide.com/)
might be what you need. Unlike the other IDEs listed in this chapter, this
one works with a slew of languages, including Java, C/C++, HTML5,
CSS, and JavaScript. AIDE is also Android Studio and Eclipse
compatible (limited to API level 27), so if you plan to create Android
apps using a language such as Java, this might be the right choice for
you. (Unfortunately, Google is focusing on the Kotlin language for
Android development and has no plans to add Kotlin support to AIDE
now.)

However, with such a flexible range of features comes complexity,
which seems to be the major criticism of AIDE. The well-designed
tutorials tend to help a little, but obviously not enough for a novice
developer. Many users also complain that there is a plug-in for every
need and all the plug-ins are paid, so this IDE can nickel-and-dime you
to death.

https://www.android-ide.com/


 The C/C++ language support for AIDE comes from the Android
Java C++ APK 3.2, which means that you can expect differences in
support from the GNU Compiler Collection (GCC) used with
Code::Blocks for the desktop application in this book. You may
find that some examples won’t work properly because of these
differences, but all the simple (earlier) examples will work fine.

Using web-based IDEs
You can use a web-based IDE from any device, including your desktop,
so in some cases, they represent the best in terms of device
compatibility. A web-based IDE also provides an interpreted
environment through ROOT in most cases. Consequently, when learning
to develop apps in C/C++, you get instant feedback, which can save
considerable time. As shown in Figure 2-3, the web-based offerings also
tend to provide a simple interface that allows you to get right to work.

The example in Figure 2-3 is JDoodle
(https://www.jdoodle.com/online-compiler-c++17/), which is one
of the best C/C++ online offerings. This particular online IDE supports
72 programming languages. How well it supports all of them depends on
the interpreter used. For the most part, you find that the JDoodle IDE
provides an acceptable method of working with the code in the book.
Because it also supports C++ 17, you can also run more of the examples
than you can using a C/C++ app.

https://www.jdoodle.com/online-compiler-c++17/


FIGURE 2-3: Web-based IDEs tend to provide a very simple interface.

 The problem with every one of the web-based IDEs is that you
must use them online. In addition, there is a very good chance you
won’t be able to save your code, so they’re mostly useful for
experimentation and not long-term learning. However, even with
these issues, here are some of the web-based IDEs you might
consider as replacements for CppDroid in addition to JDoodle:

C++ Shell (C++ 14): http://cpp.sh/

CodeChef (C++ 14): https://www.codechef.com/ide

Ideone (C++ 14): https://ideone.com/SXNfC0

http://cpp.sh/
https://www.codechef.com/ide
https://ideone.com/SXNfC0


OnlineGBD (C++ 17):
https://www.onlinegdb.com/online_c_compiler

Rextester.com (Varies according to C compiler selected):
https://rextester.com/l/c_online_compiler_gcc

RepLit (C++ 11): https://repl.it/languages/cpp11

TutorialsPoint (C++ 11):
https://www.tutorialspoint.com/compile_cpp11_online.php

Touring the Essential CppDroid
Features

After you have CppDroid downloaded, you want to begin working with
it. The following sections get you started with the basic features you
need to work with the examples in this book. However, the IDE provides
a lot more functionality than you find here, so spending time with the
various examples and tutorials is a good idea as well.

Getting started with CppDroid
When the libraries are finally loaded, you see a screen similar to the one
shown in Figure 2-4. The top left of this screen displays the name of the
file (which you can change if you want). The top right contains buttons
to Save, Compile, and Run your app.

Along the bottom of the screen, you see the current phase of working
with your code:

Diagnostics: Shows errors that occur in your typing.
Analysis: Outputs the results of a compilation.
Output: Displays the output from your app.

https://www.onlinegdb.com/online_c_compiler
https://rextester.com/l/c_online_compiler_gcc
https://repl.it/languages/cpp11
https://www.tutorialspoint.com/compile_cpp11_online.php


FIGURE 2-4: Accessing the basic CppDroid user interface features.

 Tap the ellipsis button in the top-right corner and you see the
menu shown in Figure 2-5. To obtain full functionality from
CppDroid, you need to tap the Purchase entry and select the
optional features you want to buy (see Table 2-1 for details).
Choosing Premium will give you access to all the extra features at a
reduced cost.



FIGURE 2-5: Use the menu to locate the CppDroid features and options.

Accessing an example
CppDroid comes with both examples and tutorials you can use to learn
more about the IDE and C/C++ in general. The tutorials work much like
the examples—just with more content. To access the Hello World



example, choose … ⇒  Project ⇒  Examples ⇒  C++ ⇒  For Beginners ⇒  
HelloWorld. The display will now contain the code shown in Figure 2-6.

FIGURE 2-6: Loading an example provides a quick way to see code in action.

To compile this code, you touch the lightning icon. After it has
compiled, you can run it by tapping the right-pointing arrow. The display
will change to show the output. To clear the output, tap the left-pointing
arrow in the upper left corner of the display.

Working with a simple online project
You can place the source code for this book on your Google Drive or
Dropbox. Of course, you’ll still need some method of accessing it. The
following steps assume that you use Google Drive, but they also work
with Dropbox. (When working with Dropbox, you place the code in the
Dropbox\Apps\CppDroid folder.)

1. Choose … ⇒  Project ⇒  Open ⇒  From Google Drive.
You may have to log in at this point. After you log in, you may see a
dialog box like the one shown in Figure 2-7 in which you give
permission to access Google Drive from CppDroid. Tap Allow to
allow the access. (This is a one-time step.)

2. Locate the folder containing the code you want to access.
You see one or more .cpp files. For example, when working with the
book’s source code, you might choose the



BookI\Chapter03\SayHello folder.

3. Highlight the file you want to open and then tap Select.
CppDroid opens the file for you. Figure 2-8 shows an example of the
HelloWorld.cpp file for Book 1, Chapter 3.

At this point, you can compile and run your application just as if you
used Code::Blocks. The only difference is that you’re doing it on your
tablet.



FIGURE 2-7: Give permission to access your Google Drive.



FIGURE 2-8: The file is available for use with your local copy of CppDroid.

Accessing your source code
To begin creating a new source code file, you choose … ⇒  File ⇒  New.
When you create a new file, CppDroid automatically gives it a default
name. You can change the name by choosing … ⇒  File ⇒  Rename. A
single file can be part of a project, but you can also make a single file the
entire project. For example, a Hello World app would consist of a single
file.

You can store your source code locally, on Google Drive, or on
Dropbox. When working online, the process is the same as when
working with online source as described in the “Working with a simple
online project” section of the chapter. The following list tells how you
can store your source code locally to make it available at all times.

To create a new project: Choose … ⇒  Project ⇒  New. When you see
the New Project dialog box shown in Figure 2-9, type a project name
and then tap either Create C Project or Create C++ Project.
To open an existing project: Choose … ⇒  Project ⇒  Open, select
one of the project sources: Recent, From Device, From Dropbox, or



From Google Drive, and then select the project you want to open.
To save an existing project: Choose … ⇒  Project⇒  Save or … ⇒  
Project ⇒  Save As. When using Save As, you can choose a different
location, such as Dropbox or Google Drive, and a new project name.
To close an existing project: Choose … ⇒  Project ⇒  Close.
CppDroid automatically saves your project to the default location
with the current name if you haven’t done so.
To delete an existing project: Choose … ⇒  Project ⇒  Delete while
the project is open for editing.

FIGURE 2-9: Define a new local project.

Considering differences with the desktop
environment
When you compare CppDroid with Code::Blocks, you find that
CppDroid provides a much simpler interface with far fewer features. It
works as a means to write code while on the road and for testing simple
applications. You can’t use CppDroid as a full-fledged development
environment simply because it doesn’t contain the features that such an
environment provides, especially when it comes to things like
debugging. In fact, the limits clearly present themselves on the Actions
menu shown in Figure 2-10, where CppDroid limits you to completing



code, performing analysis, compiling, and running the code with or
without arguments.

FIGURE 2-10: The list of actions in CppDroid is somewhat limited.

 Even with the limits, you can easily work with any example in
the book that consists of a single file or doesn’t rely on the latest
C++ functionality. You need the desktop environment, however, to
make most multifile examples work and to perform complex tasks.
By working through the examples in this book on your tablet, you
gain insights into what is and isn’t possible for CppDroid, giving
you another useful tool that you can use to code wherever and
whenever you want.



Obtaining CppDroid Help
No matter how simple and straightforward the interface, no matter how
many examples and tutorials supplied, every app will generate some
number of questions. Consequently, you need access to help at some
point to make things work. The following sections offer a quick
overview of the help available for CppDroid.

Working with the Help documentation
The oddest part about working with CppDroid is that there isn’t an
actual Help file. When you open the … ⇒  Help menu, you see the
options shown in Figure 2-11.

FIGURE 2-11: A list of Help sources for CppDroid.

The CppDroid blog contains the latest entries by the app author. What
the blog provides is a running commentary of the problems that the
developer is seeing and what is being done to fix them. You also see side
posts on topics such as the number of people currently using CppDroid
and other projects that the author is contemplating. Even so, this is
where you go when you have a problem with the product and hope that
the developer is addressing it. Figure 2-12 shows an example of the sort
of blog posts you see.



FIGURE 2-12: The developer uses blog posts to help you find bug fixes.

 When you find no apparent help for a particular problem, you
choose the Post Feedback option on the Help menu to send the
developer an email. Oddly enough, you may find that you have a
hard time getting through with anything other than Gmail.

Getting community support
You can find a lot of articles about CppDroid online on various websites.
The articles provide you with insights on how to use CppDroid and often
answer questions that users have about it. In addition, you can find help
using CppDroid at these sites:

Reddit: https://www.reddit.com/r/cpp/search?q=cppdroid

SourceForge: https://sourceforge.net/ (search for CppDroid)

https://www.reddit.com/r/cpp/search?q=cppdroid
https://sourceforge.net/


StackOverflow: https://stackoverflow.com/search?q=CppDroid

AndroidForums: https://androidforums.com/apps/cppdroid-c-
c-ide.5356/

 You might find additional locations for CppDroid information
online. If you find one of these places and it seems to have good,
consistent information, please let me know at
John@JohnMuellerBooks.com so that I can share the information
with other readers.

Using the free examples
The free examples often provide you with insights into how CppDroid
works. For example, you may wonder how the static analysis feature
works. To see a demonstration of static analysis, choose … ⇒  Project ⇒  
Examples ⇒  C++ ⇒  For Developers ⇒  Static Analysis. After the file
loads, choose … ⇒  Actions ⇒  Analyze. Figure 2-13 shows the results.

https://stackoverflow.com/search?q=CppDroid
https://androidforums.com/apps/cppdroid-c-c-ide.5356/
mailto:John@JohnMuellerBooks.com


FIGURE 2-13: Use an example to see how the static analysis feature works.

Notice that the output shows various problems with the code, such as the
printf format string requires 2 parameters, but 3 are given

at line 43, column 0 near the bottom of the screen. The output helps you
locate problems with your code and fix them before you compile it.

Accessing the tutorials
The tutorials provide a multistep process for working with C++ within
CppDroid. When you choose … ⇒  Project⇒  Tutorials ⇒  C++ ⇒  For
Beginners, you see two tutorial options:

CPlusPlus.com C++ Tutorial
LearnCpp.com C++ Tutorial

Both tutorials give you help with getting over the C++ learning curve
from within the CppDroid environment. The IDE changes to show a



tutorial outline in the left pane and the associated text in the right, as
shown in Figure 2-14. You work directly from within the CppDroid
environment, which means that you can better understand how
CppDroid works when you finish.

FIGURE 2-14: The tutorials take you through basic processes within CppDroid.
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Chapter 3

Creating Your First C++
Application

IN THIS CHAPTER
 Organizing your applications into projects
 Typing code into the code editor
 Writing an application that writes to the screen
 Doing basic math
 Running your application

It’s your lucky day. You have decided to learn one of the most popular
programming languages on the planet. (C++ is the fourth most popular
language according to the TIOBE Index at the time of this writing, at
https://www.tiobe.com/tiobe-index/.) From the biggest skyscrapers
housing huge Fortune 500 companies all the way down to the garages
with the self-starting kids grinding out the next generation of software,
people are using C++. Yes, there are other languages, but more
programmers use C++ than any other language for desktop application,
game, animation, media access, compiler, and operating system
development. In this chapter, you start right out writing a C++
application.

As mentioned in Chapter 1, this book relies on your use of Code::Blocks
as the IDE and on GCC as the C++ compiler. The procedures are written
for the most current version of Code::Blocks (version 17.12) at the time
of writing, so you may need to make allowances if you use a different
Code::Blocks version, and the procedures won’t work if you use another
IDE. In addition, you may need to make minor changes to the code as
the examples become more complex if you want to use other compilers.

https://www.tiobe.com/tiobe-index/


 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookI\Chapter03
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Code::Blocks Creating a Project
Creating a computer application is usually a bigger job than you’d want
to organize in your head. Application code is saved in files much like the
documents in a word processor. But applications often have more than
one source-code file. At big companies in big buildings in big cities,
some applications are really big — hundreds of source-code files for just
one application.

Understanding projects
Applications can contain a lot of source code. To keep all that source
code together, programmers use a file that manages it all, called a
project. A project has a few key elements:

A set of source-code files
(Optional) Resource information such as icons and sound files
A description of how to compile (build) the application
Integrated Development Environment (IDE) settings that tell how to
set up the editor you use to write the application
Some general descriptions of the application being built, such as its
name and the type of application it is

The type of application doesn’t mean “word processor” or “really cool
earth-shattering software,” even if that’s what your application is. This
book uses type to mean your application’s overall relationship with other
applications:



Does this application run by itself?
Does this application add to or extend the functionalities of another
application (such as Firefox)?
Does this application serve as a library (a bunch of code that you
make available to another application)?

All this information, along with your source-code files, represents a
project.

In the Code::Blocks IDE, you create a new project each time you start
work on a new application. You provide a little information about the
application you’re working on, and then you begin writing your code.
All the code for your application is stored in one place — in the project.

Defining your first project
To create a new project in Code::Blocks, start Code::Blocks and choose
File  ⇒  New  ⇒  Project, or click Create a New Project on the Start Here
page that appears when you start the application. A dialog box appears,
as shown in Figure 3-1.



FIGURE 3-1: The New from Template dialog box lets you select a new project type.

 You see what appear to be way too many project types,
including some that have nothing to do with C++, such as Fortran
Application and Matlab Project. You can reduce the number of
choices by selecting a category in the Category field. The best
option for the projects in this book is Console.

WHAT ABOUT ALL OF THOSE OTHER
PROJECTS?

Code::Blocks supports a host of other application types. This book doesn’t discuss
them, because they won’t add to your initial understanding of C++ programming.



However, these other projects are valuable in the right environment. For example, the
GIMP Tool-Kit Plus (GTK+) Project relies on a graphical user interface designed for the
X Windowing system (see more at http://www.gtk.org/).

You’ll find that Code::Blocks uses a considerable number of acronyms and
abbreviations for project and resource names without defining any of them. This book
defines all acronyms and abbreviations on first use so that you don’t have to guess
what they mean. However, some of these acronyms and abbreviations go on and on.
For example, you might wonder about the GIMP part of the GTK+ definition. GIMP
stands for GNU Image Manipulation Program. Of course, now you need to know GNU,
which stands for Gnu’s Not Unix. Okay, now that we’ve exhausted that bit of fun, if you
ever do run across an interesting acronym or abbreviation, you can always get it
defined for you on the Acronym Finder website (http://www.acronymfinder.com/). If you
find one that could be defined further in this book, please let me know at
John@JohnMuellerBooks.com. The bottom line is that you need to research both projects
and resources before you use them.

When you create a C++ project in Code::Blocks, you choose from a list
of several types of applications. They’re shown as icons in the New from
Template dialog box in alphabetical order. The following list shows
some application types:

GTK+ Project: This is a graphical application that includes, well, a
window. You know the kind: It usually has a menu across the top and
something inside it that you can either click or type into. It relies on
the GNU Image Manipulation Program (GIMP) Toolkit (GTK),
which provides an incredibly flexible interface that runs on a number
of platforms including Linux, Mac, and Windows systems. Read
more about GTK in the “What about all of those other projects?”
sidebar.
Console Application: This is an application that gets a paltry
Console window instead of a graphical window. Console refers to a
window with a command prompt. (Folks who recall the old days,
before Windows, call it a DOS box, and you may know it as a
terminal window when working with operating systems such as the
Mac or Linux.)
Static library: A static library is a set of C++ code that you use
later in another project. It’s like making a really great marinade that

http://www.gtk.org/
http://www.acronymfinder.com/
mailto:John@JohnMuellerBooks.com


you won’t use up today. You’ll use some of it tomorrow and some of
it after that.
Dynamic Link Library: A Dynamic Link Library (DLL) is kind of
like a static library except it is separated from the main application
and gets its own file with a .DLL extension.

Empty project: This blank project is as clean as a blank sheet of
white typing paper, ready for you to fill ’er up.

 Frankly, it’s kind of a pain to use an empty project, because
you have to tweak and set a bunch of things. So we never use this
option.

For the samples in this chapter, create a Console Application. Follow
these steps:

1. In the New from Template dialog box, click the Console
Application icon found on the Projects tab, and then click Go.
The wizard asks which language you want to use.

2. Highlight C++ and click Next.
You see a list of project-related questions, as shown in Figure 3-2.
These questions define project basics, such as the project name.



FIGURE 3-2: Provide the name of your project for Code::Blocks.

3. Type a name for your project in the Project Title field.
The example uses SayHello as the project title. Notice that the
wizard automatically starts creating an entry for you in the Project
Filename field.

4. Type a location for your project in the Folder to Create Project
In field.
The example uses C:\CPP_AIO4\BookI\Chapter03 as the folder
name. You can also click the ellipsis button next to the Folder to
Create Project In field to use the Browse for Folder dialog box to
locate the folder you want to use. Notice that the wizard completes
the entry in the Project Filename field.

5. (Optional) Type a project filename in the Project Filename field.
Code::Blocks fills in this field for you automatically based on the
Project Title field entry, and there isn’t a good reason to change it in



most cases; however, in special circumstances, you may choose to do
so. For example, if you have a project with multiple elements, you
may want the project file to match the name of an overall project
rather than the name of a particular entity within the project.

6. Click Next.
You see the compiler settings shown in Figure 3-3. Most of the
projects in this book use the default compiler settings, which include
the GNU GCC Compiler shown in the figure. However, if you look
at the Compiler drop-down list, you see that Code::Blocks supports a
number of compilers and you can add more to it. The other settings
control the creation and location of a Debug version of the
application (the version you use for finding problems in your code)
and a Release version (the version that you send to a customer).

FIGURE 3-3: Tell Code::Blocks where to place the Debug and Release versions of
your application.



7. (Optional) Change any required compiler settings.
There generally isn’t any good reason to change the compiler
settings unless your project has a specific need, such as placing the
output and object files in the same folder.

8. Click Finish.
The wizard creates the application for you. It then displays the
Code::Blocks IDE with the project loaded. However, the source code
file isn’t loaded yet.

9. Drill down into the SayHello workspace entries on the Projects
tab of the Management window and double-click main.cpp.
You see the source code file loaded so that you can edit it, as shown
in Figure 3-4.

FIGURE 3-4: Use the Code::Blocks IDE to interact with your project.

The project window is organized side by side:



The left side is an Explorer view (called a tree view), which
represents your project. At the top of the tree view is a workspace —
the essential unit of a project. Below the workspace is the name of
your project. Underneath that are the components of your project. In
this case, only one component exists so far: the source-code file
whose filename is main.cpp. Remember that, in order to program in
C++, you enter code into a source-code file; this file, called
main.cpp, is such a file for your SayHello project.

The right side (which actually takes up about three-quarters of the
screen) is the source-code file itself.
This part works much like a word processor or an email editor, and
you can type the code into the window. You notice that you already
have some code there — a sort of starter code that came into being
when you chose Console Application and created the project.
At the bottom of the display are a number of status windows. The
Code::Blocks window tells you how the wizard created your
application. Don’t worry about these windows right now. You see
them in action as the book progresses.

 Note that Figure 3-4 also shows some additional elements: a
menu, several toolbars, and a status bar. You can right-click the
toolbar area to show or hide toolbars as needed. Figure 3-4 shows
the default toolbars when you first start a project. The status bar
shows the language highlighting in use, some configuration
settings, and your current position within the source file. You can
change the highlighting used in the editor window by choosing a
new language option in the drop-down menu on the left side of the
status bar that currently shows C/C++.

Building and executing your first application
Okay, it’s time to work with your first application. Use the following
steps to save the file, build the application (make it into an executable



that your operating system can use), and execute the application:

1. Save the code file by choosing File  ⇒  Save Everything or press
Ctrl+Shift+S.
Saving the files ensures that you have a good copy on disk should
something go wrong. For example, you could completely crash the
IDE if your application does the wrong thing.

2. Choose Build  ⇒  Build or press Ctrl+F9.
This action creates the executable file. Building the code converts
words you understand into code that your operating system
understands. Notice that Code::Blocks automatically selects the
Build Log window for you and you see the steps that Code::Blocks
takes to create your application. At the end of the process, you
should see something like 0 errors, 0 warnings (0 minutes, 1
seconds) as the output (the precise amount of time may vary, but it
should be short).

3. Choose Build  ⇒  Run or press Ctrl+F10.
An output window like the one shown in Figure 3-5 opens, and you
see your first application execute.

4. Press Enter to stop application execution.
The application window disappears and you see the Code::Blocks
IDE again.



FIGURE 3-5: Execute your first application.

Well, that wasn’t interesting, was it? But that’s okay! The application
starts out in a basic situation: You have a console window, and then
when the application is finished doing whatever it must do, it shows the
message Press any key to continue. — and when you do so, the
application ends.

Typing the Code
The rightmost 75 percent or so of the Code::Blocks window is the code
editor; it’s where you type and change your code. Of all the tasks we just
mentioned in the first part of this chapter, the nearest equivalent to using
the Code::Blocks code editor is composing an email message.

 Word movement and selection actions look a bit strange on the
screen. They ignore certain characters, such as braces — the curly
characters { and }.

The code editor works like the editor in an email message. You can

Type code.



Move the cursor with the arrow keys (up, down, left, right) to the
position where you want to type. The cursor is the little blinking
vertical bar that shows where your text goes when you type. Some
folks call it a caret or an insertion point.
Click where you want to type. Use the mouse to point where you
want to type, and then click the mouse button. The cursor jumps to
the spot where you click.
Select text to delete or change. You can select text in either of two
ways:

Point with the mouse at the first or last character you want to
select; then hold down the mouse button while you drag the
mouse.
Move the cursor to the first or last character you want to
select; then hold down the Shift key while you press the arrow
keys.

Scroll the text up and down (vertically) or left and right
(horizontally) with the scroll bars. The scroll bars work only when
there is more text than you can see in the window, just like most
other places in the Windows, Linux, and Mac worlds. You can scroll
up and down (if there’s enough text in the editor) by using Ctrl+↑
and Ctrl+↓ key combinations or the mouse wheel (assuming you
have one).

 Scrolling changes only what you see. You must use the
mouse or the arrow keys to select what you see.

After you play around a bit with the editor, you can use Table 3-1 to do a
few of your favorite tasks. (Of course, if you’re new to programming,
you may not know yet whether these are your favorites — but they will
be soon. Trust me.)

TABLE 3-1 Navigation and Edit Commands



Command Keystroke or ActionCommand Keystroke or Action

Move the cursor ↑, ↓, ←, or →, Home, End

Move from word to
word Ctrl+← or Ctrl+→

Select with the
mouse

Click the mouse in the text, and while the mouse button is down,
drag the mouse

Select with the
cursor Shift+↑, Shift+↓, Shift+←, or Shift+→

Select the next
word Shift+Ctrl+→

Select the previous
word Shift+Ctrl+←

Select everything Ctrl+A

Go to the top Ctrl+Home

Go to the bottom Ctrl+End

Starting with Main
When a computer runs code, it does so in a step-by-step, line-by-line
manner. But your code is organized into pieces, and one of these pieces
is the main function, or simply main(), which is the part that runs first.
main() tells the computer which other parts of the application you want
to use. main() is the head honcho, the big boss.

How does the computer know what is main()? You type lines of code
between the brace characters, { and }. Here is the default application
that Code::Blocks produces when you create a Console Application
project:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    cout << "Hello world!" << endl; 



    return 0; 

}

The word main is required, and it tells the computer where main() is.
You might also see main() shown as

int main(int argc, char *argv[])

Don’t worry about the words around main() for now. You discover what
these words mean later in the chapter. For now, all you need to know is
that every C++ application has a main() function.

 The computer performs the code line by line. If a line is blank,
the computer just goes to the next line. When you write lines of
code, you are instructing the computer to do something (which is
why some people refer to lines of code as instructions).

Showing Information
Ready to type some code and try it out? Go for it! This code will open
the famous console window and write some words to it.

First, make sure that you still have the Code::Blocks IDE open and the
SayHello project open, as in this chapter’s preceding examples. If not,
follow these steps:

1. Start Code::Blocks if it’s not already running.
You see the Start page for the Code::Blocks IDE.

2. Click the SayHello.cbp project found in the Recent Projects list.
Code::Blocks opens the project for you.

If the main.cpp code isn’t showing in the rightmost 75 percent of the
window, double-click main.cpp in the tree view on the left. It
immediately opens. (If you don’t see the tree view, click the little tab at
the top that says Projects; it’s next to a tab that says Symbols.)



Follow these steps carefully. Make sure that you type everything exactly
as given here:

1. Position the cursor on the line with the opening brace.
In this case, that’s Line 6. You can see the line number on the left
side of the code editor.

2. Press the Enter key.
The cursor should be in the fifth column. If it isn’t — if it stays in the
first column — press the spacebar four times.

3. Type the following line of code exactly as it appears here.

 Put no spaces between the two less-than (<) symbols. Make
sure that you remember the final semicolon at the end. Here’s the
line:

cout << "Hello, I am your computer talking." << endl;

4. Delete the line of code that looks like this:
cout << "Hello world!" << endl;

In the end, your code will look like the following example (the new line
that you typed is shown here in bold):

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    cout << "Hello, I am your computer talking." << endl; 

    return 0; 

}

If you don’t type your code correctly, the computer can tell you. This
step compiles the application: The computer makes sure that what you
wrote is okay and then translates it into a runnable application. (Don’t



worry too much about what that means. For now, just think of it as
making sure that your application is okay.)

To find out whether your application is good to go, choose Build  ⇒  
Build.

If all is well, you see a window in the lower-left of the main
Code::Blocks window with the really happy message, 0 errors, 0
warnings (0 minutes, 1 seconds) (the precise time you see may
vary). A message like Yourock! might be nicer, but 0 errors, 0
warnings (0 minutes, 1 seconds) ain’t all that bad.

If you didn’t type the line correctly, all is not lost, because the computer
will tell you what you did wrong. For example, you might type couts
instead of cout. In this case, you will see something like what is shown
in Figure 3-6. A list with columns appears at the bottom of your screen.

FIGURE 3-6: Code::Blocks tells you about errors in your application.

The leftmost column shows the name of the file where the error was.
In this case, the error was in main.cpp, the only file you were
working on.
The middle column shows the line number of the problem (in this
case, 7).
The rightmost column of the list makes a basic attempt to tell you
what you did wrong, like this:

error: 'couts' was not declared in this scope

When the compiler doesn’t recognize a word, it says that the word is
not declared. In other words, the compiler doesn’t know what
couts is. (The word should be cout.)



 If you want to see the problem, you can point at the error report
line and double-click. The bad line appears in the code editor, with
a little red box next to the line. The line is also highlighted
normally. As soon as you press an arrow key, the highlight
vanishes.

Thus, if you press the → key a few times and get to the word couts and
then delete the letter s, you can try again. If you choose Build  ⇒  Build,
this time you see the happy message 0 errors, 0 warnings (0
minutes, 1 seconds). Excellent!

No errors means that the application is good enough to run. So run it!

Choose Build  ⇒  Run. A console appears with text that looks like this:
Hello I am your computer talking. 

  

Process returned 0 (0x0)   execution time : 0.030 s 

Press any key to continue.

See what happened? There is now a message that says, Hello, I am
your computer talking. Apparently, the thing you typed caused that
message to appear. (Go ahead and press Enter to close the console.)

And in fact, that’s exactly what happened. That’s how you make a
message appear on the console screen. The steps look like this:

1. Type cout.
Although cout looks like it’s pronounced “cowt,” most programmers
say “see-out.” Think of it as shorthand for console output. (But don’t
type console output in its place, because the compiler won’t accept
that.)

2. After the word cout, type a space and then type two less-than
signs (make sure to leave that single space before them).
These less-than signs just mean that the data that follows will be sent
to cout for display on the console. The data that follows, some text,



is in double quotes. That’s the way the computer knows where it
starts and ends. The words and stuff inside these double quotes is
called a string because it’s a bunch of letters strung together. The
computer knows where the string starts because there’s a double
quote, and it knows where the string ends because there’s a double
quote. The computer doesn’t display these two sets of double quotes
when the application runs.
Then some weirdness follows. There’s another set of less-than signs,
which means you want to write more to the console. But what
follows? It’s endl. Notice this is not in quotes. Therefore, you aren’t
saying that you want the strange barely pronounceable word “endl”
to appear on the screen. Instead, you’re using a special notation that
tells the computer that you want to end the current line and start
fresh on the next line. And if you look at the output, you notice that
the words that follow (the message about pressing the any key) are,
indeed, on the next line. Note that endl is pronounced “end-el.”

So that’s not so bad after all. Here’s a recap:

The word cout means you want to write to the console.

The << symbols together (with no space between them!) mean the
thing that follows is what you want to write.
After the << symbol, you tell the computer what you want to write. It
can either be a string of letters, symbols, and other characters (all
inside quotes), or it can be the word endl.

You can put multiple items in a row and have them appear on the
console that way, provided you start the line with cout and precede
each item with the << symbols.

Oh, and if you have a sharp eye, you may notice one more thing not
mentioned yet; a semicolon appears at the end of the line. In C++, every
line must end with a semicolon. That’s just the way it’s done.



 Statements in C++ end with a semicolon.

 Saying that every line must end with a semicolon is not quite
accurate. You can break any line of code into multiple lines. The
computer doesn’t mind. You could just as easily have written your
code as the following two lines:

cout << "Hello, I am your computer talking." 

<< endl;

This is fine, provided that you don’t split any individual word (such as
cout and endl) or the << symbols or the string. In effect, any place you
have a space occurring “naturally” in the code, you can start a new line,
if you want.

 Strings, the text in this example, must stay together on a single
line between double quotes as shown, unless you break it into two
strings, each with its own set of double quotes like this:

cout << "Hello, I am your" << 

" computer talking." 

<< endl;

Notice that you must also add << between each string segment. Then,
when the whole statement is finished, you end with a semicolon. Think
of the semicolon as a signal to the computer that the old statement is
finished.

Doing some math
You can get the computer to do some math for you; you can use the
same cout approach described in the preceding section; and you can
throw in some numbers and arithmetic symbols.



 Although addition uses the familiar plus sign (+) and subtraction
uses the familiar minus sign (–), multiplication and division use
symbols you might not be familiar with. To multiply, you use the
asterisk (*); to divide, you use the forward slash (/).

Table 3-2 shows the four common math symbols.

TABLE 3-2 Math Symbols

Symbol Function

+ Addition (plus)

– Subtraction (minus)

* Multiplication (times)

/ Division (divided by)

Yep, it’s now math-with-weird-symbols time. Continue with the source
code you already have. Click somewhere on the line you typed — you
know, the one that looks like this:

cout << "Hello, I am your computer talking." << endl;

Press End so that the cursor moves to the end of the line. Then press
Enter so that you can start a new line between the cout line and the line
that starts with the word return.

 Whenever you want to insert a line between two other lines, the
easiest way to get it right is to go to the first of those two lines,
press End, and then press Enter. Doing so inserts a new, blank line
in the right place.

After you press Enter, you notice that something happened: The cursor is
not at the start of the newly inserted line; instead, it has four spaces and
it’s indented flush with the other lines. That’s not a mistake. Believe it or



not, it’s a serious lifesaver. Well, okay, maybe not a lifesaver, but it’s
almost as good as those little candies that everybody loves. The reason is
that often you indent your code (this particular code is indented four
spaces); if you’re typing lots of code, it’s a bummer to have to type four
spaces (or press the Tab key) every time you start a new line. So
Code::Blocks considerately (and automatically) does the indentation for
you.

 If, for some reason, your code didn’t automatically indent and
the cursor is loitering at the beginning of the line, the auto-indent
feature is not turned on. It should be on by default, but if it isn’t,
here’s how to turn it on:

1. Choose Settings  ⇒  Editor.
The Configure Editor dialog box, shown in Figure 3-7, appears. It
should automatically show the General Settings/Editor Settings tab,
but you can select this tab if needed.



FIGURE 3-7: Configure the editor to use automatic indents.

2. Make sure that the Tab Indents check box is selected and then
click OK.

3. When you’re back in the code, press Backspace to delete your
new line and then try pressing Enter again.
Behold! The code automatically indents.

4. After your new, blank line appears and indents itself, type the
following:

cout << 5 + 10 << endl;

The beginning and the end of this line are just like those of the line
you typed earlier. The difference is the middle — instead of typing a
string, you type a math problem: 5 plus 10. Note that you put spaces
around the 5, around the +, and around the 10 — but not between the
1 and 0. If you put a space there, the computer gets confused (it
doesn’t know that you meant to write a single two-digit number).
When you’re finished, your code should look like the following code



snippet (here, the new line you typed is shown in bold and the first
cout is broken to fit in the book):

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    cout << "Hello, I am your computer talking." << 

        endl; 

    cout << 5 + 10 << endl; 

    return 0; 

}

5. Save your work by choosing File  ⇒  Save Everything.

 Instead of choosing File  ⇒  Save Everything, you can recognize
that the only thing that changed is the source-code file you’re
currently working on. If you see the blinking cursor in the code
editor, you know that the code editor is active. If not, click
somewhere in your code to activate the editor. When you see the
blinking cursor, press Ctrl+S. This saves your file.

 The computer world uses an adage that goes something like this:
“Save early, save often.” Get in the habit of pressing Ctrl+S every
so often. You won’t wear out your hard drive, and the keyboard is
pretty durable. Every time you type a few lines of code, press
Ctrl+S. Before you compile, press Ctrl+S. When you feel paranoid
that the last Ctrl+S didn’t stick, you can press Ctrl+S. When you’re
stuck at a traffic light, you press Ctrl+S.

Now you can tell the computer to compile your code. If you haven’t
saved it, do so now by pressing Ctrl+S. Then choose Build  ⇒  Build. If
you typed everything correctly, you should see the magical message 0
errors, 0 warnings (0 minutes, 1 seconds) appear in the Build



Log window. But if not, don’t worry; you can easily fix it. Look at your
code and find the difference between the line we wrote earlier and your
code. Here it is again, just for safe measure:

cout << 5 + 10 << endl;

There is a space after cout, a space after <<, a space after 5, a space after
+, a space after 10, and a space after <<. And there is a semicolon at the
end. Make sure that these are all correct.

Then when you successfully compile and see the happy message 0
errors, 0 warnings, you are ready to run your application. Choose
Build  ⇒  Run.

A console window opens, and you should see the following:
Hello I am your computer talking. 

15 

  

Process returned 0 (0x0)   execution time : 0.015 s 

Press any key to continue.

Notice that the second line is the answer to the math problem 10 + 5.
That means the computer knows how to do math, more or less correctly.

Ordering the operations
If you want, you can play around with some more complicated
problems. For example, you can try something like this:

cout << 5 + 10 / 2 * 3 + 25 << endl;

What do you think the answer will be? The answer depends on computer
rules for the order in which it performs math problems. These are called
orders of operation. Multiplication and division take precedence over
addition and subtraction. Therefore, the computer does all the
multiplication and division first from left to right; then it does the
addition and subtraction from left to right. Figure 3-8 shows the order in
which the computer does this particular math problem.



FIGURE 3-8: The computer likes to use orders of operation.

Going overboard
The computer actually has various limits, including when it comes to
math. If you try something like this:

cout << 12345678 * 100 / 2 * 3 * 3 << endl;

a warning message shows up in the error window when you try to
compile:

warning: integer overflow in expression [-Woverflow]

This message is bad. It means that you can’t rely on the answer, which is
1,260,587,804 in this case, when it should be 5,555,555,100. You can
use a programming calculator to see why this problem occurs. When you
input 12345678, the resulting value takes up to bit 23 of the 32-bit
integer, as shown in Figure 3-9.



FIGURE 3-9: A programmer calculator comes in handy when working with numbers.

When you multiply the initial value by 100, the bits now extend up to bit
30 of the 32-bit integer, as shown in Figure 3-10. At this point, the value
is in jeopardy of running out of bits to use. Only the topmost bit is left.



FIGURE 3-10: You can see how overruns occur by doing the math.

Dividing by 2 buys you some room — the value is back down to bit 29.
Multiplying by 3 produces a correct output value of 1,851,851,700.
However, multiplying by 3 the second time causes an overflow. The
value actually decreases, which is not what you’d expect from a
multiplication. The value from the programmer calculator matches the
value output by the application. In both cases, you see the result as an
overflow of the number of available bits. Using the programmer
calculator helps you see what is happening in a visual way.

 The greatest positive number you can use is 2,147,483,647. The
greatest negative number is –2,147,483,647. However, if you’re
willing to stick to only positive numbers and 0, the computer can
make some adjustments inside and handle a higher positive number.
In that case, your numbers can range from 0 to 4,294,967,295.



Pairing the parentheses
If you want to get around the order in which the computer does its math,
you can add parentheses. For example, if you use the following line, the
computer does the final operation (+) before it does the others:

cout << 5 + 10 / 2 * (3 + 25) << endl;

Whereas previously, without the parentheses, this thing came out to be
45, now it comes out to be 145. First the computer does the 3 + 25 to get
28. Then it begins with the multiplication and division, from left to right.
So it takes 10 / 2 to get 5, and then multiplies that by (3 + 25), or 28, to
get 140. Then it starts with the addition and subtraction from left to
right. So it adds 5 to this to get the final number, 145.

Tabbing your output
Just as you can write a string of letters and numbers to the console, you
can also write a tab. For example, change the following line from your
application

cout << "Hello, I am your computer talking." << endl;

to:
cout << "Hello\tI am your computer talking." << endl;

In the preceding code, you replaced the comma and space with a
backslash and then a lowercase t. But when you compile and run this
application (remember to compile it first!), it won’t print exactly what’s
in the double quotes. Here’s what you see:

Hello   I am your computer talking.

The extra space in the displayed line is a tab space, just as if you had
pressed the Tab key while typing this. (Is that slick, or what?)

There’s a complication to using the backslash: You can’t just type a
backslash (or a double quote, for that matter) and expect to see it on the
screen. A couple of workarounds will show the actual characters:

Really want to display a backslash, not a special character? Use a
backslash followed by another backslash. (Yes, it’s bizarre.) The



compiler treats only the first backslash as special. When a string has
two backslashes in a row, the compiler treats the second backslash
as, well, a backslash.
For example, the following line of code has two backslashes:

 cout << "\\tabc" << endl;

The following text shows up at the console:
\tabc

If a string starts with a double quote and ends with a double quote,
how in the world would you actually print a double quote? Type a
backslash and then a double quote, as in the following code:

cout << "Backslash and double quote are \"." << endl;

When that code runs in an application, you see this on the screen:
Backslash and double quote are ".

 C++ programmers use the term escape-sequence to refer to any
special character in a string that starts with a backslash. This is an
outdated bit of vocabulary — maybe not as old as “methinks,” but
it does date back to the original C language of the 1970s. Back
then, you made special characters appear on console screens by first
pressing the Esc key.

Let Your Application Run Away
The word execute refers to running your application, but you need to
compile (or build, using the Code::Blocks terminology) the application
before you run it. The compilation process transforms your application
into an executable file. An executable file is a special type of file that
contains an application you can run on your computer. When you run
your word processor application, you run an executable file containing
the word processor application.



 After the computer compiles (builds) your application, it
performs a step called linking. People often refer to these two steps
together as simply compiling. Indeed, this book often uses the term
to mean both steps together. If you’re curious about what goes on
here, take a look at Appendix A. It has a section devoted to the
compiling and linking processes.

Whenever you want to run your application, you first compile it and then
run it. If you make more changes to your application, you must compile
it again before running it. Otherwise, the executable file won’t have your
changes.

Because you almost always use Build and Run in sequence, the kind
people who built Code::Blocks included a special menu item called
Build and Run on the Build menu. The computer first compiles your
code, and then it immediately runs the application if there are no errors.
If there are errors, the compiler doesn’t run the application, and the
errors are reported as usual. (You can also perform a build and run by
pressing F9.)

Table 3-3 lists keyboard shortcuts for compiling.

TABLE 3-3 Keyboard Shortcuts for Compiling and
Running

Action Keyboard Shortcut

Build Ctrl+F9

Run Ctrl+F10

Build and run F9
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Chapter 4

Storing Data in C++
IN THIS CHAPTER

 Using storage bins called variables
 Working with integer and character variables
 Manipulating strings
 Using Boolean variables and conditional operators
 Reading from the console

Everyone loves to store things away. The closet is a perfect example of a
place to store things. You may have boxes in your closets that you
haven’t opened in years. Perhaps you inadvertently created a time
capsule. Or just a fire hazard. When you program a computer, you can
also store things away. Most people know that a computer has two kinds
of memory: memory inside a chip and memory on a hard drive. But most
people use the term memory in reference to chip memory; the other is
referred to as simply the hard drive. When you type a business letter in a
word processor, the letter is stored in memory. After you choose File  ⇒  
Save, the letter gets stored on the hard drive, but as long as you still have
the letter open in the word processor, it’s generally still in memory.

The best way to think of memory is as a set of storage bins, much like
the ones in the closets that you’re afraid of. When you write a computer
application, you reserve some storage bins, and you give each storage
bin a name. You also say what type of thing can be stored in the storage
bin. The technical term for such a storage bin is a variable.

In this chapter, you discover how you can use these storage bins in your
applications.



 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookI\Chapter04
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Putting Your Data Places: Variables
When you write an application, you specify that you want to make use of
one or more storage bins called variables. You can put different kinds of
things in these storage bins. The difference between these computer
storage bins and those in your closet, however, is that each computer
storage bin can hold only one thing at a time.

You can put many different types of things into your variables, too. For
example, you can put numbers in a storage bin, or you can put a string in
a storage bin. (However, each storage bin contains a unique kind of data
— you can’t put a number into a storage bin designed for a string.) Book
1, Chapter 3 advises that a string is simply a bunch of letters, digits,
punctuation marks, or other characters all strung together. As for
numbers, they can be either integers (which are positive whole numbers,
negative whole numbers, and 0) or numbers with a decimal point, such
as 3.11 or 10.0, which (for various reasons) are called floating-point
numbers.

 The term floating-point number refers to a number that has a
decimal point and something to the right of the decimal point (even
if it’s just a 0). When you see the term floating point, you can
remember what it means by focusing on the word point in its name.
Think of decimal point.



 If you are already familiar with the term variable from other
fields (such as astronomy, in which variable refers to a kind of star),
be careful not to apply their definitions here. Even if they’re from
fields similar to computer science, such as data science or math,
some significant differences are involved. For example, in algebra,
a variable represents an unknown quantity, and you can solve for a
variable. But in C/C++ programming, it’s simpler than that: A
variable is simply a storage bin with an associated name.

Creating an integer variable
In your C++ application, you can easily write a line of code that creates
a variable. Although what you’re doing at that point is simply writing
code (and the variable doesn’t actually get created until you run the
application), people often refer to this process as creating a variable. A
variable has three aspects, as shown in Table 4-1.

TABLE 4-1 A Variable Has Three Aspects

Aspect What It Means

Name The name you use in your application to refer to the variable

Type The type of information that the variable can hold

Value The actual thing that the storage bin holds

The following list describes the items in Table 4-1 in more detail.

Name: Every variable must have a name. In your application, you
refer to the variable by this name. For example, you may have a
variable called count, and you may have a variable called LastName.
Or you could have a variable called MisterGates.

Type: When you create a variable, you must specify the type of
information the variable can hold. For example, one variable may
hold an integer, and another variable may hold a single character.



After you pick a type for the variable in your application, you can
put only things of that type into the variable.
Value: At any given moment, a variable holds a single value. For
example, an integer variable might hold the number 10, and a
character variable might hold the character a. In your application,
you can store something in a variable, and later you can store
something else in the variable. When you store something else, the
variable forgets what was previously inside it. So, in this sense, you
can think of a computer as having a one-track mind.

The code for the SimpleVariable example, shown in Listing 4-1,
demonstrates how to create a variable. This is a full application that you
can run.

LISTING 4-1: Creating a Variable
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int mynumber; 

    mynumber = 10; 

    cout << mynumber << endl; 

    return 0; 

}

Take a careful look at Listing 4-1. Remember that the computer starts
with the code inside the braces that follow the word main, and it
performs the code line by line.

The first line inside main looks like this:

int mynumber;

When you declare a variable, the first thing you specify is the type of
thing the variable can hold. Here, you use the word int. This word is the
C++ word for integer. Thus, the variable that you’re declaring can hold



an integer. Next is the name of the variable. This variable is named
mynumber. Then a semicolon ends the variable declaration.

Notice that, in this line, you’ve covered two of the three aspects of
variables: You have given the variable a name, and you have told the
computer what type of thing you want the variable to hold. The order
seems a little odd — in C++, you first say the type and then the name.
That’s just the way it’s done in C++, and a good reason stands behind it,
which you can read about in “Declaring multiple variables,” later in this
chapter.

The next line looks like this:
mynumber = 10;

This line puts something in the variable. It puts the number 10 in it.
Because you already know that the variable can hold an integer, you’re
allowed to put in a 10 because it is an integer. If you had tried to put
something other than an integer in the variable, the compiler would have
given you an error. The compiler makes sure that you put into a variable
only the type of thing that you said you would. The compiler is good at
keeping you in line. And of course you noticed that the statement ends
with a semicolon. In C++, every statement ends with a semicolon.

 To put something in a variable, you type the variable’s name, an
equals sign (surrounded by optional spaces), and the value. You
then end the line with a semicolon. This line of code is an
assignment. Or you can say that you are setting the variable to the
value. The next line is this:

cout << mynumber << endl;

Book 1, Chapter 3 describes what this line does. It’s a cout statement,
which means that it writes something on the console. As you can
probably guess, this code tells the computer to write the value of
mynumber on the console. It does not write the string mynumber. Rather, it
writes whatever happens to be stored in the storage bin. The previous



line of code puts a 10 in the storage bin, and so this line prints a 10 on
the console. When you run the application, you see this:

10

 Think of it like this: When you type the variable’s name, you are
accessing the variable. The exception to this is when the variable’s
name appears to the left of an equals sign. In that case, you are
setting the variable. You can do two things with a variable:

Set the variable: You can set a variable, which means that you can
put something inside the storage bin.
Retrieve the value: You can get back the value that is inside the
variable. When you do so, the value stays inside it; you are not, so to
speak, taking it out.

 When you retrieve the value that is in a variable, you are not
removing it from the variable. The value is still inside the variable.

Declaring multiple variables
Many years ago, when the original C programming language first
appeared (which was the language that served as the predecessor to
C++), many developers thought it odd that they had to first say the type
of the variable and then the name. But this actually works out well
because it makes declaring multiple variables of the same type easy. If
you want to declare three integer variables in a row, you can do it all in
one shot, like this:

int tom, dick, harry;

This statement declares three separate variables. The first is called tom;
the second is called dick; and the third is called harry. Each of these
three variables holds an integer. You have not put anything in any of



them, so you may follow that with some code to stuff each of them full
with a number. For example, this code puts the number 10 in tom, the
number 20 in dick, and the number 3254 in harry.

tom = 10; 

dick = 20; 

harry = 3254;

 When you run your applications, the computer executes the
statements in the order that they appear in your code. Therefore, in
the preceding code, the computer first creates the three storage bins.
Then it puts a 10 inside tom. (Now doesn’t that sound yummy?)
Next, dick gets a 20. And finally, harry consumes a 3254.

Changing values
Although a variable can hold only one thing at a time, you can still
change what the variable holds. After you put something else in a
variable, it forgets what it originally had. So when people accuse you of
being forgetful, you can just say, “Yes, but you should see that computer
I work with all day long!”

You put something new in the variable in the same way you originally
put something in it. Look closely at the code for the ChangeVariable
example in Listing 4-2. Notice that the first part of the application is just
like Listing 4-1. But then you add two more lines (shown in bold) that
look pretty much like the previous two: The first one sticks 20 in the
same variable as before, and the next one writes this new value out to the
console.

LISTING 4-2: Changing a Variable
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 



    int mynumber; 

    mynumber = 10; 

    cout << mynumber << endl; 

  

    mynumber = 20; 

    cout << mynumber << endl; 

    return 0; 

}

As before, the line where you put something new in the variable follows
the same format: There’s an equals sign, with the variable on the left and
the new value on the right. As described earlier in this chapter, this
statement is an assignment statement.

 When you see a single equals sign by itself, the item on the left
side is the variable or item that receives the information that is on
the right side.

Setting one variable equal to another
Because you can do only two direct things with variables — put
something in and retrieve the value — setting one variable equal to
another is a simple process of retrieving the value of one variable and
putting it in the other. This process is often referred to as copying the
variable from one to another. For example, if you have two integer
variables — say, start and finish — and you want to copy the value of
start into finish, you would use a line of code like the following:

finish = start;

 Don’t let the language confuse you. Although you want to copy
the value of start into finish, notice that the first thing you type is
finish, and then the equals sign, and then start. The left side of
the equals sign is what receives the value; it is an assignment
statement.



 When you copy the value of one variable to another, the two
variables must be the same type. You cannot, for instance, copy the
value from a string variable into an integer variable. If you try, the
compiler issues an error message and stops.

After the computer runs this copy statement, the two variables hold the
same thing. The code for CopyVariable, shown in Listing 4-3, is an
example of copying one variable to another.

LISTING 4-3: Copying a Value from One Variable to
Another
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int start = 50; 

    int finish; 

    finish = start; 

    cout << finish << endl; 

    return 0; 

}

Initializing a variable
When you create a variable, it starts as an empty storage bin. Before it
can be of much use, you need to put something in it.

 If you try to retrieve the contents of a variable before you
actually put anything in it, you end up with what computer people
fondly call “unpredictable results.” What they really mean to say is,
“Don’t do this because who knows what’s in it.” It’s kind of like if
you go in the attic and you discover that the former owners left
behind a big, ominous box. Do you really want to look inside it?



With variables, the problem you run into is that the computer
memory has something stored in that particular place where the
variable now sits, and that stored item is probably just some number
left over from something else. But you can’t know in advance what
it is. So always make sure that you place a value inside a variable
before you try to retrieve its contents, a process called initializing
the variable.

You can initialize a variable in two ways. The first way is by declaring
the variable and then assigning something into it, which takes two lines
of code:

int mynumber; 

mynumber = 153;

But the other way is a bit quicker. It looks like this:
int mynumber = 153;

This method combines both strategies into one neat little package that is
available for you to use whenever you want. You see variables initialized
both ways in this book, depending what is clearer or more convenient at
the time.

Creating a great name for yourself
Every variable needs to have a name. But what names can you use?
Although you are free to use names such as Fred, Zanzibar, or
Supercount1000M, there are limits to what C++ will allow you to use.

MYTHIS AND MYTHAT
As you progress through your computer programming life (in addition to your
anticipated life as a millionaire), you’re likely to notice that, for some reason, some
computer programmers seem to favor variable names that start with the word My. Other
computer programmers despise this practice and completely distance themselves from
it. You may have seen such computer identifiers as MyClass, MyNumber, MyHeight, MyName,
MyCar, MyWhatASurprise, MyLar, MyStro, and MyOpic. There really isn’t any problem using
names that start with My, especially in training exercises.



 Although most C++ code is in lowercase, you are free to use
uppercase letters in your variable names. However, C++
distinguishes between the two. Therefore, if you have a variable
called count, you cannot access it later in your application by
calling it Count with a capital C. The compiler treats the two names
as two different variables, which makes C++ case sensitive. But on
the other hand, please don’t use two separate variables in the same
application — one called count and one called Count. Although the
compiler doesn’t mind, the mere humans that may have to read
your code or work on it later might get confused.

Here are the rules you need to follow when creating a variable name:

Characters: You can use any uppercase letter, lowercase letter,
number, or underscore in your variable names. Other symbols (such
as spaces or the ones above the number keys on your keyboard) are
not allowed in variable names. The only catches are that

The first character cannot be a number.
The variable name cannot consist of only numbers.

Length: Most compilers these days allow you to have as many
characters in the variable name as you want. Just to be sure, and to
prove I’m easily amused, I successfully created a variable in
Code::Blocks with a name that’s more than 1,000 characters in
length. However, I wouldn’t want to have to type that name over and
over. Instead, I recommend keeping variable names long enough to
make sense but short enough that you can type them easily. Most
people prefer anywhere from five to ten characters or so.

Examples of acceptable variable names are Count, current_name,
address_1000, and LookupAmount. Some variable names are legal, but
not easily understood, such as _, __, and _12 — none of which tell you



what the variable contains. Table 4-2 lists some variable names that are
not allowed.

TABLE 4-2 Examples of Bad Variable Names

Bad Variable
Name Why It’s Not Allowed

12345 It has only numbers (and it starts with a number, which is wrong as
well).

A&B The only special character allowed is the underscore, _. The
ampersand (&) is not allowed.

1abc A variable name cannot start with a number.

Manipulating Integer Variables
A potter who is creating an elegant vase is said to manipulate the clay.
Likewise, you can manipulate variables to create a thing of abstract
beauty. But in this case, manipulation means simply that you can do
arithmetic. You can easily do the usual addition, subtraction,
multiplication, and division. Book 1, Chapter 3, introduces the
characters that you use for the arithmetic operations. They are:

+ for addition
– for subtraction
* for multiplication
/ for division

You can, however, perform another operation with integers, and it has to
do with remainders and division. The idea is that if you divide, for
example, 16 by 3, the answer in whole numbers is 5 remainder 1.
Another way of saying this is that 16 doesn’t divide by 3 evenly, but 3
“goes into” 16 five times, leaving a remainder of 1. This remainder is
sometimes called a modulus. Computer people actually have an
important reason for calling it modulus rather than remainder, and that’s
because people in the computer field like to use confusing terms.



 When working with integer variables, remember the two basic
things you can do with variables: You can put something in a
variable, and you can retrieve it from a variable. Therefore, when
working with an integer variable, the idea is that you can retrieve
the contents, do some arithmetic on it, and then print the answer or
store it back into the same variable or another variable.

Adding integer variables
If you want to add two integer variables, use the + symbol. You can
either print the result or put it back into a variable.

The AddInteger example adds two variables (start and time) and then
prints the answer to the console. The addition operation is shown in
bold.

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int start; 

    int time; 

  

    start = 37; 

    time = 22; 

  

    cout << start + time  << endl; 

    return 0; 

}

 This code starts with two integer variables called start and
time. It then sets start to 37 and sets time to 22. Finally, it adds
the two variables (to get 59) and prints the results. When you see
start + time, + is the operator that tells what action to perform,
and start and time are the operands upon which the operator acts.



In this example, however, the computer doesn’t actually do anything
with the final sum, 59, except print it. If you want to use this value later,
you can save it in its own variable. The AddInteger2 example
demonstrates how to save the result in a variable; the storage operation is
shown in bold:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int start; 

    int time; 

    int total; 

    start = 37; 

    time = 22; 

    total =  start + time; 

    cout << total << endl; 

    return 0; 

}

In this code, you declare the integer variable total along with the
others. Then after you store 37 in start and 22 in time, you add the two
and save the total in the variable called total. Then you finally print the
value stored in total.

You can also add numbers themselves to variables. The following line
adds 5 to start and prints the result:

cout << start + 5 << endl;

Or you can save the value back in another variable, as in the following
fragment:

total = start + 5; 

cout << total << endl;

This example adds 5 to start and saves the new value in total.



 When you use code such as total = start + 5;, although you
are adding 5 to start, you are not actually changing the value
stored in start. The start variable itself remains the same as it
was before this statement runs. Rather, the computer figures out the
result of start + 5 and saves that value inside total. Thus, total
is the only variable that changes here.

Here’s where things get a little tricky in the logical arena. This might
seem strange at first, but you can actually do something like this:

total = total + 5;

If you have taken some math courses, you might find this statement a
little bizarre, just like the math courses themselves. But remember that
total is a variable in computer programming, and that definition is a bit
different from the math world.

This statement really just means you’re going to add 5 to the value
stored in total, and you’ll take the value you get back and store it back
in total. In other words, total will now be 5 greater than it was to begin
with. The AddInteger3 example shows this technique in action:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int total; 

    total = 12; 

    cout << total << endl; 

  

    total = total + 5; 

    cout << total << endl; 

  

    return 0; 

}

When you run this application, you see the following output on the
console:



12 

17

Notice what took place. First, you put the value 12 inside total and
print the value to the console. Then you add 5 to total, store the result
back in total, and print the new value of total to the console.

Now, it’s no big secret that we computer people are lazy. After all, why
would we own computers if we weren’t? And so the great makers of the
C++ language gave us a bit of a shortcut for adding a value to a variable
and storing it back in the variable. The line

total = total + 5;

is the same as
total += 5;

We computer folks also have a special way of pronouncing +=. We say
“plus equal.” So for this line, we would say, “Total plus equal five.”

 Think of the total += 5 notation as simply a shortcut for total
= total + 5;.

You can also use the += notation with other variables. For example, if
you want to add the value in time to the value in total and store the
result back in total, you can do this

total = total + time;

or you can use this shortcut:
total += time;

If you are adding just 1 to a variable, which is called incrementing the
variable, you can use an even shorter shortcut. It looks like this:

total++;

This is the same as total = total + 1; or total += 1;.



Table 4-3 summarizes the different things you can do that involve the
addition of variables. Note that when you see ++, which is the increment
operator, it’s pronounced plus plus, not double plus.

TABLE 4-3 Doing Things with Addition

What You Can Do Sample Statement

Add two variables
cout << start + time <<

endl;

Add a variable and a number cout << start + 5 << endl;

Add two variables and save the result in a variable total = start + time;

Add a variable and a number and save the result in a
variable

total = start + 5;

Add a number to what’s already in a variable total = total + 5;

Add a number to what’s already in a variable by using a
shortcut

total += 5;

Add a variable to what’s already in a variable total = total + time;

Add a variable to what’s already in a variable by using a
shortcut

total += time;

Add 1 to a variable total++;

Subtracting integer variables
Everything you can do involving the addition of integer variables you
can also do with subtraction. For example, you can subtract two
variables, as shown in the SubtractVariable example in Listing 4-4.

AND NOW THE ANSWER TO THE GREAT
QUESTION

In C++, as well as in the original C language (upon which C++ is based), the ++
operator adds 1 to a variable, which finally allows an answer to The Great Question:
Where did the name C++ come from? When the guy who originally designed C++,
Bjarne Stroustrup, needed a name for his language, he decided to look into its roots for
the answer. He had based the language on C; and in C, to add 1 to something, you use



the ++ operator. And because he felt that he added only 1 thing to the language, he
decided to call the new language C++.

Okay, that’s not quite true; Bjarne actually added a great deal to the language. But that
entire great deal can be thought of as just one thing made of lots of smaller things.
What did he add? The main thing of those smaller things is the capability to do object-
oriented programming. Object-orientation is something you find in the next chapter. And
by the way, the originator of C++, Mr. Stroustrup, is still alive and still doing work for the
language at AT&T. You can see his web page at http://www.stroustrup.com/.

LISTING 4-4: Subtracting Two Variables
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

  int final; 

  int time; 

  

  final = 28; 

  time = 18; 

  

  cout << final - time << endl; 

  return 0; 

}

When this application runs, the console shows the number 10, which is
28 – 18. Remember that, as with addition, the value of neither final
nor time actually change. The computer just figures out the difference
and prints the answer on the console without modifying either variable.

You can also subtract a number from a variable, and (as before) you still
aren’t changing the value of the variable, as in the following example:

cout << final - 5 << endl;

You can subtract one variable from another and save the result in a third
variable:

start = final - time;

And you can change the value in a variable by using subtraction, as in
the following four sample lines of code. This first subtracts time from

http://www.stroustrup.com/


final and saves the result back in final:

final = final - time;

Or you can do the same thing by using the shortcut notation:
final -= time;

Or you can do the same thing with a number:
final = final - 12;

And (as before) you can alternatively do the same thing with a shortcut:
final -= 12;

Finally, as with addition, you have a shortcut to a shortcut. If you want
only to subtract 1, you can simply use two minus signs, as in

Final—  —;

This line is pronounced minus minus. The -- is the decrement operator
and when applied to a variable is called decrementing the variable.

Multiplying integer variables
To do multiplication in C++, you use the asterisk (*) symbol. As with
addition and subtraction, you can multiply two variables, or you can
multiply a variable by a number. You can either print the result or save it
in a variable. For example, you can multiply two variables and print the
results to the console with the following line:

cout << length * width << endl;

Or you can multiply a variable by a number, as in this line:
cout << length * 5 << endl;

And as with addition and subtraction, you can multiply two variables
and save the result in a third variable:

area = length * width;

Also, you can use multiplication to modify a variable’s value, as in
total = total * multiplier;

Or, to use the shortcut:



total *= multiplier;

And (as before) you can do the same with just a number:
total = total * 25;

or this:
total *= 25;

PREFIX VERSUS POSTFIX
The ++ and -- operators can appear as a prefix (before the variable name) or a postfix
(after the variable name) operator. However, they behave differently depending on
where they appear. A prefix operator is applied before anything else happens, while a
postfix operator is applied afterward. Consider this code:

int final = 10; 

cout << final++ << endl; 

cout << final << endl;

The output from this code is

10 

11

because the postfix ++ operator is added after the cout. However, with this code:

int final = 10; 

cout << ++final << endl; 

cout << final << endl;

the output in this case is

11 

11

because the prefix ++ operator is added before the cout. The same holds true for the --
operator. Code with a prefix operator like this:

int final = 10; 

cout << --final << endl; 

cout << final << endl;

produces an output of

9 

9



because the operator is applied before the cout. Using prefix or postfix operators, when
applied correctly, can reduce the amount of code you write and possibly make your
code easier to read.

 Note that there is no ** operator used to multiply a value by 1 or
by itself. Consequently, the compiler will raise an error if you type
total**;.

Dividing integer variables
Although addition, subtraction, and multiplication are straightforward
with integer variables, division is a bit trickier. The chief reason is that,
with whole numbers, sometimes you just can’t divide evenly. It’s like
trying to divide 21 tortilla chips evenly among five people. You just can’t
do it. Either somebody will feel cheated, or everyone will get four chips,
and one will be left over for everyone to fight over. Of course, you could
break every chip into five pieces, and then each person gets &frac15; of
each chip, but then you’re no longer working with whole numbers —
just a bunch of crumbs.

If you use a calculator and type 21 divided by 5, you get 4.2, which is
not a whole number. If you want to stick to whole numbers, you have to
use the notion of a remainder. In the case of 21 divided by 5, the
remainder is 1, as you figured out with the tortilla chips. The reason is
that the highest multiple of 5 in 21 is 20 (because 5 times 4 is 20), and 1
is left over. That lonely 1 is the remainder.

So in terms of strictly whole numbers, the answer to 21 divided by 5 is 4
remainder 1. And that’s how the computer does arithmetic with integers:
It gets two different answers: The quotient and the remainder. In math
terms, the main answer (in the example, 4) is the quotient. What’s left
over is the remainder.

Because two different answers to a division problem may occur, C++
uses two different operators for figuring these two different answers.



To find the quotient, use the slash (/). Think of this character as the usual
division operator, because when you deal with numbers that divide
evenly, this operator gives you the correct answer. Thus, 10 / 2 gives you
5, as you would expect. Further, most people just call this the division
operator, anyway.

To find the remainder, use the percent sign (%). This is often called the
modulus operator.

The DivideInteger example, shown in Listing 4-5, takes two numbers
and prints their quotient and remainder. Then it does it again for another
pair of numbers. The first pair has no remainder, but the second pair
does.

LISTING 4-5: Finding Quotients and Remainders
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int first, second; 

    cout << "Dividing 28 by 14." << endl; 

    first = 28; 

    second = 14; 

    cout << "Quotient  " << first / second << endl; 

    cout << "Remainder " << first % second << endl; 

  

    cout << "Dividing 32 by 6." << endl; 

    first = 32; 

    second = 6; 

    cout << "Quotient  " << first / second << endl; 

    cout << "Remainder " << first % second << endl; 

    return 0; 

}

When you run this application, you see the following output:
Dividing 28 by 14. 

2 

0 

Dividing 32 by 6. 

5 

2



 The code in Listing 4-5 uses a couple new tricks in addition to
(or divided by?) the division tricks. For one, it combines the
variable declarations of first and second variables into one
statement. A comma separates the variable names and the type
(int) only once. Next, you combine the output of strings and
numbers into a single cout statement. You did this for four of the
cout statements. That’s acceptable, as long as you string them
together with the << signs between each of them.

You have access to all the usual goodies with both the division (/) and
modulus (%) operators. For example, you can store the quotient in
another variable, as you can with the remainder:

myQuotient = first / second; 

myRemainder = first % second;

And you have shortcuts available:
int first = 30; 

first /= 5; 

cout << first << endl;

In this case, the value of first becomes 6 because 30 / 5 is 6. And in
the following case, the value of first becomes 3 because the remainder
of 33 divided by 6 is 3:

int first = 33; 

first %= 5; 

cout << first << endl;

Characters
Another type of variable you can have is a character variable. A
character variable can hold a single — just one — character that C++
stores as a number. It holds a value between –127 and 128 (char or
signed char) or between 0 and 255 (unsigned char). Normally, a
character is anything that can be typed, such as a letter of the alphabet, a



digit, or another symbol you see on the computer keyboard, but a
character can also hold nonprintable values found in an ASCII table (see
https://en.cppreference.com/w/cpp/language/ascii). Some of
these unprintable characters are control characters (so called because
they control the appearance of text on the screen), such as the tab,
carriage return, and newline character.

To use a character variable, you use the type name char. To initialize a
character variable, you put the character inside single quotes. (If you use
double quotes, the compiler issues an error message because double
quotes create a string, which can contain multiple characters rather than
a single character.) The following is an example of a character:

char ch; 

ch = 'a'; 

cout << ch << endl;

The character variable here is called ch, which is initialized to the
character a. It’s surrounded by single quotes. The code then prints it by
using cout.

Null character
One important character in the programming world is the null character.
Deep down inside the computer’s memory, the computer stores each
character by using a number, and the null character’s number is 0.
There’s nothing to actually see with the null character; this book can’t
contain a picture of it for you to hang on your wall. (Bummer.) The book
can only describe it. Yes, every once in a while, computer people have to
become philosophers. But the null character is important because it is
often used to signify the end of something — not the end of the world or
anything big like that, but the end of some data.

To notate the null character in C++, use \0, as in

char mychar = '\0';

Nonprintable and other cool characters
In addition to the null character, several other cool characters are
available — some that have a look to them and can be printed and some
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that do not and cannot. The null character is an example of a
nonprintable character. You can try to print one, but you get either a
blank space or nothing at all, depending on the compiler.

But some characters are special in that they do something when you
print, though you can’t type them directly. One example is the newline
character. The newline character (\n) symbolizes the start of a new line
of text. In all cases, the computer places the insertion point, the place
where it adds new characters, on the next line. If you are printing some
text to the console and then you print a newline character, any text that
follows will be on the next line. Most compilers these days start the text
at the far left end of the next line (Column 1), but some compilers start
the text in the next column on the next line, as in the following output. In
this case, the text appears on the next line, but it starts at Column 4
rather than at the far left end (Column 1):

abc 

   def

Here, you print abc, and then a newline, and then def. Notice that the
def continues in the same position it would have been had it been on the
first line. For the compilers used in this book, however, printing abc, and
then a newline, and finally def results in this output:

abc 

def

But to accommodate the fact that some other compilers sometimes treat
a newline as just that (start a new line but don’t go anywhere else), the
creators of the computers gave you another special character: the
carriage return. (Can you hear the crowd say, “Ooooh!”?)

The carriage return character (\r) places the insertion point at the start
of the line, but not on a new line (which means that if you use just a
carriage return on a computer expecting both a carriage return and a
newline, you overwrite what’s already on the line). That’s true with
pretty much every C++ compiler.

The “Tabbing your output” section of Book 1, Chapter 3, describes the
tab character (\t) and other characters that start with a backslash. These



are individual characters, and you can have them inside a character
variable, as in the following example, which prints the letter a, and then
a tab, and then the letter b. Notice that, to get the tab character to go into
the character variable, you have to use the \ and then a t:

char ch = '\t'; 

cout << "a" << ch << "b" << endl;

Book 1, Chapter 3 mentions that to put a double quote inside a string,
you need to precede the double quote with a backslash so that the
computer won’t think that the double quote is the end of the string. But
because a character is surrounded by single quotes, you don’t need to do
this. You can just put a double quote inside the character, as in

char ch = '"';

Of course, that raises an important question now: What about single
quotes? This time, you do have to use the backslash:

char ch = '\'';

And finally, to put a backslash inside a character, you use two
backslashes:

char ch = '\\';

 When the compiler sees a backslash inside a string or a
character, it treats the backslash as special and looks at whatever
follows it. If you have something like ’\’ with no other character
inside the single quotes following it, the compiler thinks the final
quote is to be combined with the backslash. And then it moves
forward, expecting a single quote to follow, representing the end.
Because a single quote doesn’t appear, the compiler gets confused
and issues an error. Compilers are easily confused — kind of gives
you more respect for the human brain.



CARRIAGE RETURN, NEWLINE, OR
BOTH?

Depending on what platform you use (such as Windows, Linux, or Mac) and on which
applications you use, the effect of the carriage return, newline, or a combination of both
varies. In some cases, it’s really enough to drive you quite nuts. The form that seems to
work best in all situations is the combination of the carriage return and linefeed (\r\n).
Sometimes, you can also use the linefeed and carriage return combination (\n\r), but
oddly enough, it doesn’t always produce the same result as \r\n. Here is a quick
sampling based on platform:

Windows: \r\n

Linux: \n

Older Mac: \r

Acorn BBC and RISC: \n\r

This list doesn’t even get into the domain of mainframes and other computers, which
can use very odd combinations like \025. Sometimes a single character doesn’t
produce any result at all. For example, when working with Windows Notepad, you must
provide the \r\n combination because using \n alone won’t do anything. However,
when importing a file using some C++ libraries, all you want is the \n because the
library will see the \r as a second line. This is the reason that many developers use just
\n, which, as previously mentioned, doesn’t show up in some editors.

So, there isn’t a pat answer to the question of which character to use, and you need to
experiment to ensure that using \r, \n, \r\n, or \n\r will actually work the way you want
it to in the situation you’re dealing with. When in doubt, rely on \r\n until you know that
the combination won’t work.

WHAT IS THAT SYMBOL?
Never known to turn down the chance to invent a new word, computer people have
come up with names for characters that may not always match the names you know.
You’ve already heard the use of the word dot  for a period when surfing the Internet.
And for some characters that already have multiple names, computer folks may use
one name and not the other. And sometimes, just to throw you off, they use the usual
name for something. The following are some of the names of symbols that computer
people like to use:

. Dot (but not period or decimal point)



@ At

& Ampersand (but not and)

# Pound (but not number sign)

! Bang (though most people still say exclamation point)

~ Tilde

% Percent

* Star (not asterisk)

( Left paren or left parenthesis

) Right paren or right parenthesis

[ Left square bracket or left bracket

] Right square bracket or right bracket

== Equal-equal (not double equal)

++ Plus-plus (not double plus)

– – Minus-minus (not double minus)

/ Forward slash

\ Backslash

{ Left brace or left curly brace or open brace

} Right brace or right curly brace or close brace

^ Caret (though a few people say hat, for real — no joke here!)

" Double quote

If you’d like to have some fun with these symbols, check out the poem at
https://spot.colorado.edu/~sniderc/poetry/wakawaka.html. It’s especially helpful on
those days when you’re bored to tears and really need some comedy relief.

Strings
If any single computer word has become so common in programming
that most computer people forget that it’s a computer word, it’s string.
Book 1, Chapter 3 introduces strings and describes what they are, and it
gives examples of them. In short, a string is simply a set of characters
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strung together. The compiler knows the start and end of a string in your
code based on the location of the double quotes.

You can create a variable that can hold a string. The type you use is
string. The CreateString example, shown in Listing 4-6, demonstrates
how to use a string variable.

LISTING 4-6: Using Brackets to Access Individual
Characters in a String
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    string mystring; 

    mystring = "Hello there"; 

    cout << mystring << endl; 

    return 0; 

}

When you run this application, the string Hello there appears on the
console. The first line inside main() creates a string variable called
mystring. The second line initializes it to "Hello there". The third line
prints the string to the console.

DELIMITERS LIMIT DE TOKENS
When you read an English sentence, you can tell where one word starts and one word
ends by looking at the spaces and the punctuation. The same is true in a computer
application. Words are normally separated by spaces, but other characters also denote
the beginning and end of a word. In a string, this character is the double quote, (").
Such word dividers are called delimiters (pronounced “dee-LIM-it-ers”). And just to
make sure that you stay confused, computer people use the word token to mean the
individual words in an application that are set apart by delimiters. However, you won’t
hear about tokens again in this book, because using the term word is less confusing.

Getting a part of a string



Accessing the individual characters within a string is easy. Take a look at
the IndividualCharacter example shown in Listing 4-7.

LISTING 4-7: Using the string Type to Create a
String Variable
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    string mystring; 

    mystring = "abcdef"; 

    cout << mystring[2] << endl; 

    return 0; 

}

Notice that the ninth line, the cout line, has the word mystring followed
by a 2 inside brackets ([]). When you run this application, here’s what
you see:

c

That’s it, just a letter c, hanging out all by itself. The 2 inside brackets
means that you want to take the second character of the string and only
that character. But wait! Is c the second character? Your eyes may
deceive you, but it looks like that’s the third character. What gives?

 Turns out that C++ starts numbering the positions inside the
string at 0. So for this string, mystring[0] is the first character,
which happens to be a. And so, really, mystring[2] gets the third
character. Yes, life gets confusing when you try to hold
conversations with programmers, because sometimes they use the
phrase the third character to mean the third position; but
sometimes they use it to mean what’s really the fourth position. But
to those people, the fourth position is actually the fifth position,
which is actually the sixth position. Life among computer



programmers can be confusing. In general, this book uses fourth
position to mean the fourth position, which you access through
mystring[3]. (The number inside brackets is called an index.)

A string is made of characters. Thus, a single character within a string
has the type char. This means that you can do something like this (as
shown in the IndividualCharacter2 example):

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    string mystring; 

    mystring = "abcdef"; 

    char mychar = mystring[2]; 

    cout << mychar << endl; 

}

In this example, mychar is a variable of type char. The mystring[2]
expression returns an item of type char. Thus, the assignment is valid.
When you run this, you once again see the single character in the third
position:

c

Changing part of a string
Using the bracket notation, you can also change a character inside a
string. The following code, for example, changes the second character in
the string (that is, the one with index 1) from a b to a q:

string x = "abcdef"; 

x[1] = 'q'; 

cout << x << endl;

This code writes the string aqcdef to the console.

THOSE STRANGE # LINES
Now for those strange-looking lines that start with the # symbol. In Book 1, Chapter 7,
you discover how to divide your code into multiple pieces, each in its own source file.



That is a powerful way to create large software applications, because different people
can work on the different parts at the same time. But to do so, somehow each file must
know what the other files can do. And the way you tell the files about the other files is
by putting a line toward the top of your file that looks like this:

#include <string>

This line means that your application is making use of another file somewhere, and that
file has a filename of string. Inside that other file is a bunch of C++ code that
essentially gives your application the ability to understand strings. To see this file in
Code::Blocks, right-click the filename and choose Open #include File: <filename> from
the context menu. The line

#include <iostream>

gives your application the ability to write to the console, among other things.

As you progress through C++, you discover more lines that you can include at the top
of your application, each starting with #include and each giving your application more
features and capabilities. You see many #include files used throughout this book. (Now,
how is that for a teaser?)

Adding onto a string
Any good writer can keep adding more and more letters to a page. And
the same is true with the string type: You can easily add to it. The
following lines of code use the += operator, which was also used in
adding numbers. What do you think this code will do?

string mystring; 

mystring = "Hi "; 

mystring += "there"; 

cout << mystring << endl;

The first line declares the string mystring. The second line initializes it
to "Hi ". But what does the third line do? The third line uses the +=
operator, which appends something to the string — in this case, "there".
Thus, after this line runs, the string called mystring contains the string
"Hi there", and that’s what appears on the console when the cout line
runs. The fancy programmer term for adding something to a string is
concatenation.

You can also do something similar with characters. The following code
snippet adds a single character to a string:



string mystring; 

mystring = "abcdef"; 

mystring += 'g'; 

cout << mystring << endl;

This code creates a string with "abcdef" and then adds a ’g’ character
to the end to get "abcdefg". Then it writes the full "abcdefg" to the
console.

Adding two strings
You can take two strings and add them together by using a + sign, just as
you can do with integers. The final result is a string that is simply the
two strings pushed together, side by side. For example, the following
code adds first to second to get a string called third:

string first = "hello "; 

string second = "there"; 

string third = first + second; 

cout << third << endl;

This code prints the value of third, which is simply the two strings
pushed together — in other words, "hello there". (Notice that the
string called first has a space at its end, which is inside quotes and,
therefore, part of the string.) You can also add a string constant (that is,
an actual string in your application surrounded by quotes) to an existing
string variable, as shown here:

string first = "hello "; 

string third = first + "there"; 

cout << third << endl;

 You may be tempted to try to add two string constants together,
like so:

string bigstring = "hello " + "there"; 

cout << bigstring << endl;

Unfortunately, this won’t work. The reason is that (deep down inside its
heart) the compiler just wants to believe that a string constant and a



string are fundamentally different. But really, you don’t have a good
reason to do this, because you can accomplish the same thing with this
code:

string bigstring = "hello there"; 

cout << bigstring << endl;

 You can do a lot more with strings. But first, you need to
understand something called a function. If you’re curious about
functions, read Book 1, Chapter 6, which covers all the nitty-gritty
details.

Making Decisions Using
Conditional Operators

One of the most important features of computers, besides allowing you
to surf the web and allowing telemarketers to dial your telephone
automatically while you’re eating, is the capability to make
comparisons. Although this topic may not seem like a big deal, computer
technology did not start to take off until the engineers realized that
computers could become much more powerful if they could test a
situation and do one task or another task, depending on the situation.

You can use many ways to write a C++ application that can make
decisions; see Book 1, Chapter 5, for a discussion about this topic. But
one way that is quite handy is the use of the conditional operator.

Think about this process: If two integer variables are equal, set a string
variable to the string "equal". Otherwise, set it to the string "not
equal". In other words, suppose that you have two integer variables,
called first and second. first has the value 10 in it, and second has
the value 20 in it. You also have a string variable called result. Now,
to follow the little process just described: Are the two variables equal?
No, they are not, so you set result to the string "not equal".



Now do this in C++. Look carefully at the following code. First, you
declare the variables first, second, and result:

int first = 10; 

int second = 20; 

string result;

So far, so good. Notice that you didn’t yet initialize the string variable
result. But now you’re going to write a single line of code that
performs the process just described. First, look over the following
example, and see whether you can figure out what it’s doing. Look
carefully at the variables and what they may do, based on the process
described earlier. Then the text explains what the code does.

result = (first == second) ? "equal" : "not equal";

The preceding line is probably one of the more bizarre-looking lines of
C++ code that you’ll see in this book. First, you discover what it means.
Then you break it into parts to understand why it means what it does.

In English, this means result gets "equal" if first is equal to second;
otherwise, it gets "not equal".

Now break it into two parts. A single equals sign indicates that the left
side, result, receives what is on the right side. So you need to figure out
that crazy business on the right side:

(first == second) ? "equal" : "not equal"

When you see this strange setup, consider the question mark to be the
divider. The stuff on the left of the question mark is usually put in
parentheses, as shown in the following:

(first == second)

This line actually compares first to second and determines whether
they are equal. Yes, the code shows two equals signs. In C++, that’s how
you test whether two things are equal. Now move to the part on the right
of the question mark:

"equal" : "not equal"



This is, itself, two pieces divided by a colon, so if first is indeed equal
to second, result gets the string "equal". Otherwise, it gets the string
"not equal". Take a look at the whole thing one more time:

result = (first == second) ? "equal" : "not equal";

Once again, consider what it means: If first is equal to second, result
gets "equal"; otherwise, it gets "not equal".

Remember that the storage bin on the left side of the single equals sign
receives what is on the right side. The right side is an expression, which
comes out to be a string of either "equal" or "not equal". The whole
EqualityCheck example is shown in Listing 4-8.

LISTING 4-8: Using the Conditional Operator to Do
Comparisons
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int first = 10; 

    int second = 20; 

    string result; 

  

    result = first == second ? "equal" : "not equal"; 

  

    cout << result << endl; 

    return 0; 

}

Telling the Truth with Boolean
Variables

In addition to integers and strings, another type in C++ can be pretty
useful. This type is called a Boolean variable. Whereas an integer
variable is a storage bin that can hold any integer value, a Boolean



variable can hold only one of two different values: a true or a false.
Boolean values take their name from George Boole, the father of
Boolean logic. You can read about him at: http://mathshistory.st-
andrews.ac.uk/Biographies/Boole.html.

The type name for a Boolean variable is bool. Therefore, to declare a
Boolean variable, you use a statement like this:

bool finished;

This line declares a Boolean variable called finished. Then you can put
either a true or a false in this variable, as in the following:

finished = true;

or
finished = false;

BOOLEAN VARIABLES AND
CONDITIONAL OPERATORS

You can use Boolean variables with conditional operators. In a conditional operator
such as

result = (first == second) ? "equal" : "not equal";

the item (first == second) actually works out to be a Boolean value — either true or
false. Therefore, you can break up this code into several lines. Even though breaking
something into several lines seems a little backward, developers do it all the time. The
reason for breaking code into lines is that sometimes, when you are programming, you
may have an expression that is extremely complex — much more complex than first
== second. As you grow in your C++ programming ability, you start to build more
complex expressions and then start to realize just how complex they can become.
Often, breaking expressions into multiple smaller pieces is more manageable. To break
this example into multiple lines, you can do this (as shown in the EqualityCheck2
example):

string result; 

bool isequal; 

isequal = (first == second); 

result = isequal ? "equal" : "not equal";
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The second line declares a Boolean variable called isequal. The third line sets it to the
value first == second. In other words, if first is equal to second, then isequal gets the
value true. Otherwise, isequal gets the value false. In the fourth line, result gets the
value "equal" if isequal is true; or result gets the value "not equal" if isequal is false.

The reason that this code works is that the item on the left side of the question mark is
a Boolean expression, which is just a fancy way of saying that the code requires a
Boolean value. Therefore, you can throw in a Boolean variable if you prefer, because a
Boolean variable holds a Boolean value.

When you print the value of a Boolean variable by using code like this:
cout << finished << endl;

you see either a 1 for true or a 0 for false. The reason is that, deep
down inside, the computer stores a 1 to represent true and a 0 to
represent false.

Reading from the Console
Throughout this chapter and the preceding chapter, you see many
examples of how to write information to the console. But just writing
information is sort of like holding a conversation where one person does
all the talking and no listening. Getting some feedback from the users of
your applications would be nice. Fortunately, getting feedback is easy in
C++.Writing to the console involves the use of cout in a form like this:

cout << "hi there" << endl;

Reading from the console (that is, getting a response from the user of
your application) uses the cin object. (It’s pronounced “see-in”.) Next,
instead of using the goofy-looking << operator, you use the equally but
backwardly goofy >> operator.

 The << operator is often called an insertion operator because
you are writing to (or inserting into) a stream. A stream is nothing
more than a bunch of characters going out somewhere. In the case



of cout, those characters are going out to the console. The >>
operator, on the other hand, is often called the extraction operator.
The idea here is that you are extracting stuff from the stream. In the
case of cin, you are pulling letters from the stream that the user is,
in a sense, sending into your application through the console.

The ReadString example, shown in Listing 4-9, demonstrates how you
can read a string from the console.

LISTING 4-9: Using the Conditional Operator to
Make Comparisons
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    string name; 

    cout << "Type your name: "; 

    cin >> name; 

    cout << "Your name is " << name << endl; 

    return 0; 

}

When you run this code, you see the console ask you to type your name,
and then it stops. That’s because it’s waiting for your input. Notice that
the insertion point appears immediately after the text "Type your
name:". That’s because the first cout statement lacks the usual endl. It’s
normal to leave the insertion point, or cursor, on the same line as the
question to avoid confusing the user. Type a name, such as Fred, without
spaces and press Enter. The console then looks like this:

Type your name: Fred 

Your name is Fred

The first line includes the name you typed, and the second line is
whatever appears after you press Enter. Notice what happens: When you
type a word and press Enter, the computer places that word in the name
variable, which is a string. Then you can print name to the console by
using cout.



You can also read integers, as in the following code (in the ReadInt
example):

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int x; 

    cout << "Type your favorite number: "; 

    cin >> x; 

    cout << "Your favorite number is " << x << endl; 

    return 0; 

}

This sample code reads a single integer into the variable x and then
prints it to the console.

 By default, cin reads in characters from the console based on
spaces. If you put spaces in your entry, only the first word gets read.
cin reads the second word the next time the application encounters
a cin >>.
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Chapter 5

Directing the Application Flow
IN THIS CHAPTER

 Comparing numbers and evaluating other conditions
 Doing things based on a comparison
 Repeating code in specific ways
 Creating nested loops (loops within loops)

As you program in C++, many times you need to present the computer
with a choice, allowing it to do one thing in one situation and something
else in another situation. For example, you may have an application that
asks for a user’s password. If the password is correct, the application
continues; but if the password is incorrect, the application asks the user
to reenter the password. After some number of times — usually three —
the application performs yet another task when the user enters the
incorrect password. Such situations are called conditions. In the case of
the password, the condition is whether the password is correct.

You may also encounter situations in which you want several lines of
code to run over and over. These are loops, and you can specify
conditions under which the loop runs. For example, you may want to
check the password only three times; and if the user fails to enter it
correctly the third time, you may bar access to the system. This is a loop,
and the loop runs under the condition that a counter has not exceeded the
value of 3.

In this chapter, you consider different ways to evaluate conditions within
your applications and cause different sections of code to run based on
those conditions. The chapter helps you understand how you can use
C++ commands called if statements, which are similar to what-if
situations in real life. You also see how to use other C++ statements



(such as do-while) to perform loops (repeating the same application
sections a number of times).

To make the explanations clear, this chapter gives you real-world
examples that you can feel free to incorporate into your life. The
examples usually refer to groups of friends and how you can get money
from them. So, you see, the benefits of this chapter are twofold: You find
out how to program by using conditions and loops, and you find out how
to make money off your unsuspecting friends.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookI\Chapter05
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Doing This or Doing That
As you go through life, you’re always faced with decisions. For
example, when you bought this book, you faced the following decision:
Should I buy this great For Dummies book that’s sure to tell me just
what I need to know, or should I buy some other book?

When you’re faced with a decision, you usually have options that offer
different results — say, Plan A and Plan B. Making a decision requires
making a choice that results in the execution of either Plan A or Plan B.
For example, if you approach a stoplight that has just turned yellow, you
must either slam on the brakes or floor the accelerator. If you slam on
the brakes, the car will stop just in time (you hope). If you floor the
accelerator, the car will speed up and you’ll go sailing through the
intersection just before the stoplight turns red. The choice is this: Press
the brake, or press the accelerator. The plan looks like this:

If I press the brake, I will stop just in time.



If I press the accelerator, I will speed through the intersection.

Computers are faced with making decisions too, although their decisions
are usually a little less exciting and don’t usually yield the possibility of
police interaction. Computer decisions are also usually simpler in nature.
That is, a computer’s decisions mostly focus around such issues as
comparing numbers and strings of characters. For example, you may be
writing a computer application for a bank. The user of your application
(that is, the bank customer) has a choice of Plan A, Make a Deposit, or
Plan B, Receive a Cash Withdrawal when interacting with an account. If
the user chooses to make a deposit, your application adds to the account
balance the amount of the deposit. If the user chooses to make a
withdrawal, your application instead subtracts the withdrawal amount
from the account balance.

In C++, decisions usually take the form of an if statement, which is
code that starts with the if keyword followed by a condition, which is
often a numerical condition wherein two numbers are compared and then
two blocks of code appear: one that runs if the condition is satisfied and
one that runs if it is not.

Evaluating Conditions in C++
Most decisions that the computer makes are based on conditions
evaluated by comparing either two numbers or two characters. For
numerical comparisons, you may compare a variable to a number, as in
the following statement:

x > 10

This comparison evaluates whether the variable x holds a value greater
than the number 10. If x is indeed greater than 10, the computer sees this
condition as true. If x is not greater than 10, the computer sees the
condition as not true (false).

Developers often use the word satisfied with conditions. For the
condition x > 10, if x is greater than 10, developers say the condition is



satisfied. It’s kind of like, “We’re satisfied if our IRS tax refund is five
figures.” For this, if the condition is x > 9999, and you receive a
$10,000 refund, the condition is satisfied.

For character comparisons, you may compare whether two characters are
equal, as in the following statement:

mychar == 'A'

This comparison evaluates whether mychar contains the letter A. Notice
that you use two equals signs, not just one. Using a single equals sign
would assign the value A to mychar.

To test whether the character is not equal to something, you use the
somewhat cryptic-looking != operator. Think of the ! as meaning not, as
in

mychar != 'X'

Finding the right C++ operators
Each statement in the previous section uses an operator to specify the
comparison to make between the numbers or the strings. Table 5-1
shows you the types of operators available in C++ and the comparisons
that they help you make in your applications.

TABLE 5-1 Evaluating Numerical Conditions

Operator What It Means

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

!= Not equal to

Some operators in this table — and how you use them — can be a bit
annoying or downright frightening. The following list gives examples:



The operator that tests for equality is two equals signs. It looks like
this:

x == 10

When the computer finds this statement, it checks to see whether x
equals 10.

 If you put just one equals sign in your statements, most C++
compilers will not give you an error — though a statement like x =
10 is not really a condition! Instead, x = 10 is an assignment, setting
the variable x to 10. When code contains such a statement, the result
of the evaluation is always the same, regardless of the value that x
has.
The operator that tests for inequality is an exclamation mark
followed by an equals sign. For the condition x != 10, the condition
evaluates as true only if x is not equal to 10 (x is equal to something
other than 10).

When you’re testing for greater-than or less-than conditions, the
condition x > 10 is not true if the value of x is equal to 10. The
condition x > 10 is true only if x is actually greater than, but not
equal to, 10. To also test for x being equal to 10, you have two
choices:

If you’re working with integers, you can test whether x > 9.
In that case, the condition is true if x equals 10, or 11, or 12,
and so on.
You can use the greater-than-or-equal-to operator to determine
equality x >= 10. This condition also is true if x equals 10,
11, and so on.



 To test for all whole numbers greater than or equal to 10, the
condition x > 9 works only if you’re working with integers. If
you’re working with floating-point numbers (refer to Book 1,
Chapter 4, for information on the types of numbers you can work
with in C++), the statement x > 9 won’t work the way you want.
The number 9.1 is greater than 9, and it’s not greater than or equal to
10. So if you want greater than or equal to and you’re not working
with integers, use the >= operator.

CONSIDERING THE NEW SPACESHIP
OPERATOR

C++ 20 comes with a new operator that will eventually make your life easier. It’s called
the spaceship operator and looks like this: <=>. The spaceship operator performs a
three-way comparison, which means that it can tell you whether a < b, a == b, or a > b,
all in one operation. This is one of those cases when you might want to skip this sidebar
and come back to it after you’ve read through later in the book (such as Book 5,
Chapter 2), but this chapter is the most appropriate place to include information about
the spaceship operator.

The spaceship operator appears as part of the std::strong_ordering class, so that’s
how you see it referred to in many cases. Instead of an output of true or false, this
operator outputs -1 (std::strong_ordering::less) when a < b, 0
(std::strong_ordering::equal) when a == b, and 1 (std::strong_ordering::greater)
when a > b. Using this different form of output means that you need to write your
conditional statements differently than normal.

If you try to use the spaceship operator in a copy of C++ that doesn’t support it, you
receive an error message because the compiler won’t be able to understand what <=>
means. As of this writing, Code::Blocks doesn’t implement the spaceship operator, so
you need to test the spaceship operator somewhere else. One of the few online
compilers that fully implements this operator is Wandbox (https://wandbox.org/). You
can see how this operator works using this code:

#include <iostream> 

#include <cstdlib> 

  

int main() 

{ 

https://wandbox.org/


    std::strong_ordering result = 1 <=> 1; 

    bool out1 = result < 0; 

    bool out2 = result == 0; 

    bool out3 = result > 0; 

  

    std::cout << out1 << std::endl; 

    std::cout << out2 << std::endl; 

    std::cout << out3 << std::endl; 

}

In this case, the outputs are 0 (which is false), 1 (which is true), and 0 because 1 really
does equal 1. The std::strong_ordering type doesn’t provide cout functionality, so you
have to create a bool comparison for it. Instead of comparing the value of result to 0,
you can also use std::strong_ordering constants like this: result ==
std::strong_ordering::equal. Obviously, this is an extremely simple example and you
normally use the spaceship operator to perform complex comparisons. In Book 5,
Chapter 2, you begin to see how it’s possible to reduce the amount of code needed for
comparing two structures using the spaceship operator. For now, just know that the
operator exists and it can perform complex comparisons.

Combining multiple evaluations
When you make evaluations for application decisions, you may have
more than one condition to evaluate. For example, you might say, “If I
get a million dollars, or if I decide to go into debt up to my eyeballs, I
will buy that Lamborghini.” In this case, you would buy the car under
two conditions, and either can be true. Combining conditions like this is
called an or situation: If this is true or if that is true, something happens.

To evaluate two conditions together in C++, you write them in the same
statement and separate them with the or symbol (||), which looks like
two vertical bars. Other programming languages get to use the actual
word or, but C++ uses the strange, unpronounceable symbol that you
might call The Operator Previously Known As Or. The following
statement shows it performing live:

(i < 10 || i > 100)

 This condition is useful for some kinds of range checking for
which you want to exclude the middle of a range and check only for



the extremes. In this case, an i value of 50 (the middle of the range)
would evaluate to false. If you use the or operator (||), accidentally
ending up with a condition that is always true is easy. For example,
the condition (x < 100 || x > 0) is always going to be true.
When x is -50, it’s less than 100, so the condition is true. When x is
500, it’s greater than 0, so it’s true.

In addition to an or condition, you can have something like this: “If I get
a million dollars and I feel really bold, I will buy a Lamborghini.” Notice
that this uses the word and. In this case, you do it only if both situations
are true. (Remember that with or, you do it if either situation is true.) In
C++, the and operator is two ampersands: &&. This makes more sense
than the or operator because the & symbol is often associated with the
word and. The and comparison in C++ looks like this:

(i > 10 && i < 100)

This example checks to see whether a number is more than 10 and less
than 100. That would mean the number is in the range 11 through 99.

Combining conditions by using the && and || operators is a use of
logical operators.

 To determine whether a number is within a certain range, you
can use the and operator (&&), as you see earlier in this chapter.

 With the and operator, accidentally creating a condition that is
never true is easy. For example, the condition (x < 10 && x >
100) will never be true. No single number can be both less than 10
and simultaneously greater than 100.



Including Evaluations in C++
Conditional Statements

Computers, like humans, evaluate conditions and use the results of the
evaluations as input for making a decision. For humans, the decision
usually involves alternative plans of action, and the same is true for
computers. The computer needs to know what to do if a condition is true
and what to do if a condition is not true. To decide on a plan of action
based on a condition that your application evaluates, you use an if
statement, which looks like this:

if (x > 10) 

{ 

    cout << "Yuppers, it's greater than 10!" << endl; 

}

This example translates into English as: If x is greater than 10, write the
message

"Yuppers, it's greater than 10!"

In an if statement, the part inside the parentheses is called either the test
or the condition. You usually apply condition to this part of the if
statement and use the word test as a verb, as in “I will test whether x is
greater than 10.”

 In C++, the condition for an if statement always goes inside
parentheses. If you forget the parentheses, you get a compile error.

You can also have multiple plans of action. The idea is simply that if a
condition is true, you will do Plan A. Otherwise, you will do Plan B.
This is an if-else block, which appears in the next section.

Deciding what if and also what else
When you write code for a comparison, usually you want to tell the
computer to do something if the condition is true and to do something



else if the condition is not true. For example, you may say, “If I’m really
hungry, I will buy the Biggiesupersizemondohungryperson french fries
with my meal for an extra nickel; otherwise, I’ll go with the small.” In
the English language, you often see this kind of logic with the word
otherwise: If such-and-such is true, I will do this; otherwise, I will do
that.

In C++, you use the else keyword for the otherwise situation. The
IfElse example demonstrates how to use the else keyword, as shown in
the following code:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int i; 

    cout << "Type any number: "; 

    cin >> i; 

  

    if (i > 10) 

    { 

        cout << "It's greater than 10." << endl; 

    } 

    else 

    { 

        cout << "It's not greater than 10." << endl; 

    } 

  

    return 0; 

}

In this code, you test whether a number is greater than 10. If it is, you
print one message. If it is not, you print a different message. Notice how
the two blocks of code are distinct. The first block immediately follows
the if statement; it’s the code that runs if the condition is true. The next
block is preceded by the else keyword, and this block runs if the
condition is false.



 Think carefully about your else code block when dealing with
numbers. If you are testing whether a number is greater than 10, for
instance, and it turns out that the number is not greater than 10, the
tendency of most people is to assume that it must, therefore, be less
than 10. But that’s not true. The number 10 itself is not greater than
10, but it’s not less than 10, either. So the opposite of greater than
10 is simply not greater than 10. If you need to test the full range of
numbers using a simple if statement, create an if statement that
uses either >= or <= (refer to Table 5-1 for a listing of operators).

Going further with the else and if
When you are working with comparisons, you often have multiple
comparisons going on. For example, you may say, “If I go to Mars, I will
look for a cool red rock; otherwise, if I go to the moon, I will jump up
really high; otherwise, I will just look around wherever I end up, but I
hope there will be air.”

The IfElse2 example, shown in the following code, demonstrates how
to combine the if and else keywords to check for multiple alternatives:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int i; 

    cout << "Type any number: "; 

    cin >> i; 

     

    if (i > 10) 

    { 

        cout << "It's greater than 10." << endl; 

    } 

    else if (i == 10) 

    { 

        cout << "It's equal to 10" << endl; 

    } 



    else 

    { 

        cout << "It's less than 10." << endl; 

    } 

  

    return 0; 

}

Here you can see having several different conditions, and only one can
be true. The computer first checks to see whether i is greater than 10. If
i is greater, the computer prints a message saying that i is greater than
10; but if it isn’t greater, the computer checks to see whether i equals 10.
If so, the computer prints a message saying that i is equal to 10. Finally,
the computer assumes that i must be less than 10, and it prints a message
accordingly. Notice there is no condition for the final else statement
(you can’t have a condition with else statements). But because the other
conditions failed, you know, by your careful logic, that i must be less
than 10.

Be careful when you are thinking through such if statements. You could
have a situation where more than one condition can occur. For example,
you may have something like the example shown in IfElse3:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

  int i; 

  cout << "Type any number: "; 

  cin >> i; 

  

  if (i > 100) 

  { 

    cout << "It's greater than 100." << endl; 

  } 

  else if (i > 10) 

  { 

    cout << "It's greater than 10" << endl; 

  } 

  else 

  { 



    cout << 

      "It's neither greater than 100 nor greater than 10." 

      << endl; 

  } 

  

  return 0; 

}

Think about what would happen if i is the number 150. The first
condition, i > 100, is true. But so is the second condition, i > 10. The
number 150 is greater than 100, and 150 is also greater than 10. So which
block will the computer execute? Or will it execute both blocks?

The computer executes only the first condition that is satisfied. Thus,
when i is 150, the computer prints the message "It’s greater than
100." It doesn’t print the other messages. In fact, the computer doesn’t
even bother checking the other conditions at that point. It just continues
with the application.

Repeating Actions with Statements
That Loop

You see loops all the time. A child runs around in circles until getting
quite dizzy and falling over (laughing, in all likelihood). While driving,
you see a roundabout and navigate it successfully or go around for
another try. During exercise, you perform a given number of repetitions
to obtain a desired fitness result. All these examples reflect real-life
loops. Computers also deal with loops, as defined in the following
sections.

Understanding how computers use loops
Suppose that you’re writing an application to add all the numbers from 1
to 100. For example, you may want to know how much money you will
get if you tell 100 people, “Give me one dollar more than the person to
your left.” With a mastery of copy-and-paste, you could do something
like this (with the first person giving you a dollar, the second giving you
two dollars, the third giving you three dollars, and so on):



int x = 1;   // First person. 

x = x + 2;   // Person two gives you 2, for a total of 3 

x = x + 3;   // Person three gives you 3, for a total of 6 

x = x + 4;   // Person four gives you 4, for a total of 10

and so on until you get to x = x + 100. As you can see, this code could
take a long time to type, and you would probably find it a tad frustrating,
too, no matter how quickly you can choose the Edit  ⇒  Paste command
(or press Ctrl+V). Fortunately, the great founders of the computer world
recognized that not every programmer is a virtuoso at the piano with
flying fingers and that applications often need to do the same thing over
and over. Thus, they created a helpful tool: the for loop. A for loop
executes the same piece of code repeatedly a certain number of times.
And that’s just what you want to do in this example.

Looping situations
Several types of loops are available, and in this section you see how they
work. Which type of loop you use depends on the situation. The
preceding section methods one loop type: the for loop. The idea behind
a for loop is to have a counter variable that either increases or decreases,
and the loop runs as long as the counter variable satisfies a particular
condition. For example, the counter variable might start at 0, and the
loop runs as long as the counter is less than 10. The counter variable
increments (has one added to it) each time the loop runs, and after the
counter variable is not less than 10, the loop stops.

Another way to loop is to simplify the logic a bit and say, “I want this
loop to run as long as a certain condition is true.” This is a while loop,
and you simply specify a condition under which the loop continues to
run. When the condition is true, the loop keeps running. After the
condition is no longer true, the loop stops.

Finally, there’s a slight modification to the while loop: the do-while
loop. The do-while loop is used to handle one particular situation that
can arise. When you have a while loop, if the condition is not true when
everything starts, the computer skips over the code in the while loop and
does not even bother executing it. But sometimes you may have a



situation in which you would want the code to always execute at least
once. In that case, you can use a do-while loop.

Table 5-2 shows the types of loops. As the chapter progresses, you see
examples of using all three loop types.

TABLE 5-2 Choosing Your Loops

Type of Loop Appearance

for for (x=0; x<10; x++) { }

while while (x < 10) { }

do-while do { } while (x < 10)

You may want to use these loops in these situations:

for loop: Use a for loop when you have a counter variable and you
want it to loop while the counter variable increases or decreases over
a range. It’s a good choice if you know how many times you want
the loop to execute.
while loop: Use the while loop when you have a condition under
which you want your code to run. It’s a good choice when you want
to perform the test at the beginning of the loop. The test may fail
immediately, so the loop may not execute even once.
do-while loop: Use the do-while loop when you have a condition
under which you want your code to run and you want to ensure that
the loop always runs at least once, even if the condition is not
satisfied. It’s a good choice when the code inside the loop prepares
the variables that the test uses, so the loop must execute at least once.

Looping for
Using the for loop provides precise control over how many times the
code performs a task. In addition, it’s extremely flexible because you
also have control over how the counter variable updates. While you can



use a for loop for situations when you don’t know how many times you
need to perform a task, such as streaming content from the Internet, it
still provides the basis for code that is less susceptible to errors because
you always know precisely how long the loop will continue. With this in
mind, the following sections tell you more about the for loop.

Performing a simple for loop
To use a for loop, you use the for keyword and follow it with a set of
parentheses that contains information regarding the number of times the
for loop executes.

For example, when adding the numbers from 1 to 100, you want a
variable that starts with the number 1; then you add 1 to x, increase the
variable to 2, and add the next number to x again over and over. The
common action here that doesn’t change each time is the “add it to x”
part, and the part that changes is the variable, called a counter variable.

The counter variable, therefore, starts at 1 and goes through 100. Does it
include 100? Yes. And with each iteration, you add 1 to the counter
variable. The for statement looks like this:

for (i = 1; i <= 100; i++)

This statement means that the counter variable, i, starts at 1, and the
loop runs over and over while i is less than or equal to 100. After each
iteration, the counter variable increments by 1 because of the i++
statement.

The following list describes the three portions inside the parentheses of
the for loop:

Initializer: You use this first portion to set up the counter variable.
Condition: It’s the condition under which the loop continues to run.
Finalizer: In this third portion, you specify what happens after each
cycle of the loop.



 Three items are inside the for loop, and you separate them with
semicolons. If you try to use commas, your code will not compile.

Now the line of code from a few paragraphs back doesn’t do anything
for each iteration other than add 1 to i. To tell the computer the work to
do with each iteration, follow the for statement with a set of braces
containing the statements you want to execute with each iteration. Thus,
to add the counter variable to x, you would do this:

for (i = 1; i <=100; i++) 

{ 

    x += i; 

}

Note that if the for loop only executes one statement, you don’t have to
include the braces. This example would add i to x with each loop. Of
course, you must create x and assign an initial value to it to make the
loop work. The ForLoop example demonstrates the for loop in its final
form, complete with the way to write the final value of x to the console
after the loop is finished:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int x = 0; 

    int i; 

  

    for (i = 1; i <= 100; i++) 

    { 

       x += i; 

    } 

  

    cout << x << endl; 

    return 0; 

}



When you run this example, you see an output of 5050. Notice a few
things about this block of code.

1. You declare both variables that you’re working with: x and i.

2. The for statement initializes the counter variable, specifies the
condition under which it continues running, and tells what to do after
each iteration. In this example, the for loop starts with i = 1, and it
runs as long as i is less than or equal to 100. For each iteration, the
computer adds the value of i to x; the process that adds the value to
x is the code inside the braces.

3. The computer adds 1 to i, which you specify as the third item inside
the parentheses. The computer does this part, adding 1 to i, only
after it finishes executing the stuff inside the braces.

Meddling with the middle condition
The middle portion of the for statement specifies a condition under
which to continue doing the stuff inside the for loop. It must eventually
evaluate to false or the loop will continue forever. In the case of the
preceding example, the condition is i <= 100, which means that the
stuff inside the braces continues to run as long as i is less than or equal
to 100.

GETTING A SMALL PERFORMANCE
BOOST

It’s possible to get a small, but sometimes noticeable, performance boost by declaring
your counter variable within the for statement. The following code runs precisely the
same as the code used in the “Performing a simple for loop” section, but it uses one
less line of code by initializing i within the for statement using int i = 1;. The trade-off
is that it may be less clear in some situations where the function you write is longer and
i becomes inaccessible when the for loop terminates.

#include <iostream> 

  

using namespace std; 

  



int main() 

{ 

    int x = 0; 

  

    for (int i = 1; i <= 100; i++) 

    { 

       x += i; 

    } 

  

    cout << x << endl; 

    return 0; 

}

In this example, you want the loop to iterate for the special case in which
i is 100, which still satisfies the condition i <= 100. If you instead say
i < 100, the loop won’t execute for the case in which i equals 100. The
loop will stop short of the final iteration. In other words, the computer
would add only the numbers 1 through 99. And if your friends are
gathering money for you, you’d be cheated out of that final $100. And,
by golly, that could make the difference as to whether you pay rent this
month.

 The question of when the loop stops can get kind of confusing.
If you go crazy and tell the compiler that you want to add the
numbers 1 up to but not including 100, you need a condition such
as i < 100. If you say up to 100, it’s not clear exactly which you
want to do — include the 100 or not. If that’s the case and you’re
writing the application for someone else, you would want to ask for
clarification. (Unless you’re the 100th friend, in which case you
may get out of paying your dues.)

In the example you’ve been using, the condition i <= 100 and the
condition i < 101 have essentially the same meaning. If the condition is
i < 101, the application operates the same. But that’s true only because
the example uses integers to count up to and including 100. If you
instead add floating-point numbers, and increment the counter by 0.1



after each iteration, these two conditions (i <= 100 and i < 101) aren’t
the same. With i <=100, i gets up to 99.5, 99.6, 99.7, 99.8, 99.9, and
finally 100, after which the loop stops. But i < 101 would also include
100.1, 100.2, up to and including 100.9.

You can see that the two conditions are not the same by playing with the
ForLoop2 example. When you run this example with a condition of i <=
100, the output is 50050. However, when you run this example with a
condition of i < 101, the output is 51055.5. (Remember to rebuild the
application after you make any changes to it.)

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    double x = 0.0; 

  

    for (double i = 0.1; i <= 100; i += 0.1) 

    { 

       x += i; 

    } 

  

    cout << x << endl; 

    return 0; 

}

Now notice the third item in the for statement: i+=0.1. Remember that
this item is the same as i = i + 0.1. Therefore, this third item is a
complete statement. A common mistake is to instead include just a
partial statement, as in i + 0.1. Unfortunately, some compilers allow a
partial statement to get through with only a warning. C++ is notorious
for letting you do things that don’t make a whole lot of sense, though
newer compilers tend to fix these errors.

Yes, it’s true: The entire statement i = i + 1 is considered to have a
side effect. In medicine, a side effect is an extra little goodie you get
when you take a pill that the doctor prescribes. For example, to cure
your headache with medicine, one side effect may be that you
experience severe abdominal pains — not something you want. But in



computers, a side effect can be something that you may want. In this
case, you want the counter to be incremented. The partial statement i +
0.1 returns only a value and doesn’t put it anywhere; that is, the partial
statement doesn’t change the value of i — it has no side effects.

If you try this at home by replacing one of the for loops in the earlier
examples with just i + 0.1, your loop runs forever until you manually
stop the application. The reason for this action is that the counter always
stays put, right where it started, and it never increments. Thus, the
condition i <= 100 is always satisfied.

 The final portion of the for statement must be a complete
statement in itself. If the statement simply evaluates to something, it
will not be used in your for loop. In that case, your for loop can
run forever unless you stop it.

Going backward
If you need to count backward, you can do that with a for loop as well.
For example, you may be counting down the number of days remaining
before you get to quit your job because you learned C++ programming
and you are moving on to an awesome new job. Or you may be writing
an application that can manipulate that cool countdown timer that they
show when the space shuttle launches. Counting up just isn’t always the
right action. It would be a bummer if every day were one day more
before you get to quit your job and move to an island. Sometimes,
counting backward is best.

To count backward, you set up the three portions of the for loop. The
first is the initial setup, the second is the condition under which it
continues to run, and the third is the action after each iteration. For the
first portion, you set the counter to the starting value, the top number.
For the condition, you check whether the number continues to be greater
than or equal to the final number. And for the third portion, you



decrement the counter (reduce its value by 1) rather than increment it.
Thus, you would have this:

for (i=10; i>=5; i--)

This line starts the counter variable i at 10. (Note the lack of spaces
between i, =, and 10—the compiler doesn’t care whether you use spaces
or not, the spaces are there, or not, for you.) The for loop decrements i
by 1 after each iteration, and thus i moves to 9, then 8, then 7, and so on.
This process continues as long as i is at least 5. Thus, i counts 10, 9, 8,
7, 6, 5. The whole application might look like the ForCountdown
example, shown here:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    for (int i=10; i>=5; i--) 

    { 

        cout << i << endl; 

    } 

  

    return 0; 

}

When you run this code, you see the following output:
10 

9 

8 

7 

6 

5

Using multiple initialization variables
If you need multiple counter variables, the for loop can handle it. Each
portion of the for statement can have multiple items in it, separated by
commas. For example, the following code uses two counter variables, as
demonstrated in the ForLoopMultiVariable example:



#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

  string A = "Hello"; 

  string B = "1122334455"; 

  

  for (int i = 0, j = 0; i < 5; i++, j += 2) 

  { 

    cout << A[i] << B[j] << endl; 

  } 

  

  return 0; 

}

In this case, you work with two strings: A and B. String B is twice as long
as string A, but you want to combine the two. So, you need to access the
string index of B using j by incrementing it twice the amount of i. This
type of processing can happen in C++, so it’s good to keep in mind the
fact that using multiple variables in a for loop isn’t always bad. The
output you see from this example looks like this:

H1 

e2 

l3 

l4 

o5

The problem with using multiple variables comes when you start to
create really complex and convoluted code. Here is an example of when
what is happening with the for loop becomes harder to understand:

for (int i = 0, j=10; i <= 5, j <=20; i++, j+=2) 

{ 

    cout << i << " " << j << endl; 

    x += i + j; 

}

Look carefully at it because it’s a bit confusing (in fact, you learn a little
something about the complexity shortly). To understand this example,
look at each portion separately. The first portion starts the loop. Here,
the code creates two counters — i and j; i starts at 0, and j starts at 10.



So far, easy enough. The second portion says that the loop will run as
long as the following two conditions are true: i must be less than or
equal to 5, and j must be less than or equal to 20.

Again, not too bad. The final portion says what must happen at the end
of each iteration: i is incremented by 1, and j is incremented by 2.

Thus, you have two counter variables. And it’s not too bad, except that
you might imagine doing something like this instead:

for (int i = 0, j=20; i <= 5, j >= 10 ; i++, j-=2) 

{ 

    cout << i << " " << j << endl; 

    x += i + j; 

}

If you look carefully, you’ll notice that aside from i, j starts out at 20
and the loop runs as long as j is at least 10, and that with each iteration,
2 is subtracted from j. In other words, j is counting down by 2 from 20
to 10.

But i is counting up from 0 to 5. Thus, you have two loops: one
counting up and one counting down.

Code can become extremely confusing—look at the following gem from
the ForLoopComplex example:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

  int x = 0; 

  for (int i=0, j=10; i<=5, j<=20; 

    i++, j+=2, cout << i+j << endl, x+=i+j) 

  { 

  } 

  

  return 0; 

}

It’s hard to tell what it does just by looking at it. Running the code will
give you an output of



13 

16 

19 

22 

25 

28

The truth is, this kind of code is just too complicated — best to stick
with simpler code. Although you may know what this code means, your
coworkers will only get frustrated trying to decode it. And if you write
code just for fun at home, six months from now — when you go back
and look at this code — you might have trouble figuring it out yourself!

One thing to notice about this particular example is that the for
conditions reside on two lines. At least the line isn’t so long that you
need to scroll it within the editor. Using shorter code lines is usually
helpful.

 Putting too much inside the for statement itself is easy to do. In
fact, if you’re really clever, you can put almost everything inside
the for loop and leave nothing but an empty pair of braces, as
shown in the preceding example. But remember, just because your
code is clever doesn’t mean that what you did was the best way to
do it. Instead, sticking to the common practice of using only one
variable in the for statement is a good idea (as is not using multiple
statements within each portion).

 Keeping your applications clear so that other people can figure
out what you were trying to do when you wrote the code is always a
good idea. Some people seem to think that if they keep their
applications complicated, they’re guaranteeing themselves job
security. Oddly, all the people I know like that tend to leave their
jobs and have trouble getting good references. (Imagine that!)



 You may recall that with the ++, you can have both i++ and ++i.
The first is a post-increment, and the second is a pre-increment. You
may be tempted to try something like this: for (int i = 0; i <=
5; ++i). Although it looks cool and some people prefer it, the truth
is that it doesn’t change anything. The ++i still takes place at the
end of the loop, not at the beginning, as you might hope. Using pre-
increment just makes code confusing; use i++ in your for loops
and avoid ++i.

Working with ranges
A range is a series of values that go from one value to another value and
include the values in between. For example, the range a through d is a, b,
c, and d. An integer range of 1 through 5 is 1, 2, 3, 4, and 5. You see
ranges in action multiple times in this book, but the main discussion
appears in Book 5, Chapter 6. For now, this chapter works with an
incredibly simple range.

To make this example work, you must configure GCC to use a minimum
of C++ 17. Choose Settings  ⇒  Compiler to display the Compiler Settings
dialog box shown in Figure 5-1. Select the Have G++ Follow the
Coming C++ 1z (aka C++ 17) setting option; then click OK. If you don’t
select this option, the example will fail to build properly. Remember that
if you build a project using the wrong options, you must rebuild it by
choosing Build  ⇒  Rebuild after setting the correct options.



FIGURE 5-1: Configure GCC to use the C++ 17 standard.

Now that the compiler is configured, you can use the code that follows,
which also appears in the ForLoopRange example, to test a for loop
using a range. In this case, the range is from 1 through 5:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

  int range[] = {1, 2, 3, 4, 5}; 

  

  for (int i : range) 

  { 

    cout << i << endl; 

  } 

  

  return 0; 

}



Don’t worry too much about what may appear to be confusing code; it
all makes sense as you progress. The int range[] = {1, 2, 3, 4,
5}; line of code creates an array — a series of values within a single
variable. Think of it as a box with partitions in which you can place a
single value in each partition. Book 5, Chapter 1 tells you more about
working with arrays.

 The for loop condition looks really strange. The condition looks
like this: int i : range. The code creates an int value i that
receives one value from the range for each iteration of the loop. The
range (:) operator appears between the range declaration (i) and the
range expression (range). This is a somewhat new feature of C++,
and you’ll find it extremely useful for processing storage containers
like arrays.

After i receives a value, the code outputs it to the screen using cout.
What you see as output is the values 1 through 5 — each on a separate
line. Of course, you might think this is all smoke and mirrors. So, try
changing one of the values in the array and you see that the output
changes to match the array content.

Placing a condition within the declaration
Sometimes you need to perform data manipulation within a for loop in a
way that’s more convenient than trying to manipulate it in a code block.
You can actually create a special kind of condition within a for loop
declaration in which the condition does something like access a part of a
string or array. The ForLoopCondition example demonstrates how to
perform this task, as shown here:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

  string hello = "Hello"; 



  for (int i = 0; char c = hello[i]; i++) 

  { 

    cout << c << endl; 

  } 

  return 0; 

}

Notice that the middle condition, which normally checks for a particular
value or performs some other logical function, actually creates a new
char variable, c, and places a letter from the hello string into it based
on the value of i. After scratching your head for a while looking for the
means of ending the loop, you determine that when the loop gets to the
end of the string, it automatically ends.

 This is a handy way of working with all sorts of data when you
don’t know how large the data is at the outset. The for loop
continues processing the string until it runs out of letters, so you
don’t have to worry about the string size.

Letting C++ determine the type
The previous section tells you about placing a condition within a for
loop to manipulate data of uncertain size. The example assumes that the
data is of a specific type, but you may not know the type. Starting with
C++ 11 (which means that you must configure GCC with the Have G++
Follow the Combine C++ 1z (aka C++ 17) setting, as described in the
“Working with ranges” section, earlier in this chapter), you can tell C++
to determine what type to use automatically. You do this using the auto
keyword, as shown in the ForLoopCondition2 code here:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

  string hello = "Hello"; 

  int values[] = {1, 2, 3, 4, 5, 0}; 

  



  for (int i = 0; auto c = hello[i]; i++) 

  { 

    cout << c << endl; 

  } 

  

  return 0; 

}

As shown, the for loop will process the values in hello just as it did for
the example in the previous section. However, this time you don’t
specify that c is a char; you use auto instead. Now, try replacing hello
with values in the for loop so that it looks like this:

for (int i = 0; auto c = values[i]; i++) 

{ 

  cout << c << endl; 

}

Instead of outputting Hello one letter at a time, you now see the
numbers 1 through 5, one on each line. So, the same for loop now works
for data of two different types: string and int. Using this approach
gives you additional flexibility at the cost of a little code readability.

 Notice that the for loop doesn’t output the 0 in the values array;
rather, it uses the 0 to determine the ending point of the array. If you
didn’t include this 0, the for loop would continue until it found a 0,
which means you could see quite a bit of garbage onscreen.

Looping while
Often, you find that for loops work only so well. Sometimes, you don’t
want a counter variable; you just want to run a loop over and over as
long as a certain situation is true. Then, after that situation is no longer
the case, you want to stop the loop.

For example, instead of saying that you’ll have 100 people line up and
each one will give you one more dollar than the previous person, you



may say that you will continue accepting money like this as long as
people are willing to give it.

In this case, you can see that the condition under which the giving
continues to operate is the statement “as long as they’re willing to give
it.”

To do this in C++, you use a while statement. The while keyword is
followed by a set of parentheses containing the condition under which
the application is to continue running the loop. Whereas the general for
statement’s parentheses include three portions that show how to change
the counter variable, the while statement’s parentheses contain only a
condition. The WhileLoop example demonstrates a simple while loop, as
shown here:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int i = 0; 

    while (i <= 5) 

    { 

        cout << i << endl; 

        i++; 

    } 

    cout << "All Finished!" << endl; 

    return 0; 

}

This code runs while i is less than or equal to 5. Thus, the output of this
application is

0 

1 

2 

3 

4 

5 

All Finished!



 Notice that you must declare i outside the while loop using int
i = 0;. If you were to try to declare the while loop using while
(int i <= 5), the compiler would complain.

The while loop is handy if you don’t have a particular number of times
you need the loop to run. For example, consider a situation in which
your application is reading data from the Internet. Unless you control the
Internet data source, you don’t know how much data it can provide.
(Many other situations can arise in which you don’t know how much
data to read, but Internet applications commonly experience this
problem.) Using a while loop, the code can continue reading data until
your application has read it all. The Internet data source can simply
stream the data to your application until the data transfer is complete.

Often, for this kind of situation, you create a Boolean variable called
done and start it out as false. The while statement is simply

while (!done)

This line translates easily to English as “while not done, do the
following.” Then, inside the while loop, when the situation happens that
you know the loop must finish (such as the Internet data source has no
more data to read), you set

done = true;

The WhileLoop2 example demonstrates how to do this sort of process, as
shown here:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int i = 0; 

    bool done = false; 

    while (!done) 

    { 



        cout << i << endl; 

        i++; 

        if (i > 5) 

            done = true; 

    } 

    cout << "All Finished!" << endl; 

    return 0; 

}

In the case of the Internet data example, after you encounter no more
data, you would set done to true. The variable used to control the loop
condition must change or the loop will continue to run forever. In the
case of your friends giving you money, after one of them refuses, you
would set done to true.

Doing while
The while statement has a cousin in the family: the do-while statement.
A loop of this form is similar to the while loop, but with an interesting
little catch: The while statement goes at the end, which means the loop
always executes at least one time. The DoWhileLoop example
demonstrates how to use this kind of loop, as shown here:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int i = 15; 

    do 

    { 

        cout << i << endl; 

        i++; 

    } 

    while (i <= 5); 

    cout << "All Finished!" << endl; 

    return 0; 

}

Notice here that the loop starts with the do keyword, and then the
material for the loop follows inside braces, and finally the while



statement appears at the end. The idea is that you’re telling the computer
“Do this while such-and-such is true,” where this is the stuff inside
braces and the such-and-such is the condition inside parentheses.
Because the condition is evaluated at the end, after everything else is
done, the output from this example is a little different from the other
while loop examples:

15 

All Finished!

 If you had used a while loop here, the loop wouldn’t have
executed at all because i is set to 15. However, because this is a do-
while loop, you see the output of 15. Having the loop run at least
once can be a problem sometimes, and if you don’t want that
behavior, consider using a while loop instead of a do-while loop.

Breaking and continuing
Sometimes, you may write an application that includes a loop that does
more than simply add numbers. You may find that you want the loop to
end under a condition that’s separate from the condition in the loop
declaration. Or you may want the loop to suddenly skip out of the
current loop and continue with the next item in the loop when the item
being processed is incorrect in some way. When you stop a loop and
continue with the code after the loop, you use a break statement. When
you quit the current cycle of the loop and continue with the next cycle,
you use a continue statement. The next two sections show you how to
do this.

 Even though the examples in the following sections rely on a
for loop, the break and continue statements also work for while
and do-while loops.



Breaking
Suppose that you are writing an application that reads data over the
Internet, and the loop runs for the amount of data that’s supposed to
come. But midway through the process, you may encounter some data
that has an error in it, and you may want to get out of the for loop
immediately.

C++ includes a handy little statement that can rescue you in such a
situation. The statement is called break. Now, nothing actually breaks,
and it seems a bit frightening to write an application that instructs the
computer to break. But this use of the term break is more like in “break
out of prison” than “break the computer.” But instead of breaking out of
prison, it breaks you out of the loop.

The ForLoop3 example that follows demonstrates this technique. This
sample checks for the special case of i equaling 5. You could
accomplish the same result by changing the end condition of the for
loop, but at least it shows you how the break statement works.

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    for (int i=0; i<10; i++) 

    { 

        cout << i << " "; 

        if (i == 5) 

        { 

            break; 

        } 

        cout << i * 2 << endl; 

    } 

    cout << "All Finished!" << endl; 

    return 0; 

}

In the preceding code, the first line inside the for loop, cout << i << "
";, runs when i is 5. But the final line in the for loop, cout << i * 2



<< endl;, does not run when i is 5 because you tell it to break out of the
loop between the two cout statements.

Also notice that when you break out of the loop, the application does not
quit. It continues with the statements that follow the loop. In this case, it
still prints the message "All Finished!"

 You can leave empty the second portion of the for statement
(the condition) by simply putting a blank between the spaces. Then,
to get out of the loop, you can use a break statement. However,
doing this makes for messy code. You should treat messy code like
you treat a messy house: Although sometimes not everyone minds
it, the truth is that most people don’t care to see a messy house. And
you really don’t want other people to see your messy house — or
your messy code. Yes, as a programmer, being a little self-
conscious is sometimes a good thing.

Continuing
In addition to the times when you may need to break out of a loop for a
special situation, you can also cause the loop to end its current iteration;
but instead of breaking out of it, the loop resumes with the next iteration.

For example, you may be, again, reading data from over the Internet, and
doing this by looping a specified number of times. In the middle of the
loop, you may encounter some bad data. But rather than quit out of the
loop, you may want to simply ignore the current piece of bad data and
then continue reading more data.

To do this trick, you use a C++ statement called continue. The
continue statement says, “End the current iteration, but continue
running the loop with the next iteration.”

The ForLoop4 example that follows shows a slightly modified version of
the previous example, in the “Breaking” section. When the loop gets to
5, it doesn’t execute the second cout line. But rather than break out of



the loop, it continues with 6, and then 7, and so on until the loop finishes
on its own:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    int i; 

    for (i=0; i<10; i++) 

    { 

        cout << i << " "; 

        if (i == 5) 

        { 

            cout << endl; 

            continue; 

        } 

        cout << i * 2 << endl; 

    } 

    cout << "All Finished!" << endl; 

    return 0; 

}

Nesting loops
Many times, you need to work with more than one loop. For example,
you may have several groups of friends, and you want to bilk the
individual friends of each group for all you can get. You may host a
party for the first group of friends and make them each give you as much
money as they have. Then, the next week, you may hold another party
with a different group of friends. You would do this for each group of
friends. You can draw out the logic like this:

For each group of friends, 

    for each person in that group 

        bilk the friend for all he or she is worth

This is a nested loop. But if you do this, don’t be surprised if this is the
last time your friends visit your nest.

A nested loop is simply a loop inside a loop. Suppose that you want to
multiply each of the numbers 1 through 10 by 1 and print the answer for



each multiplication, and then you want to multiply each of the numbers
1 through 10 by 2 and print the answer for each multiplication, and so
on, up to a multiplier of 10. Your C++ code would look like the
ForLoop5 example:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    for (int x = 1; x <= 10; x++) 

    { 

        cout << "Products of " << x <<endl; 

        for (int y = 1; y <= 10; y++) 

        { 

            cout << x * y << endl; 

        } 

        cout << endl; 

    } 

    return 0; 

}

In this example, you have a loop inside a loop. The inner loop can make
use of x from the outer loop. Beyond that, nothing is magical or bizarre
about this code. It’s just a loop inside a loop. And yes, you can have a
loop inside a loop inside a loop inside a loop. You can also place any
loop inside any other loop, like a while loop inside a for loop.

Notice you have a cout call before and after the inner loop. You can do
this; your inner loop need not be the only thing inside the outer loop.



 Although you can certainly have a loop inside a loop inside a
loop inside a loop, the deeper you get, the more potentially
confusing your code can become. It’s like the dozens of big cities in
America that are promising to build an outer loop (a road that
surrounds the outside of the city to help move traffic faster).
Eventually, that outer loop won’t be big enough, so the cities have
to build another and another. That’s kind of a frightening prospect,
so try not to get carried away with nesting.

 If you put a break statement or a continue statement inside a
nested loop, the statement applies to the innermost loop it sits in.
For example, the ForLoop6 example that follows contains three
loops: an outer loop, a middle loop, and an inner loop. The break
statement applies to the middle loop, as shown here:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    for (int x = 1; x <= 3; x++) 

    { 

        for (int y = 1; y < 3; y++) 

        { 

            if (y == 2) 

               break; 

            for (int z = 1; z < 3; z++) 

            { 

                cout << x << " " << y; 

                cout << " " << z << endl; 

            } 

        } 

    } 

    return 0; 

}



You can see that when y is 2, the for loop with the y in it breaks. But the
outer loop continues to run with the next iteration.
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Chapter 6

Dividing Your Work with
Functions

IN THIS CHAPTER
 Working with functions
 Writing your own great functions
 Fun with strings
 Manipulating main()

People generally agree that most projects throughout life are easier when
you divide them into smaller, more manageable tasks. That’s also the
case with computer programming — if you break your code into smaller
pieces, it becomes more manageable.

C++ provides many ways to divide code into smaller portions. One way
is through the use of what are called functions. A function is a set of
lines of code that performs a particular job. In this chapter, you discover
what functions are and how you can use them to make your
programming job easier.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookI\Chapter06
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Dividing Your Work



If you have a big job to do that doesn’t involve a computer, you can
divide your work in many ways. Over the years of studying process
management, people have pretty much narrowed the division of a job to
two ways: using nouns and using verbs.

Yes, that’s right. Back to good old English class, where everyone learned
about nouns and verbs. The idea is this: Suppose that you’re going to go
out back and build a flying saucer. You can approach the designing of
the flying saucer in two ways.

First, you could just draw up a plan of attack, listing all the steps to build
the flying saucer from start to finish. That would, of course, be a lot of
steps. But to simplify it, you could instead list all the major tasks without
getting into the details. It might go something like this:

1. Build the outer shell.
2. Build and attach the engine.

That’s it. Only two steps. But when you hire a couple dozen people to do
the grunt work for you while you focus on your day trading, would that
be enough for them to go on? No, probably not. Instead, you could
divide these two tasks into smaller tasks. For example, Step 2 might look
like this:

2a. Build the antigravity lifter.

2b. Build the thruster.

2c. Connect the lifter to the thruster to form the final engine.

2d. Attach the engine to the outer shell.

That’s a little better; it has more detail. But it still needs more. How do
you do the “Build the antigravity lifter” part? That’s easy, but it requires
more detail, as in the following steps:

2aa. Unearth the antigravity particles from the ground.

2ab. Compress them tightly into a superatomizing conductor.

2ac. Surround with coils.



2ad. Connect a 9-volt battery clip to the coils.

And, of course, each of these instructions requires even more detail.
Eventually, after you have planned the whole thing, you will have many,
many steps, but they will be organized into a hierarchy of sorts, as
shown in Figure 6-1. In this drawing, the three dots represent places
where other steps go — they were left off so that the diagram could fit
on the page.

This type of design is a top-down design. The idea is that you start at the
uppermost step of your design (in this case, “Build flying saucer”) and
continue to break the steps into more and more detailed steps until you
have something manageable. For many years, this was how computer
programming was taught.

FIGURE 6-1: Dividing a process into a hierarchy.

Although this process works, people have found a slightly better way.
First, before breaking the steps (which are the verbs), you divide the
thing you’re building into parts (the nouns). In this case, you kind of do
that already, in the first two steps. But instead of calling them steps, you
can call them objects. One object is the outer shell, and one object is the



engine. This way, two different factories can work on these in sort of a
division of labor. Of course, the factories would have to coordinate their
activities; otherwise, the two parts may not fit together when they’re
ready to go. And before you figure out exactly how to build each of
these objects, it would be a good idea to describe each object: what it
does, its features, its dimensions, and so on. Then, when you finally have
all that done, you can list the exact features and their details. And finally,
you can divide the work with each person designing or building a
different part.

As you can see, this second approach makes more sense. And that’s the
way programmers divide their computer applications. But at the bottom
of each method is something in common: The methods are made of
several little processes. These processes are called functions. When you
write a computer application, after you divide your job into smaller
pieces called objects, you eventually start giving these objects behaviors.
And to code these behaviors, you do just as you did in the first approach:
You break them into manageable parts, again, called functions. In
computer programming terms, a function is simply a small set of code
that performs a specific task. But it’s more than that: Think of a function
as a machine. You can put one or more things into the machine; it
processes them, and then it spits out a single answer, if anything at all.
One of the most valuable diagrams you can have draws a function in this
manner, like a machine, as shown in Figure 6-2.



FIGURE 6-2: You can think of a function as a machine.

This machine (or function) has three main parts:

Inputs: The function can receive data through its inputs. These data
elements can be numbers, strings, or any other type. When you
create such a machine, you can have as many inputs as you want (or
even zero, if necessary).
Processor: The processor is the function itself. In terms of C++, this
is actually a set of code lines.
Output: A function can return something when it has finished doing
its thing. In C++, this output is in the form of numbers, strings, or
any other type.

To make all this clear, try out the FirstFunction code in Listing 6-1.
(Don’t forget the second line, #include<math.h>, which gives you some
math capabilities.)

LISTING 6-1: Seeing a Function in Action
#include <iostream> 

#include <math.h> 

  

using namespace std; 

  

int main() 

{ 

  cout << fabs(-10.5) << endl; 

  cout << fabs(10.5) << endl; 

  return 0; 

}

When you run this application, you see the following output:
10.5 

10.5

In this code, you use a function or machine called fabs() (usually
pronounced “ef-abs,” for floating-point absolute). This function takes a
number as input and returns as output the absolute value of the number.



 The absolute value of a number is simply the positive version of
the number. The absolute value, for example, of –5 is simply 5. The
absolute value of 12 is still 12. An absolute value is almost always
positive because the absolute value of 0 is 0, but 0 is the origin,
which is neither positive nor negative (see
http://www.math.com/school/subject1/lessons/S1U1L10DP.ht

ml for details). The reason for the f before the name abs is that it
uses floating-point numbers, which are simply numbers with
decimal points.

So the first line inside main() calls fabs() for the value –10.5. The
cout then takes the output of this function (that is, the result) and prints
it to the console.

Then the second line does the same thing again, except that it takes the
absolute value of the number 10.5.

And where is the processor for this function? It’s not in your code; it’s in
another file, and the following line ensures that your application can use
this function:

#include <math.h>

You have seen functions in many places. If you use a calculator and
enter a number and press the square root button, the calculator runs a
function that calculates the square root.

But functions can be more sophisticated than just working with numbers.
Consider this statement carefully: When you are using a word processor
and you highlight a word and check the spelling of the word, the
application calls a function that handles the spelling check. This function
does something like the following:

This is a function to check the spelling of a single word. 

Inputs: A single word. 

Look up the word 

If the word is not found 

    Find some suggestions. 

http://www.math.com/school/subject1/lessons/S1U1L10DP.html


    Open a dialog box through which you (the user) 

        can change the word by either typing a new word 

        or picking one of the selections, or just leaving 

        it the same. 

    If you made a change, 

        Return the new spelling. 

    Otherwise 

        Return nothing. 

Otherwise 

    Return nothing

Notice how the if statements are grouped with indentations. The final
otherwise goes with the first if statement because its indentation
matches that of the if statement.

So that’s a function that performs a spelling check. But consider this:
When you do not highlight a word but run the spelling checker, the
spelling checker runs for the whole document. That’s another function.
Here it is.

This function checks the spelling of the entire document 

For each word in the document 

    Check the spelling of the single word

How does the computer do the step inside the for loop, “Check the
spelling of the single word?” It calls the function described earlier. This
process is called code reuse. You have no reason to rewrite the entire
function again if you already have it somewhere else. And that’s the
beauty of functions.

Calling a Function
When you run the code in a function, computer people say that you are
calling the function. And just like every good person, a good function
has a name. When you call a function, you do so by name.

 Often, when writing an application and developing code to call a
function, developers say that they are calling a function. This is



partly computerspeak and partly a strange disorder in which
developers start to relate just a little too much to the computer.

To call a function, you type its name and then a set of parentheses. Inside
the parentheses, you list the items you want to send to the inputs of the
function. The term used here is pass, as in “You pass the values to the
function.”

For example, if you want to call the fabs() function, you type the name,
fabs, an open parenthesis, the number you want to pass to it, and then a
closed parenthesis, as in the following example:

fabs(-10.5)

But by itself, this line does not do anything with regard to the application
as a whole. The fabs() function returns a value — the absolute value of
–10.5, which comes out to be 10.5 — and you probably want to do
something with that value. You could, for example, print it to the
console:

cout << fabs(-10.5) << endl;

Or you could store it away in another variable. But there’s a catch.
Before you can do that, you need to know the type that the function
returns. Just as with a variable, a function return value has a type. In this
case, the type is a special type called double (which stands for double
precision floating point). The double type is a floating-point type that
can hold many digits in a single number. To save the result of fabs(),
you need to have a variable of type double. The Fabs2 example, shown
in Listing 6-2, does this.

LISTING 6-2: Seeing Another Way to Use fabs()
#include <iostream> 

#include <math.h> 

  

using namespace std; 

  

int main() 

{ 

  double mynumber = fabs(-23.87); 



  cout << mynumber << endl; 

  return 0; 

}

This code declares a double variable called mynumber. Then it calls
fabs(), passing it –23.87 and returning the value into mynumber. Next, it
prints the value in mynumber to the console.

When you run this application, you see the following, which is the
absolute value of –23.87:

23.87

USING AUTO FOR FUNCTIONS
In general, specifically defining the type of the variable you use to receive output from a
function makes your code more readable. However, there are situations for which you
may not know the precise output type or different versions of the function output
different types (which is very confusing). In this case, you begin by setting GCC to use
C++ 17, as described in the “Working with ranges” section of Book 1, Chapter 5. Then,
you can write the Fabs2 example shown in Listing 6-2, as shown in the following
UsingAuto example:

#include <iostream> 

#include <math.h> 

  

using namespace std; 

  

int main() 

{ 

  auto mynumber = fabs(-23.87); 

  cout << mynumber << endl; 

  return 0; 

}

The result is the same as the Fabs2 example. The difference is that mynumber is now of
type auto, where C++ automatically detects the data type for you, instead of double,
where you explicitly define the data type.

Passing a variable
You can also pass the value of a variable into a function. The Fabs3
example in Listing 6-3 creates two variables: One is passed into the
function, and the other receives the result of the function.



LISTING 6-3: Seeing Yet Another Way to Use fabs()
#include <iostream> 

#include <math.h> 

  

using namespace std; 

  

int main() 

{ 

  double start = -253.895; 

  double finish = fabs(start); 

  cout << finish << endl; 

  return 0; 

}

This code creates two variables; the first is called start, and the second
is called finish. It initializes start with a value of -253.895. Next, it
calls fabs(), passing it the value of start. It saves the return value in
finish, and prints the value in finish. When Fabs3 runs, you see the
following appear on the console:

253.895

 Saving a function result to a variable is useful if you need to use
the result several times over. For example, if you need the absolute
value of –253.895 for whatever reason and then a few lines later
you need it again, you have a choice: You can either call
fabs(-253.895) each time or call it once, save the result in a
variable, and then use the variable each time you need it. The
advantage to saving it in a variable is that you might later say, for
example, “Oh, wait! I didn’t just want the absolute value! I wanted
the negative of the absolute value!” Then you only have to change
one line of code — the line where it calls fabs(). If, instead, you
had called fabs() several times, you would have had to change it
every time you called it. And by the way, in case you’re curious
about how to take the negative of the absolute value and store it in a
variable, you just throw a minus sign in front of it, like so:



finish = -fabs(start);

Passing multiple variables
Some functions like to have all sorts of goodies thrown their way, such
as multiple parameters. As with functions that take a single value, you
put the values inside a single set of parentheses. Because you have
multiple values, you separate them with commas. The Pow1 example,
shown in Listing 6-4, uses a function called pow() to calculate the third
power of 10. (That is, it calculates 10 times 10 times 10. Yes, POW!).
Make sure that you include the math.h line in the include section so
that you can use the pow() function.

LISTING 6-4: Seeing Yet One More Function in
Action
#include <iostream> 

#include <math.h> 

  

using namespace std; 

  

int main() 

{ 

  double number = 10.0; 

  double exponent = 3.0; 

  cout << pow(number, exponent) << endl; 

  return 0; 

}

When you run the application, you see 10 to the third power, which is
1,000:

1000

You can also pass a mixture of variables and numbers, or just numbers.
The following code snippet also calculates the third power of 10 but
passes an actual number, 3.0, for the power:

double number = 10.0; 

cout << pow(number, 3.0) << endl;

Or you can pass only numbers:
cout << pow(10.0, 3.0) << endl;



Writing Your Own Functions
And now the fun begins! Calling functions is great, but you get real
power (ooh!) when you write your own, specialized functions. Before
writing a function, remember the parts: the inputs, the main code or
processor, and the single output (or no output). The inputs, however, are
called parameters, and the output is called a return value. The following
sections fill you in on the details.

Defining the AddOne() function
The AddOne example, shown in Listing 6-5, provides both a custom
function and code in main() that calls the custom function. (The
function is placed outside main() — before it, in fact.)

LISTING 6-5: Writing Your Very Own Function
#include <iostream> 

  

using namespace std; 

  

int AddOne(int start) 

{ 

  int newnumber = start + 1; 

  return newnumber; 

} 

  

int main() 

{ 

  int testnumber = 20; 

  int result = AddOne(testnumber); 

  cout << result << endl; 

  return 0; 

}

 Notice that this example lacks the #include <math.h> entry
found in earlier examples. You need to add an entry to the include
section of your code only when you use a feature of that include
file. In this case, the example relies on standard math features that



are part of the basic C++ language, so you don’t need any
additional code.

Using the downloadable source will save you time and ensure that the
example runs the first time you try it. However, you might choose to
type it manually. Because there’s a good bit of code, you may get some
compiler errors at first; look carefully at the lines with the errors and
find the difference between your code and what’s here in the book. After
you run the example, you see:

21

Seeing how AddOne() is called
You can start reviewing this code by seeing how to call AddOne(). Look
at these lines of main():

int testnumber = 20; 

int result = AddOne(testnumber); 

cout << result << endl;

You can probably put together some facts and determine what the
function does. First, the example is called AddOne(), which is a good
indication in itself. Second, when you run the application, the number 21
appears on the console, which is one more than the value in testnumber;
it adds one. And that, in fact, is what the function does. It’s amazing
what computers can do these days.

 When you write your own functions, try to choose a name that
makes sense and describes what the function does. Writing a
function and calling it something like process() or TheFunction()
is easy, but those names don’t accurately describe the function.

Taking the AddOne() Function apart
Now, look at the AddOne function. Here are a few high-level observations
about it:



Position: The function appears before main(). Because of the way
the compiler works, it must know about a function before you call it.
And thus, you put it before main(). (You can do this in another way
that is discussed in the “Forward references and function prototypes”
section, later in this chapter.)
Format: The function starts with a line that seems to describe the
function (explained later in this section), and then it has an open
brace and, later, a closing brace.
Code: The function has code in it that is just like the type of code
you could put inside a main(). The code consists of these elements:

Performing a task: The code begins by performing a task,
like this:

int newnumber = start + 1;

The code declares an integer variable called newnumber. Then
it initializes it to start plus 1. But what is start? That’s one
of the inputs.
Returning a result: This line appears at the end of the
function:

return newnumber;

This is the output of the function, or the return value. When
you want to return something from a function, you just type
the word return and then indicate what you want to return.
From the first line in the AddOne() function, you can see that
newnumber is one more than the number passed into the
function. So this line returns the newnumber.

Considering the AddOne() parameter
AddOne() takes just one parameter called start, which comes from the
first line of the function:

int AddOne(int start)



The entry in parentheses is the parameter. Notice it looks like a variable
declaration; it’s the word int (the type, or integer) followed by a
variable name, start. That’s the parameter — the input — to the
function, and you can access this parameter throughout the function
using a variable called start. You can use the input to the function as a
variable.

If you had written result = AddOne(25); in main(), then, throughout
the function, the value of start would be 25. Likewise, if you had
written

result = AddOne(152);

then, throughout the function, the value of start would be 152.

But here’s the outstanding thing about functions (or, at least, one of the
loads of outstanding things about functions): You can call the function
several times over. In the same main(), you can have the following lines

cout << AddOne(100) << endl; 

cout << AddOne(200) << endl; 

cout << AddOne(300) << endl;

which would result in this output:
101 

201 

301

In the first call to AddOne, the value of start would be 100. During the
second call, the value would be 200, and during the third call, it would
be 300.

ARGUING OVER PARAMETERS
Technically, the term parameter refers strictly to the inputs to the function, from the
function’s perspective. When you call the function, the things you place in parentheses
in the call line are not parameters; rather, they are described as arguments. Thus, in the
following function header:

string ConnectNames(string first, string last)



the variables first and last are parameters. But in the following call to a function
(found in Listing 6-7)

ConnectNames("Bill", "Murray")

the strings "Bill" and "Murray" are arguments of the call.

Understanding the AddOne() name and type
Look at the AddOne() header again:

int AddOne(int start)

The word AddOne is the name of the function, as you’ve probably figured
out already. And that leaves the thing at the beginning — the int. That’s
the type of the return value. The final line in the function before the
closing brace is

return newnumber;

The variable newnumber inside the function is an integer. And the return
type is int. That’s no accident: As programmers have all heard before,
friends don’t let friends return something other than the type specified in
the function header. The two must match in type. And further, examine
this line from inside main():

int result = AddOne(testnumber);

The type of result is also an integer. All three match. Again, no
accident. You can copy one thing to another (in this case, the function’s
return value to the variable called result) only if they match in type.
And here, they do — they’re both integers.

Notice one more thing about the function header: It has no semicolon
after it. This is one of the places you do not put a semicolon. If you do,
the compiler gets horribly confused. The Code::Blocks compiler shows
an error that says, "error: expected unqualified-id before ’{’
token."

Finally, ponder this line of code for a moment:
testnumber = AddOne(testnumber);



This line takes the value stored inside testnumber, passes it into
AddOne(), and gets back a new number. It then takes that new number
and stores it back into testnumber. Thus, testnumber’s value changes
based on the results of the function AddOne().

Improving On the Basic Function
Not all functions work precisely the same way. You can create functions
that have multiple parameters or no parameters. There is no law that says
that a function must absolutely provide a return value. The following
sections discuss variations on the basic function theme discussed in the
previous section.

Using multiple parameters or no parameters
You don’t need to write your functions with only one parameter each.
You can have several parameters, or you can have none. It may seem a
little strange that you would want a function — a machine — that
accepts no inputs. But you may run into lots of cases where this may be
a good idea. Here are some ideas for functions:

Day: Determines the day and returns it as a string, as in "Monday" or
"Tuesday"

Number-of-users: Figures out the current number of users logged in
to a web-server computer
Current font: In a text editor application (such as Notepad), returns
a string containing the current font name, such as "Arial"

Editing time: Returns the amount of time you have been using the
word processor application
Username: If you are logged on to a computer, gives back your
username as a string, such as "Elisha"

All functions in this list have something in common: They look up
information. Because no parameters are in the code, for the functions to
process some information, they have to go out and get it themselves. It’s



like sending people out into the woods to find food but not giving them
any tools: It’s totally up to them to perform the required tasks, and all
you can do is sit back and watch and wait for your yummy surprise.

If a function takes no parameters, you write the function header as you
would for one that takes parameters, and you include the parentheses;
you just don’t put anything in the parentheses, as the UserName example
in Listing 6-6 shows. So if nothing good is going in, there really can be
something good coming back out, at least in the case of a function with
no parameters.

LISTING 6-6: Taking No Parameters
#include <iostream> 

  

using namespace std; 

  

string Username() 

{ 

  return "Elisha"; 

} 

  

int main() 

{ 

  cout << Username() << endl; 

  return 0; 

}

When you run Listing 6-6, you see the following output:
Elisha

Your function can also take multiple parameters. The ConnectNames
example, shown in Listing 6-7, demonstrates the use of multiple
parameters. Notice that the function, ConnectNames(), takes the two
strings as parameters and combines them, along with a space in the
middle. Notice also that the function uses the two strings as variables.

LISTING 6-7: Taking Multiple Parameters
#include <iostream> 

  

using namespace std; 



  

string ConnectNames(string first, string last) 

{ 

  return first + " " + last; 

} 

  

int main() 

{ 

  cout << ConnectNames("Richard", "Nixon") << endl; 

  return 0; 

}

In the function header in Listing 6-7, you see the type name string for
each parameter. Each parameter requires its own type entry or the
compiler displays an error. Here are some points about this code:

You didn’t create variables for the two names in main(). Instead,
you just typed them as string constants (that is, as actual strings
surrounded by quotes).
You can do calculations and figuring right inside the return
statement. That saves the extra work of creating a variable. In the
function, you could create a return variable of type string, set it to
first + " " + last, and then return that variable, as in the
following code:

string result = first + " " + last; 

return result;

But instead, the example shows how to do it all on one line, as in this
line:

return first + " " + last;

Although you can save yourself the work of creating an extra variable
and just put the whole expression in the return statement, sometimes
that’s a bad thing. If the expression is really long, like the following:

return (mynumber * 100 + somethingelse / 200) * 

  (yetanother + 400 / mynumber) / (mynumber + evenmore);

it can get just a tad complicated. Breaking it into variables, such as in
this example, is best:



double a = mynumber * 100 + somethingelse / 200; 

double b = yetanother + 400 / mynumber; 

double c = mynumber + evenmore; 

return a * b / c;

Returning nothing
In the earlier section “Using multiple parameters or no parameters,” you
see a list of functions that take no parameters; these functions go and
bring back something, whether it’s a number, a string, or some other type
of food.

One such example gets the username of the computer you’re logged in
to. But what if you are the great computer guru, and you are writing the
application that actually logs somebody in? In that case, your application
doesn’t ask the computer what the username is — your application tells
the computer what the username is, by golly!

In that case, your application would call a function, like SetUsername(),
and pass the new username. The resulting function could do any of the
following for a return value:

It could return the name
It could return a message saying that the username is not valid or
something like that
It may not return anything at all

Look at the case in which a function doesn’t return anything. In C++, the
way you state that the function doesn’t return anything is by using the
keyword void as the return type in the function header. The
SetUserName example, shown in Listing 6-8, demonstrates this
approach.

LISTING 6-8: Returning Nothing at All
#include <iostream> 

  

using namespace std; 

  



void SetUsername(string newname) 

{ 

  cout << "New user is " << newname << endl; 

} 

  

int main() 

{ 

  SetUsername("Harold"); 

  return 0; 

}

When you run the application, you see
New user is Harold

Notice the SetUsername() function header: It starts with the word void,
which means that it returns nothing at all. It’s like outer space: There’s
just a big void with nothing there, and nothing is returned, except for
static from the alien airwaves, but we won’t go there. Also notice that,
because this function does not return anything, there is no return
statement.

Now, of course, this function really doesn’t do a whole lot other than
print the new username to the console, but that’s okay; it shows you how
you can write a function that does not return anything.

 A function of return type void returns nothing at all.

Do not try to return something in a function that has a return type of
void. Void means that the function returns nothing at all. If you try to put
a return statement in your function, you get a compile error.

Keeping your variables local
Everybody likes to have their own stuff, and functions are no exception.
When you create a variable inside the code for a function, that variable
will be known only to that particular function. When you create such
variables, they are called local variables, and people say that they are
local to that particular function. (Well, computer people say that,
anyway.)



To see a local variable at work, consider the code in the PrintName
example:

#include <iostream> 

  

using namespace std; 

  

void PrintName(string first, string last) 

{ 

  string fullname = first + " " + last; 

  cout << fullname << endl; 

} 

  

int main() 

{ 

  PrintName("Thomas", "Jefferson"); 

  return 0; 

}

Notice in the PrintName() function that you declare a variable called
fullname. You then use that variable in the second line in that function,
the one starting with cout. But you cannot use the variable inside
main(). If you try to, as in the following code, you get a compile error:

int main() 

{ 

  PrintName("Thomas", "Jefferson"); 

  cout << fullname << endl; 

  return 0; 

}

However, you can declare a variable called fullname inside main(), as
in the PrintName2 example. But, if you do that, this fullname is local
only to main(), whereas the other variable, also called fullname, is local
only to the PrintName() function. In other words, each function has its
own variable; they just happen to share the same name. But they are two
separate variables:

#include <iostream> 

  

using namespace std; 

  

void PrintName(string first, string last) 

{ 



  string fullname = first + " " + last; 

  cout << fullname << endl; 

} 

  

int main() 

{ 

  string fullname = "Abraham Lincoln"; 

  PrintName("Thomas", "Jefferson"); 

  cout << fullname << endl; 

  return 0; 

}

 When two functions declare variables by the same name, they
are two separate variables. If you store a value inside one of them,
the other function does not know about it. The other function only
knows about its own variable by that name. Think of it this way:
Two people could each have a storage bin labeled Tools in their
closet. If Sally puts a hammer in her bin labeled Tools at her house
and Hal opens another bin also labeled Tools at his house, he won’t
see Sally’s hammer. As a result, the output from this example is:

Thomas Jefferson 

Abraham Lincoln

 If you use the same variable name in two different functions,
forgetting that you are working with two different variables is very
easy. Do this only if you are sure that no confusion can occur.

 If you use the same variable name in two different functions
(such as a counter variable called index, which you use in a for
loop), matching the case is usually a good idea. Don’t use count in
one function and use Count in another. Although you can certainly
do that, you may find yourself typing the name wrong when you



need it. But that won’t cause you to access the other one. (You
can’t, because it is in a different function.) Instead, you get a
compile error, and you have to go back and fix it. Being consistent
is a time-saver.

Forward references and function prototypes
All examples in this chapter place the function code above the code for
main(). The reason is that the compiler scans the code from start to
finish. If it has not yet encountered a function but sees a call to it, it
doesn’t know what it’s seeing, and it issues a good old compile error.

Such an error can be especially frustrating and can cause you to spend
hours yelling at your computer. Nothing is more frustrating than looking
at your application and being told by the compiler that it’s wrong, yet
knowing that it’s correct because you know that you wrote the function.

You can, however, place your functions after main(); or you can even
use function prototypes to put your functions in other source code files
(a topic you find in Book 1, Chapter 7).

What you can do is include a function prototype. A function prototype is
nothing more than a copy of the function header. But rather than follow
it with an open brace and then the code for the function, you follow the
function header with a semicolon and you are finished. A function
prototype, for example, looks like this:

void PrintName(string first, string last);

Then you actually write the full function (header, code, and all) later.
The full function can even be later than main() or later than any place
that makes calls to it.

Notice that this example looks just like the first line of a function. In
fact, it’s possible to cheat! To write it, you simply copy the first line of
the original function you write and add a semicolon. The PrintName3
example, shown in Listing 6-9, shows how to use this technique.

LISTING 6-9: Using a Function Prototype



#include <iostream> 

  

using namespace std; 

  

void PrintName(string first, string last); 

  

int main() 

{ 

  PrintName("Thomas", "Jefferson"); 

  return 0; 

} 

  

void PrintName(string first, string last) 

{ 

  string fullname = first + " " + last; 

  cout << fullname << endl; 

}

Notice that the function header appears above main() and ends with a
semicolon. Next comes main(). Finally, you see the PrintName()
function itself (again, with the header but no semicolon this time). Thus,
the function comes after main().

“Whoop-de-do,” you say. “The function comes after.” But why bother
when now you have to type the function header twice?

This step truly is useful. If you have a source code file with, say, 20
functions, and these functions all make various calls to each other, it
could be difficult to carefully order them so that each function calls only
functions that are above it in the source code file. Instead, most
programmers put the functions in some logical order (or maybe not), and
they don’t worry much about the calling order. Then they have all the
function prototypes toward the top of the source code file, as shown
previously in Listing 6-9.

 When you type a function prototype, many people say that you
are specifying a forward reference. This phrase simply means that
you are providing a reference to something that happens later. It’s



not a big deal, and it mainly comes from some of the older
programming languages.

Writing two versions of the same function
Sometimes you may want to write two versions of the same function,
with the only difference being that they take different parameter types.
For example, you may want a function called Combine(). One version
takes two strings and puts the two strings together, but with a space in
the middle. It then prints the resulting string to the console. Another
version adds two numbers and writes all three numbers — the first two
and the sum — to the console. The first version would look like this:

void Combine(string first, string second) 

{ 

  cout << first << " " << second << endl; 

}

There’s nothing magical or particularly special about this function. It’s
called Combine(); it takes two strings as parameters; it doesn’t return
anything. The code for the function prints the two strings with a space
between them. Now the second version looks like this:

void Combine(int first, int second) 

{ 

  int sum = first + second; 

  cout << first << " " << second << " " << sum << endl; 

}

Again, nothing spectacular here. The function name is Combine(), and it
doesn’t return anything. But this version takes two integers, not two
strings, as parameters. The code is also different from the previous code
in that it first computes the sum of the inputs and then prints the different
numbers.

 Overloading, or using one name for multiple functions, is
somewhat common in C++. The Combine example, shown in
Listing 6-10, contains the entire code. Both functions are present in
the listing.



LISTING 6-10: Writing Two Versions of a Function
#include <iostream> 

  

using namespace std; 

  

void Combine(string first, string second) 

{ 

  cout << first << " " << second << endl; 

} 

  

void Combine(int first, int second) 

{ 

  int sum = first + second; 

  cout << first << " " << second << " " << sum << endl; 

} 

  

int main() 

{ 

  Combine("David","Letterman"); 

  Combine(15,20); 

  return 0; 

}

You see each function called in main(). The compiler chooses which
function to call based on the arguments you provide. For example, when
viewing this call:

Combine("David","Letterman");

you see two strings. So, the compiler knows to use the first version,
which takes two strings. Now look at the second function call:

Combine(15,20);

This call takes two integers, so the compiler knows to use the second
version of the function.

 When you overload a function, the parameters must differ (or
must appear in a different order). For example, the functions can
take the same type of information but use a different number of
parameters. Of course, the previous example shows that the



parameters can also vary by type. You can also have different return
types, though they must differ by more than just the return type, and
varying the parameter names doesn’t count. The compiler will see
Combine(string A, string B) and Combine(string First,
string Second) as the same function.

Calling All String Functions
To get the most out of strings, you need to make use of some special
functions that cater to the strings. However, using these functions is a
little different from the other functions used so far in this chapter. Rather
than just call the function, you first type the variable name that holds the
string, and then a period (or dot), and then the function name along with
any arguments.

 The reason you code string functions differently is because
you’re making use of some object-oriented programming features.
Book 2, Chapter 1 describes in detail how these types of functions
(called methods) work. The following sections describe some
common functions and tell you how to use them.

Inserting a string into a string
One function that you can use is insert(). You can use this function if
you want to insert more characters into another string. For example, if
you have the string "Something interesting and bizarre" and you
insert the string "seriously " (with a space at the end) into the middle
of it starting at index 10, you get the string "Something seriously
interesting and bizarre".

 When you work with strings, the first character is the 0th index,
and the second character is the 1st index, and so on. The following



lines of code perform an insert by using the insert() function at
index 10, even though you perform the insertion at letter 11:

string words = "Something interesting and bizarre"; 

words.insert(10, "seriously ");

The first of these lines simply creates a string called words and stuffs it
full with the phrase "Something interesting and bizarre". The
second line does the insert. Notice the strange way of calling the
function: You first specify the variable name, words, and then a dot, and
then the function name, insert. Next, you follow it with the parameters
in parentheses, as usual. For this function, the first parameter is the index
where you want to insert the string. The second parameter is the actual
string you are going to insert. After these two lines run, the string
variable called words contains the string "Something seriously
interesting and bizarre".

Removing parts of a string
You can also erase parts of a string by using a similar function called
erase(). The following line of code erases 16 characters from the words
string starting at index 19:

words.erase(19,16);

Consequently, if the variable called words contains the string
"Something seriously interesting and bizarre", after this line
runs, it will contain "Something seriously bizarre".

Replacing parts of a string
Another useful function is replace(). This function replaces a certain
part of the string with another string. To use replace, you specify where
in the string you want to start the replacement and how many characters
you want to replace. Then you specify the string with which you want to
replace the old, worn-out parts.

For example, if your string is "Something seriously bizarre" and you
want to replace the word "thing" with the string "body", you tell



replace() to start at index 4 and replace 5 characters with the word
"body". To do this, you enter:

words.replace(4, 5, "body");

 Notice that the number of characters you replace does not have
to be the same as the length of the new string. If the string starts out
with "Something seriously bizarre", after this replace() call
the string contains "Somebody seriously bizarre".

Using the string functions together
The OperatingOnStrings example, shown in Listing 6-11, demonstrates
all these functions working together.

LISTING 6-11: Operating on Strings
#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

  string words = "Something interesting and bizarre"; 

  cout << words << endl; 

  words.insert(10, "seriously "); 

  cout << words << endl; 

  words.erase(19,16); 

  cout << words << endl; 

  words.replace(4, 5, "body"); 

  cout << words << endl; 

  return 0; 

}

When you run this application, you see the following output:
Something interesting and bizarre 

Something seriously interesting and bizarre 

Something seriously bizarre 

Somebody seriously bizarre



The first line is the original string. The second line is the result of the
insert() function. The third line is the result of the erase() function.
And the final line is the result of the replace() function.

Understanding main()
All applications so far in this chapter have had a main(), which is a
function. Notice its header, which is followed by code inside braces:

int main()

You can see that this is definitely a function header: It starts out with a
return type and then the function name, main(). This is just one form of
the main() function — the form that Code::Blocks uses by default.
However, you may decide that you want to give users the ability to
provide input when they type the name of your application at the
console. In this case, you use this alternative form of the main() function
that includes two parameters:

int main(int argc, char *argv[])

WHO, WHAT, WHERE, AND WHY RETURN?
The main() function header starts with the type int. This means that the function main()
returns something to the caller. The result of main() is sometimes used by the computer
to return error messages if the application, for some reason, didn’t work or didn’t do
what it was supposed to do. But here’s the inside scoop: Outputting a return value
doesn’t work in the graphical environment that most people use.

For Windows computers, the return value isn’t normally used when you run the
application outside Code::Blocks. The return type is specifically designed to work with
batch files (files with a BAT extension that originally appeared as part of DOS, or Disk
Operating System). You also see them used in scripts and as part of PowerShell.
Consequently, unless you plan to work with command line utilities (and many people
still do), just return 0. (The other time you want to return a non-zero value is when
working in Code::Blocks. A non-zero return value appears highlighted in red in the Build
Log, alerting you to the error condition.)

Some Unix and Linux systems also use the return value of main() for the same reason
that Windows does — to indicate success or failure and to provide an error code when
there is a failure. These computers may run hundreds of command-line applications. If



one of these applications returns something other than 0, another application detects
the error and notifies somebody.

Notice that the second form of main() has two parameters:

int argc: Tells you how many arguments appear on the command
line.
char *argv[]: Provides a list of the command-line arguments in an
array.

A command-line argument is something you type in the Windows
Command Prompt or at the Linux Terminal window after the name of
the application (the command you want to execute). When you run an
application, especially from the command prompt, you type the name of
the application and press Enter. But before pressing Enter, you can
follow the application name with other words that are generally
separated by spaces.

Many of the commands you use in Terminal window and the Command
Prompt have an application name and then various arguments. The
command usually tells you about these arguments when you enter a
special argument such as /? or --h. An argument preceded by a slash (/)
or two dashes (--) is a switch because it affects how the command works.
Figure 6-3 shows an example of the dir (directory) command using the
/? switch to tell you about the other arguments (including other
switches) available with dir.



FIGURE 6-3: Command-line apps often have switches and arguments.

To make these switches and their associated arguments work, the main()
function must process the input. You determine how many command-
line arguments the user supplied using argc, and then access them using
argv. Book 2, Chapter 2 deals with the topic arrays. An array is a
sequence of variables stored under one name. The argv variable is one
such animal. To access the individual variables stored under the single
umbrella known as argv, you do something like this:

cout << argv[0] << endl;

In this example, you use brackets as you did when accessing the
individual characters in a string. When working with the /? switch, you
see /? as the output. You can access the command-line parameters using
a for loop. The CommandLineParameters example, shown in Listing 6-
12, demonstrates this technique.

LISTING 6-12 Accessing the Command-Line
Parameters
#include <iostream> 

#include <stdlib.h> 

  

using namespace std; 

  



int main(int argc, char *argv[]) 

{ 

  for (int index=1; index < argc; index++) 

  { 

    cout << argv[index] << endl; 

  } 

  

  return 0; 

}

SETTING THE COMMAND-LINE
PARAMETERS IN CODE::BLOCKS

If you attempt to run the example in Code::Blocks by choosing Build ⇒ Run with the
default settings, the example doesn’t output anything. To add command-line arguments,
choose Project ⇒ Set Program’s Arguments. You see the Select Target dialog box,
where you can type the command-line arguments in the Program Arguments field. Type
Hello World I Love You! in this field, one argument to a line, as shown in the figure,
and click OK. You’re ready to run the example, which outputs:

Hello 

World 

I 

Love 

You!



 Notice that the for loop begins at index = 1 rather than index
= 0. The first item in the argv list is always the execution path and
the name of the application. This information can come in handy at
times, but normally you want the remaining arguments to change
the way your application works.
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Chapter 7

Splitting Up Source Code Files
IN THIS CHAPTER

 Creating multiple source code files
 Creating header files
 Sharing variables among source files
 Making use of the mysterious header wrappers

Just as you can divide your work into functions, so you can divide your
work into multiple source code files. The main reason to do so is to help
keep your project manageable. Also, with multiple source code files, you
can have several people working on a single project, each working on a
different source code file at the same time.

The key to multiple source files is knowing where to break the source
code into pieces. As with anything else, if you break the source code in
the wrong place, it will, well, break.

In this chapter, you discover how to divide your source code into
multiple files (and in all the right places). The examples use
Code::Blocks, but most modern IDEs work in about the same manner.
You create multiple files and import them into a project (a description of
what you want to do), which then manages the files for you and ensures
that the right files are compiled at the right time.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookI\Chapter07



folder of the downloadable source. See the Introduction for details
on how to find these source files.

Creating Multiple Source Files
In the sections that follow, you see how to create multiple source code
files using one of two techniques: You can rely on the IDE to perform all
the required setups for you, or you can manually add the file and
perform the required setups by editing a build file.

When you create a second source code file, this code becomes part of
your project. And when you compile, the compiler compiles all the
source code files in your project, assuming that you have changed them
since the last time you compiled. You can put your functions in separate
source code files, and they can call each other. In this way, they all work
together in the single application. The section “Sharing with Header
Files,” later in this chapter shows how you can have a function call
another function in a different source file.

 You can’t break up a single function and put it into two source
files. The compiler requires that your functions stay in one piece in
a single source file.

Adding a new source code file
If you’re using Code::Blocks, cutting your application into multiple
source code files is as easy as cutting a cake. The AddFiles example
assumes that you have started with an existing project using the process
found in Book 1, Chapter 2. The following steps show how to add
another file to this existing project.

1. Choose File ⇒ New ⇒ File.
You see the New from Template dialog box, shown in Figure 7-1.
Notice that you can choose from a header, a source code, or an
empty file (among other non-C++ possibilities). Normally, you



choose either the C/C++ Header or C/C++ Source option. The Empty
File option is for non-source files, such as a text file used as a
ReadMe.

2. Highlight the template you want to use and click Go.
You see a wizard associated with the particular file you’ve chosen.
The example uses a new C++ Header File named my_stuff.h.

3. Click Next to get past the initial Welcome page.
If you chose the Empty File template, skip to Step 7. When using the
C/C++ Header or C/C++ Source templates, you see a language
selection page.

FIGURE 7-1: The New from Template dialog box lets you select a new file type.

4. Highlight the language you want to use — either C or C++ —
and click Next.
The wizard asks what you want to call the file, where you want to
store it, and which builds should use the file, as shown in Figure 7-2.



(More on these choices in Steps 5–8.)

FIGURE 7-2: Provide the file information required by the wizard.

5. Type a path and filename for the file in the Filename with Full
Path field.
You must provide the full path, even if you want the file in the
current folder. Click the ellipsis to display the Select Filename dialog
box, where you can choose the location of the file. The default path
shown in the Select Filename dialog box is the current folder.

6. (Optional) Provide a header guard word when creating a header
file.
You don’t need to worry about how to use headers now, but you use
them to perform tasks such as making declarations like #include
statements. Adding a header more than once into an application can
cause all sorts of problems, and the application might not compile,



even though it would normally do so without the multiple header
copies. The header guard word keeps the number of copies of the
header in your application to one.

7. Check the individual builds that should use the file.
As an alternative, you can click All to add the file to all builds.

 A debug version of your application will contain special
information that you can use to find program errors. A release
version of your application is smaller and executes faster. Each
version has a purpose, so developers usually need to create both at
some point.

8. Click Finish.
The wizard adds the new file to your project. Code::Blocks
automatically opens the file so that you can begin editing it. You also
see the file you added in the Management window, as shown in
Figure 7-3. In this case, you see both the source files and a header
file. Notice that the source files appear in dark type and the header
file appears in gray type. This shows that the source files are
compiled to create the project and the header file isn’t. The “Sharing
with Header Files” section, later in this chapter, discusses in more
detail how the compiler works with header files.

 If Code::Blocks doesn’t automatically open the file you added,
you can open it by double-clicking its name in the Management
Window tree (see Figure 7-3). When you do, an additional tab
appears at the top of your source code files. These tabs represent
the different files that are open. You can click a tab to have that
file’s code appear in the source code window. When you click
another tab, the window shows the source for that file instead. And,
thankfully, Code::Blocks remembers any changes you make if you



switch to another tab. So you can bounce all around the screen and
switch all you want, and the computer shouldn’t get confused.

FIGURE 7-3: The Management window displays the files used to compile the project.

After you have multiple files in your project, you can put some of your
source in one file and some in another. But before you do, you may want
to read some of the other sections in this chapter because they explain
how to properly divide your source code without having it end up like
cake that got smooshed while you were trying to cut it.

Removing an existing source code file
If you add a file to Code::Blocks that you really don’t need, right-click
the file in the Management window and choose Remove File from
Project from the context menu. The file will disappear from the project
but still appear in the directory in which you created it.

If you later decide that you really do want that file, right-click the project
entry in the Management window, choose Add Files from the context
menu, and select the file you want to add back into the project using the
options in the Add Files to Project dialog box.

Creating a project with multiple existing files
Sometimes you have a number of existing files, but no project to hold
them. For example, you might be moving from another IDE to
Code::Blocks. That would mean that you’d have the source files from
the other IDE, but no project file that Code::Blocks would recognize.
Don’t worry: You can put existing files into a Code::Blocks project. The



following steps tell you how to perform this process (you can see the
result by opening the CopiedFiles project):

1. Choose Create a New Project on the Code::Blocks Start page.
You see the New from Template dialog box used to create all the
examples so far in this book.

2. Choose the Empty Project template and click Go.
You see an Empty Project welcome dialog. You can skip this dialog
box the next time by selecting Skip this Page Next Time. The Empty
Project template lets you create a project shell without any files in it.

3. Click Next.
You see the Empty Project configuration dialog box, shown in Figure
7-4. This is where you supply the name of the project, not the files
used in the project.

FIGURE 7-4: Supply a project name for your new application.



4. Type a name for the project in the Project Title field.
The example uses CopiedFiles. Notice that the wizard automatically
fills in the Project Filename field for you.

5. Click Next.
The wizard asks you to supply the usual information for the
compiler, debug configuration, and release configuration. The default
settings will work fine in most cases.

6. Click Finish.
Code::Blocks creates an empty project for you where you can add
files as needed.

7. Right-click the CopiedFiles project entry in the Management
window and choose Add Files from the context menu.
You see the Add Files to Project window, shown in Figure 7-5. Only
the project (.cbp) file appears because this is an empty project.
Of course, you need to add files to your project to make it useful. For
the purposes of this example, you can use the files found in the
AddFiles example created in the previous section of the chapter. For
real-world use, you need to know the locations of the files you want
to use to create your new project.



FIGURE 7-5: The current directory doesn’t contain any code files.

8. Navigate to the AddFiles folder, shown in Figure 7-5.
Notice that you see a main.cpp and my_stuff.h file in the folder.
(You may also see other files that you can safely ignore for now.)

9. Locate and highlight the files you want to copy to the new
project, which are main.cpp and my_stuff.h in this case.

 Use the Ctrl+click method to select multiple files from the
list. Code::Blocks makes it easy to select multiple files in a single
pass so that you don’t have to open the Add Files to Project dialog
box multiple times.

10. Click Open.



Code::Blocks displays a dialog box asking which builds to add the
files to, as shown in Figure 7-6. The exact appearance of the dialog
box will vary by the number of files you select.

FIGURE 7-6: Select the builds where the files are used.

11. Select the builds you want to use and click OK.
Code::Blocks adds the required file references to the project, as
shown in Figure 7-7.

FIGURE 7-7: The new project now contains references to the selected files.



 Notice that the references in Figure 7-7 still show the original
location of the files. In this case, these files come from the
AddFiles project. If you change the file in the original project, it
also changes in the new project.

You also notice that the File ⇒ Save command is disabled. That’s
because you can’t save changes to file references in the project that
references them; you must make changes in the original project.
However, now that you have a reference to the file, you can make
changes to it, and then use the File ⇒ Save As command to create local
copies of the files with your changes in them. Don’t use the File ⇒ Save
command; create a local copy using File ⇒ Save As instead.

Unfortunately, just creating the local copies doesn’t change your project.
To remove the references from the original project, right-click the
project entry in the Management window (which is CopiedFiles for the
example) and choose Remove Files from the context menu. You see the
Multiple Selection dialog box, shown in Figure 7-8, where you can
choose which references to remove and which to keep.

FIGURE 7-8: Remove the references you no longer need.



After you remove the references you no longer need, you can use Steps 7
through 11 in the preceding list to add the local copies of the files to the
current project. The Management window will change to show that
you’re using local copies of the files, rather than copies found in another
project.

Getting multiple files to interact
Before two source files can work together, they must somehow find out
about each other. Just because they’re both sitting on the computer
doesn’t mean that they know about each other. Computers are kind of
goofy about that sort of thing. To get two source files to finally open up
and get to know each other, you need to tell each of them about what’s in
the other file.

When you write a function, normally the function must appear before
any calls to it appear within the same source file. That’s because of the
way the compiler parses the code: If the compiler encounters a call to a
function but has not yet heard of that function, it issues an error. But the
way around this is to use a function prototype. A function prototype is
simply the header line from a function, ending with a semicolon, as in
the following:

void BigDog(int KibblesCount);

Later in the source file is the actual function, with this header line
duplicated. But instead of a semicolon, the function would have an open
brace, the function code, and a closing brace, as in the following:

void BigDog(int KibblesCount) 

{ 

  cout << "I'm a lucky dog" << endl; 

  cout << "I have " << KibblesCount << " pieces of food" 

    << endl; 

}

So, after the function prototype, you can call the function whether the
function code itself is before or after the call.



 For the compiler to understand a function call, all it needs at the
point that the code makes the call is a function prototype. It’s up to
the linker (the special application that takes the object file created
by the compiler and creates an executable from it by linking
everything together) to determine whether that function really
exists.

Because the function call needs only a function prototype, you can put
the function itself in another source code file. You could, therefore, have
two separate source code files, as in the MultipleSourceFiles example,
shown in Listings 7-1 and 7-2. (The first source code file — main.cpp
— is shown in Listing 7-1, and the second source code file —
mystuff.cpp — is shown in Listing 7-2.)

LISTING 7-1: Calling a Function with Only a
Prototype
void BigDog(int KibblesCount); 

  

int main() { 

  BigDog(3); 

  return 0; 

}

LISTING 7-2: Using a Function from a Separate File
#include <iostream> 

  

using namespace std; 

  

void BigDog(int KibblesCount) { 

  cout << "I'm a lucky dog" << endl; 

  cout << "I have " << KibblesCount << " pieces of food" 

    << endl; 

}

Listings 7-1 and 7-2 break the function away from the prototype. When
you compile these two files together as a single application (either by



pressing F9 in Code::Blocks or by choosing Build ⇒ Build and Run),
they all fit together nicely. You can then run the application, and you see
this somewhat interesting output:

I'm a lucky dog 

I have 3 pieces of food

A QUICK OVERVIEW OF NAMESPACES
The using namespace std; line in Listing 7-2 tells the compiler to use a specific
namespace, std. A namespace is a grouping of classes and functions. The std, or
standard, namespace contains a host of useful classes and functions, such as string. If
you don’t include this declaration, you need to preface every use of the classes or
functions found in std by typing std::<class or function>. For example, to use a
string, you need to type std::string. Because this is a painful way to write code, you
add the using namespace std; line.

 Notice that main.cpp doesn’t contain either #include
<iostream> or using namespace std; because it doesn’t have any
calls to cout, just the call to BigDog(). You do have to put the
#include <iostream> and using namespace std; lines at the start
of the mystuff.cpp file because mystuff.cpp does use cout.

Sharing with Header Files
Breaking apart source code into multiple files is easy, but soon you may
run into a problem. If you have a function — say, SafeCracker() — and
this function is extremely useful and is likely to be called many times
from within several other source code files, you would need a prototype
for SafeCracker() in every file that calls it. The prototype may look like
this:

string SafeCracker(int SafeID);



But there is an easier way of adding the prototype instead of adding it to
every file that uses the function. Simply put this line inside its own file,
called a header file, and give the filename an .h or .hpp extension. (It’s
your choice which extension you use, because it really doesn’t matter;
most developers use .h.) For this example, you place the line string
SafeCracker (int SafeID); in a file called safestuff.h.

Then, instead of typing the header line at the start of each file that needs
the function, you type

#include "safestuff.h"

You would then have the three source code files used for the
MultipleSourceFiles2 example, shown in Listings 7-3, 7-4, and 7-5:

main.cpp: Calls the function

safestuff.h: Contains the function prototype

safestuff.cpp: Contains the actual code for the function whose
prototype appears in the header file

Lots of files, but now the code is broken into manageable pieces. Also,
make sure that you save all three of these files in the same directory.

LISTING 7-3: Including the Header File in the main
File
#include <iostream> 

#include "safestuff.h" 

  

using namespace std; 

  

int main() 

{ 

  cout << "Surprise, surprise!" << endl; 

  cout << "The combination for Safe 12 is: " << endl; 

  cout << SafeCracker(12) << endl; 

  cout << "Let's check on Safe 11 too: " << endl; 

  cout << SafeCracker(11) << endl; 

  return 0; 

}



LISTING 7-4: Containing the Function Prototype in
the Header File
#ifndef SAFESTUFF_H_INCLUDED 

#define SAFESTUFF_H_INCLUDED 

  

using namespace std; 

  

string SafeCracker(int SafeID); 

  

#endif // SAFESTUFF_H_INCLUDED

LISTING 7-5: Containing the Actual Function Code
#include <iostream> 

using namespace std; 

  

string SafeCracker(int SafeID) 

{ 

  if (SafeID == 12) 

    return "13-26-16"; 

  else 

    return "Safe Combination Unknown"; 

}

Before you compile this application, you need to know a few things
about how the compilation process works:

When you compile a .cpp file, the compiler outputs a .o (for object)
file that is then linked by the linker with all the other .o files to
create an .exe (executable) file. In addition to the .o files from your
project, the linker also links in any library files or external code that
your application accesses.
The compiler doesn’t compile the header file into a separate .o file.
With the application in Listings 7-3 through 7-5, the compiler creates
only two output files: main.o and safestuff.o (you can see them in
the
CPP_AIO4\BookI\Chapter07\MultipleSourceFiles2\obj\Debug

folder).



When the compiler reads the main.cpp file and reaches the #include
"safestuff.h" line for the header file, it verifies that it hasn’t read
the safestuff.h file before and included it within the .o file.

If the safestuff.h file hasn’t been read before, the compiler
temporarily switches over and reads the header file, pretending that
it’s still reading the same main.cpp file. As it continues, it compiles
everything as if it’s all part of the main.cpp file.

 If you include the safestuff.h header file in other source code
files, the compiler adds the content to those source files as well.
Compile and run the code in Listings 7-3 through 7-5. When you
run the application, you see the following output:

Surprise, surprise! 

The combination for Safe 12 is: 

13-26-16 

Let's check on Safe 11 too: 

Safe Combination Unknown

 If you have a source file containing some functions, creating a
header file that contains the associated function prototypes is
generally a good practice. Then you can name the header file the
same as the source file, except with a different extension. In this
example, you use the safestuff.h file to hold the prototype for the
safestuff.cpp file.

Adding the header only once
Code::Blocks includes several lines in the header file by default. These
lines create a symbol that tells the compiler whether a header file is
already included in the source file so that the compiler doesn’t add it
twice. Adding a header twice is an error because then you’d define the



forward reference for a function twice. Here is what you see when you
initially create a header file with Code::Blocks:

#ifndef SAFESTUFF_H_INCLUDED 

#define SAFESTUFF_H_INCLUDED 

#endif // SAFESTUFF_H_INCLUDED

When you type the header code into Code::Blocks, type it between the
#define SAFESTUFF_H_INCLUDED and #endif //
SAFESTUFF_H_INCLUDED lines. The section “Using the Mysterious
Header Wrappers,” later in this chapter, describes these automatic entries
in detail.

Using angle brackets or quotes
You may have noticed something about the code in Listing 7-3. When
including the safestuff.h file, you don’t put it inside angle brackets, as
with the #include <iostream> line. Instead, you put it inside quotes:

#include "safestuff.h"

That’s because programmers for years have been fighting over the rules
of where exactly on the hard drive to put the header files. The question is
whether to put them in the same directory or folder as your project or to
place them in a directory all by themselves.

 Regardless of where you put your header files, here is the rule
for when to use quotes and when to use brackets: The compiler
looks in several directories to find header files. And it can, possibly,
look in the same directory as the source file. If you use angle
brackets (that is, less-than and greater-than signs), as in #include
<string>, the compiler doesn’t look in the same directory as the
source file. But if you use double quotes, as in #include
"safestuff.h", the compiler first looks in the same directory as the
source file. And if the compiler doesn’t find the header file there, it
looks in the remaining directories, as it would with angle brackets.



Some people always use double quotes. That way, whether the header
file is in the same file as the source file or not, the compiler should find
it. Most professional programmers today always use angle brackets. This
forces programmers to put their header files in a common area. With
really big projects, programmers like to have a directory dedicated to
source files and another directory dedicated to header files. No header
file is ever in the same directory as the source file.

 For small projects, some people like to lump all the source and
header files into a single directory. These people typically use angle
brackets around system header files (such as #include <string>)
and use double quotes around their own header files. The projects
in this book generally follow this rule. The example header files are
in the same directory as the source files and use double quotes for
#include lines. System headers use angle brackets for the
#include lines.

 If you follow the same approach used here, you immediately
know whether the #include line refers to one of your own header
files or another header file. If it refers to your own, it has double
quotes.

If you start working on a large C++ project, you will probably find that
project managers use the rule of always using angle brackets. For large
projects, this is typically the best policy.

 If you try to compile and you get a No such file or
directory error on the #include line, it’s probably because you
put the header file in a source file directory but used angle brackets
instead of double quotes. Try switching that line to double quotes.



Sharing Variables among Source
Files

When you declare a variable inside a function, it remains local to the
function. But you may want functions to share a single global variable:
One function may store something, and another may read its contents
and write it to the console. To do this, declare the global variable outside
a function. Declaring the global variable inside a source file works until
you try to share it among multiple source files. If you’re not careful, the
source files end up with a separate copy of the global variable. Within a
single source file, the global variable can be shared among functions but
not among source files. That could be confusing.

There’s a trick to making this work. Declare the variable inside one and
only one of the source files. Then you declare it again inside one (and
only one) header file, but you precede it with the word extern, as in
extern int DoubleCheeseburgers;.

The GlobalVariable example, shown in Listings 7-6, 7-7, and 7-8,
demonstrates the use of a single global variable that is shared among
multiple source files.

LISTING 7-6: Making Use of a Global Variable
#include <iostream> 

#include "sharealike.h" 

  

using namespace std; 

  

int main() 

{ 

  DoubleCheeseburgers = 20; 

  EatAtJoes(); 

  return 0; 

}

LISTING 7-7: Using the sharealike.h Header File to
Declare a Global Variable



#ifndef SHAREALIKE_H_INCLUDED 

#define SHAREALIKE_H_INCLUDED 

  

extern int DoubleCheeseburgers; 

void EatAtJoes(); 

  

#endif // SHAREALIKE_H_INCLUDED

LISTING 7-8: Declaring Global Variable Storage in
the sharealike.cpp File
#include <iostream> 

#include "sharealike.h" 

  

using namespace std; 

  

int DoubleCheeseburgers = 0; 

  

void EatAtJoes() { 

  cout << "How many cheeseburgers today?" << endl; 

  cout << DoubleCheeseburgers << endl; 

}

Be careful when you do this; getting it exactly right is very tricky. You
declare the variable once inside the header file, but you must remember
the word extern. That tells the various files, “This variable is declared
elsewhere, but here’s its name and type so that you can use it.” (It’s okay
that the file that defines the variable also includes the header file, which
contains the extern declaration. In this case, extern says that the
variable is declared somewhere, not that it’s declared externally outside
this file.) Then you declare the variable in one of the source files,
without the word extern; this creates the actual storage bin for the
variable. Finally, you include the header file in each of your source files
that uses the global variable.

 It’s a bad idea to declare any variable without initializing it. If
you don’t initialize the variable, you have no idea of what it
contains. Not initializing the variable could lead to difficult-to-find



errors. Global variables are even worse in this regard because now
you don’t even have a good idea of precisely where to search.
Fortunately, Code::Blocks does help you in this regard. You can
right-click any occurrence of a global variable and choose Find
Occurrences Of: <Variable Name> from the context menu.

Using the Mysterious Header
Wrappers

When you include a header file, you usually want to include it only once
per source file. But that can create a problem: Suppose that you have a
huge software project, and several header files include another of your
header files, called superheader.h. If you include all these other header
files, how can you be sure to pick up the superheader.h file only once?

The answer looks strange but does the trick. You start each header file
with these lines:

#ifndef SHAREALIKE_H_INCLUDED 

#define SHAREALIKE_H_INCLUDED 

#endif

 Depending on which C++ IDE you use, your editor may add
these lines automatically, just as Code::Blocks does. In this case,
you type the header file content between the #define
SHAREALIKE_H_INCLUDED and #endif lines. However, if your IDE
doesn’t add the lines automatically, be sure to add them so that your
code looks like the code in Listing 7-7. Otherwise, the compiler
may spout errors that you may not recognize immediately.

These header wrappers, as they are often called, ensure that the code in
the header gets processed only once per source code file each time you
compile. The wrappers use special lines called preprocessor directives.
Basically, the second line defines something that is sort of like a variable



but is used only during compilation; this something is called a symbol. In
this case, the symbol is called SHAREALIKE_H_INCLUDED.

The first line checks to see whether this symbol has been defined. If not,
the compiler proceeds with the lines of code that follow. The next line
defines the symbol, so now it’s actually defined for later. Then the
compiler does all the rest of the lines in the file. Finally, the last line,
#endif, simply finishes the very first line.

Now consider what could happen if you include this same file twice, as
in

#include "sharealike.h" 

#include "sharealike.h"

(That can happen indirectly if you include two different files that each
include sharealike.h.) The second time the compiler goes through
sharealike.h, it sees the first line, which checks to see whether the
SHAREALIKE_H symbol is defined. But this time it is! So instead of going
through all the lines again, the compiler skips to the #endif line that
normally appears at the end of the file. Thus, your header file is
processed only once per source code file. Use the following rule to make
using headers easier:

 When you create a header file, be sure to put the header
wrappers around it. You can use any symbol name you like, as long
as it uses only letters, numbers, and underscores and doesn’t start
with a number and isn’t already a variable name in your source or a
C++ word. But most people base their choice on some variation of
the filename itself, such as MYFILE_H or MYFILE_H_ or even
_MYFILE_H_. Code::Blocks, by convention, adds _INCLUDED to each
symbol name, but it’s not necessary that you follow suit unless you
want to.
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Chapter 8

Referring to Your Data Through
Pointers

IN THIS CHAPTER
 Using two types of memory: the stack and the heap
 Accessing variable addresses through pointers
 Creating variables on the heap by using the new keyword
 Taking pointers as parameters and returning pointers

Where do you live? Don’t say it out loud, because thousands of people
are reading this book and you don’t want them all to know. So just think
about your address. Most places have some sort of address so that the
mail service knows where to deliver your packages and the cable guy
can show up sometime between now and 5:00 next Thursday. (So make
sure that you’re there.)

Other things have addresses, too. For example, a big corporation in an
office building likely has all its cubes numbered. Offices in buildings
usually have numbers, and apartments normally have numbers, too.

Now suppose that someone named Sam works in office number 180.
Last week, however, Sam got booted out the door for spending too much
time surfing the web. Now Sally gets first dibs on office number 180,
even though she’s not taking over Sam’s position. Sam moved out; Sally
moved in. Same office — different person staying there.

The computer’s memory works similarly. Every little part of the
computer’s memory is associated with a number that represents its
location, or address. In this chapter, you discover that after you
determine the address of a variable stored in memory, you can do



powerful things with it, which gives you the tools to create powerful
applications.

 If any single topic in C++ programming is most important, it is
the notion of pointers. Therefore, if you want to become a
millionaire, read this chapter. Okay, so it may not make you a
millionaire, but suggesting it could give you the incentive to master
this chapter. Then you can become an ace programmer and make
lots of money.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookI\Chapter08
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Understanding the Changes in
Pointers for C++ 20

If you don’t understand pointers at all, you might want to first read the
rest of the chapter, starting with “Heaping and Stacking the Variables,”
and return to this first section later. Readers who already know
something about pointers need to be aware of the changes in pointers for
C++ 20, which is why it appears first. The essential thing to remember
as you move to C++ 20 (where new is deprecated) and then to C++ 23
(where new is removed) is that pointers are going to change.

C++ will always need pointers, of course, but long-time C++ users have
always seen pointers as a burden, while new C++ users see pointers as
some sort of heroic nightmare rite of passage. The goal, then, is to make
pointers easier and more consistent to use as C++ continues to grow and



mature. The following sections discuss how C++ pointers are changing
in C++ 20.

Avoiding broken code
A raw pointer, one that you allocate using the new operator, serves
important purposes in your code. You often see it used for these
purposes:

Dynamic allocation: Allows an application to allocate more
memory as needed
Runtime polymorphism: Allows an application to pass pointers that
may point to different kinds of data at different times
Nullable references: Handles instances in which a pointer doesn’t
point to anything
Avoiding copies: Uses a single copy of an object instead of creating
multiple copies, which reduces the risk of errors

As your knowledge of C++ increases, you soon discover that these are
critical application needs, so replacing the raw pointer will be quite
difficult. Fortunately, you don’t have to use the new C++ 20 features
immediately, even if you’re using a C++ compiler. You control whether
your application uses the new approach through compilation directives:

#feature <no_pointers> //opt-in to no pointers 

#feature <cpp20>       //opt-in to all C++20 features

Consequently, you don’t have to worry about your existing code
suddenly breaking. The idea is to make the transition from raw pointers
to something better as smooth and transparent as possible. Given the
realities of C++ development, you likely will see some sort of legacy
support for a long time. However, to move forward, you must adapt to
the new realities of pointers in C++.

Considering the issues
At this point, you might wonder why raw pointers are such a problem.
After all, a pointer is simply an address in memory that looks something



like 0x9caef0. The value it contains is the address, and by dereferencing
the pointer, looking at the address to which it points, you see the value
that the pointer references. It’s just like the address for your house. You
send mail to the address, but the address isn’t your house — it’s simply a
pointer to your house.

At this point, it doesn’t sound as if using pointers would be a problem,
despite being a bit convoluted. The reason for using pointers in the first
place is to avoid carrying large objects around in your code. You can
leave the object, like a house, sitting in one place and simply point to it
as needed. Imagine having to carry your house around with you. Besides
having a horrible backache, doing so would be inconvenient and make
your house harder to find. Instead, you give someone who wishes to mail
you a letter or visit you in your home the address. Early applications had
to use every tiny bit of memory and CPU processing cycles efficiently or
face performance issues. Pointers allowed early applications to perform
well by simply pointing at big objects in memory, rather than passing
them around.

PLACING A HEX ON C++
Sooner or later in your computer programming, you encounter a strange way of
notating numbers on the computer. This strange way is called hexadecimal, or
sometimes just hex. In C++, you can recognize a hex number because it starts with the
characters 0x. These characters aren’t actually part of the number; they just notate it in
the same way as double quotes denote a string. Whereas the usual decimal numbers
consist of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, a hex number consists of these digits
plus six more: A, B, C, D, E, and F. That makes a total of 16 digits. A good way to
picture counting with regular decimal numbers is to use the odometer in a car, which (if
you’re honest) goes only forward, not backward. It starts out with 00000000 (assuming
eight digits, which is a lot). The rightmost digit runs from 0 through 9, over and over.
When any digit reaches 9 and all digits to the right of that are 9, the next digit to the left
goes up by 1. For example, when you reach 00000999, the next digit to the left goes up
by 1 as each 9 goes back to 0, to get 00001000.

With hex numbers, you count this same way, except that instead of stopping at 9 to loop
back, you then go to A, and then B, and then up to F. And then you loop back. So the
first 17 hex numbers are, using eight digits, 00000000, 00000001, 00000002,
00000003, 00000004, 00000005, 00000006, 00000007, 00000008, 00000009,
0000000A, 0000000B, 0000000C, 0000000D, 0000000E, 0000000F, 00000010. Notice
that when you hit F at the end, the number wraps around again, adding 1 to the next



digit to the left. When working with hex numbers, you may see such numbers as
0xAAAA0000 and 0x0000A3FF. And incidentally, 1 more than each of these is
0xAAAA0001 and 0x0000A400.

The biggest problem with pointers is the same problem incurred by
house addresses. You need to think about the number of times you’ve
received your neighbor’s mail (and vice versa). Likewise, applications
can have invalid pointers, and when the code tries to process this invalid
address, it often crashes the application. Of course, the worst problem is
the null pointer, 0x000000, which you expect to point to something. A
null pointer points to nothing.

Another problem with pointers is that you spend a lot of time managing
them, and who can remember all that code! Every time you work with
pointers, you risk:

Creating a memory leak: By not deallocating the pointer so you
can reuse the memory, the memory becomes inaccessible to the
application. You could actually run out of memory despite having
memory available. The memory becomes available again after the
operating system frees it once the application terminates.
Using memory that hasn’t been initialized: The memory location
could contain anything and if you act on the data in that memory
location, your application will act oddly or simply crash.
Obtaining the wrong data: The application could point to the
wrong location and you might not know it. This means that the
application is using the wrong data, which could result in
unanticipated output or data damage.

Writing cleaner and less bug-prone code
To write cleaner code with fewer bugs, you need to find a way to get the
effects of a pointer without any of the disadvantages of pointers. The
C++ committee has been working on this issue. For example,
std::auto_ptr is deprecated (set for deletion, but still allowed) in C++
11 and removed in C++ 17. Here are some modern ways of getting past
pointers:



Using smart pointers: Boost (explained in Book 7, Chapter 4) has
provided access to smart pointers for a long time, and many
developers use them because they make both dynamic allocation and
runtime polymorphism easier to deal with. Using a smart pointer,
such as std::unique_ptr or std::shared_ptr, eliminates the need
for you to manage memory manually. Instead, the smart pointer
addresses memory management needs for you so that you can
concentrate on writing business logic rather than performing low-
level programming tasks.
Relying on optional pointers: C++ 17 introduced std::optional
as the means for working with nullable references. When an optional
pointer is null, it has a value of std::nullopt, which is actually an
important thing to know when dealing with them. The only problem
is that the implementation is flawed because it lacked support for
references (pointers to pointers) and had no monadic (entity
operator) interface (see http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2017/p0798r0.html for a
discussion of this extremely advanced concept not covered in this
book). The short version is that it didn’t do what raw pointers could
do, but these problems are fixed in C++ 20.
Passing objects around: A modern computer isn’t nearly as
resource limited as those in the past were, so modern languages
commonly pass objects around rather than create pointers to them.
This solution addresses the need to eliminate unwanted copies. C++
20 provides two solutions for this task, both of which rely on the idea
of using the object obj, which is outside the function, to directly
construct the object being initialized inside the function and that is
returned from it. You can view this optimization as: T obj = f();,
where f() is a function that initializes obj of type T. Here is how the
optimizations differ:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0798r0.html


 Return Value Optimization (RVO): In this case,
you could have a function that looks like this:

T f() { 

   … // Do something here. 

   return T(constructor arguments); 

}

In this case, you could create three objects of type T: the
unnamed temporary object created by the return statement;
the temporary object returned by f() to the caller; and the
named object, obj, copied from the return from f(). Using
RVO eliminates the two temporary objects by initializing obj
directly with the arguments passed inside the body of f().
This is actually a complex topic that’s well outside the
purview of this book, but you can read a discussion of the
details of this topic at https://shaharmike.com/cpp/rvo/.

 Named Return Value Optimization (NRVO): This
form of optimization goes a step further than RVO when the
return statement uses a named value, as shown here:

T f() { 

   … // Do something here. 

   T result(constructor arguments); 

   return result; 

}

This technique effectively replaces the hidden object and the
named object inside the function with the object used for
holding the result. The only caveat is that result must be
unique so that the compiler knows which object inside f() to
use to construct the memory in obj. NRVO is a particular kind
of copy elision (the process of joining together or merging of

https://shaharmike.com/cpp/rvo/


objects) discussed in detail at
https://en.cppreference.com/w/cpp/language/copy_elis

ion.

Heaping and Stacking the Variables
C++ applications use two kinds of memory:

Heap: A common area in memory where you can store global
variables. This is where you also store objects and variables that you
allocate from memory.
Stack: The area where the computer stores both function
information and local value type variables for those functions. The
stack also stores pointers to local object type variables for functions.

 Function storage is a little more complicated because each
function gets its own little private area at the top of the stack. It is
called a stack because it’s treated like a stack of papers: You can put
something on the top of the stack, and you can take something off
the top of the stack, but you can’t put anything in the middle or
bottom. In addition, you can’t take anything from the middle or
bottom. (You can, however, peek at the values from any place in the
stack and change those values — it’s the memory block that isn’t
removed.) The computer uses this stack to keep track of all your
function calls.

Suppose that you have a function called GoFishing(). The function
GoFishing() calls StopAndBuyBait(). Depending on the complexity of
the bait business, StopAndBuyBait() may call PayForBait(), which
calls GetOutCash(). How can the computer keep track of all this mess?
It uses the stack. Begin with the following code:

int GoFishing() { 

   int baitMoney = 2; 

https://en.cppreference.com/w/cpp/language/copy_elision


   int numberWorms = StopAndBuyBait(baitMoney); 

   if (numberWorms > 0) { 

      return true; 

   } 

   return false; 

} 

  

int StopAndBuyBait(int customerMoney) { 

   if (customerMoney > 0) { 

      int wormsBought = customerMoney * 20; 

      return wormsBought; 

   } 

   return 0; 

}

The customer starts out with $2.00. When stopping in the store, the clerk
asks for the money. If the customer does have money, the clerk provides
20 worms for each $1.00. The customer determines whether there was
enough money to buy any worms. If so, it’s time to go fishing. The stack
for each of these calls appears in a stack frame, which the application
treats as a single entity for that function. This code uses two stack
frames, one for each function call, as shown in Figure 8-1.



FIGURE 8-1: The two stack frames used for the example code.



 From a stack perspective, the code begins by creating a stack
frame for GoFishing(). On this stack frame, it creates a variable
holding a pointer with the return address of the caller (which is
unknown in this case). Adding a value to the stack is called
pushing. GoFishing() creates two variables, baitMoney and
numberWorms. From a stack perspective, because GoFishing()
creates baitMoney first, it also appears first on the stack.

When GoFishing() calls StopAndBuyBait(), it passes a single argument
that GoFishing() sees as baitMoney. However, StopAndBuyBait() sees
the parameter as customerMoney. The arguments that GoFishing()
passes to StopAndBuyBait() appear first as parameters within the stack
frame that the application creates for StopAndBuyBait(), followed by
the return address for GoFishing(). Consequently, before
StopAndBuyBait() executes even a single line of code, its stack frame
already has two variables on it.

At this point, StopAndBuyBait() optionally creates a local variable,
wormsBought. Notice that in the stack frame, parameters appear first,
followed by the return address of the caller and then the local variables.
When StopAndBuyBait() determines what to return to GoFishing(), it
places this value in numberWorms because numberWorms is set to receive
this return value.

 The application then starts to dismantle the StopAndBuyBait()
stack frame by popping (removing) the values off the stack. It
throws wormsBought away (if StopAndBuyBait() created it)
because the application has already placed this value in
numberWorms. The application saves the GoFishing() return
address for later use. It then throws customerMoney away and
removes the stack frame.



The return address is a pointer to a specific place in memory that marks
the continuation point in the code for GoFishing(). So, the next step is
to read the next processing instruction for GoFishing() that comes after
the return from StopAndBuyBait().

CONVERTING BETWEEN HEXADECIMAL
AND DECIMAL

Every hex number has a decimal equivalent. When you make a list showing decimal
numbers side by side with hex numbers, you see, for example, that 0x0000001F is next
to the decimal number 31. Thus, these two numbers represent the same quantity of
items, such as apples.

You can represent hex numbers by using either uppercase or lowercase letters.
However, do not mix cases within a single number because it makes the number
incredibly hard to read and other developers will make mistakes. Don’t use
0xABab0000. Instead, use either 0xabab0000 or 0xABAB0000.

If you want to convert between hex and decimal, you can use the Hex to Decimal
Converter application at https://www.binaryhexconverter.com/hex-to-decimal-
converter or the Decimal to Hex Converter application at
https://www.binaryhexconverter.com/decimal-to-hex-converter. These two
applications make it easy to convert between the two numbering systems, and you can
use them on any device that supports a browser.

To convert a hex number to decimal, select the Hex to Decimal Converter application
and type the hex number into the Hex Value field by using the number keys and the
letters A through F, such as FB1263. (You don’t need to type the zeroes at the
beginning, such as 00FB1263 — they don’t show up — nor do you type the 0x used in
C++.) After you finish typing it all, click Convert. The application instantly transforms the
hex number into a decimal number! In this case, you see 16454243. You can go the
other way, too: If you have a decimal number, such as 16454243, you can select the
Decimal to Hex Converter application, type its value into the Decimal Value field, and
click Convert to convert it to hex. If you convert 16454243 to hex, you get back FB1263,
which is what you started with.

The Windows calculator also makes it easy to convert between hex and decimal when
placed in Programmer view, as shown in the following figure. The calculator also
supports binary (base 2) and octal (base 8) numbers. Just select the base you want to
use and the calculator performs the conversion automatically. (The precise Calculator
features you have for performing this task depend on your version of Windows. The
blog post at http://blog.johnmuellerbooks.com/2012/01/30/examining-the-calculator-
in-windows-7/ complains about the changes that Windows 7 brought. Windows 10
offers more of the same.)

https://www.binaryhexconverter.com/hex-to-decimal-converter
https://www.binaryhexconverter.com/decimal-to-hex-converter
http://blog.johnmuellerbooks.com/2012/01/30/examining-the-calculator-in-windows-7/


You can convert words, too (if you’re bored). The hex number and disco group ABBA is
43962 in decimal. And the hex number FADE is 64222. Have fun!

Getting a variable’s address
Because every variable lives somewhere in memory, every variable has
an address. If you have a function that declares an integer variable called
NumberOfPotholes, then when your application calls this function, the
computer will allocate space for NumberOfPotholes somewhere in
memory.

 If you want to find the address of the variable
NumberOfPotholes, you simply throw an ampersand (&) in front of
it. Listing 8-1 shows the VariableAddress example, which obtains
the address of a variable and prints it.



LISTING 8-1: Using the & Character to Obtain the
Address of a Variable
#include <iostream> 

  

using namespace std; 

  

int main() { 

  int NumberOfPotholes = 532587; 

  cout << &NumberOfPotholes << endl; 

  return 0; 

}

When you run this application, a hexadecimal number appears on the
console. This number may or may not match ours, and it may or may not
be the same each time you run the application. The result depends on
exactly how the computer allocated your variable for you and the order
in which it did things. This could be very different between versions of
compilers. When you run Listing 8-1, you see something like the
following (it varies with each run):

0x22ff74

 The output you see from this application is the address of the
variable called NumberOfPotholes. In other words, that number is
the hex version of the place where the NumberOfPotholes variable
is stored in memory. The output is not the content of the variable or
the content of the variable converted to hex; rather, it’s the address
of the variable in hex.

Knowing the address of a variable doesn’t tell you about the variable
content, but C++ programmers use addresses in other ways:

Modifying the variable content directly using what are called pointer
variables. A pointer variable is just like any other variable except
that it stores the address of another variable.
Performing any of the tasks mentioned in the “Avoiding broken
code” section of the chapter.



Modifying values pointed at by the address indirectly using any of a
number of math techniques.
Comparing entities such as objects based on their pointers.

To declare a pointer variable, you need to specify the type of variable it
will point to. Then you precede the variable’s name with an asterisk, as
in the following:

int *ptr;

This line declares a variable that points to an integer. In other words, it
can contain the address of an integer variable. And how do you grab the
address of an integer variable? Easy! By using the & notation! Thus, you
can do something like this:

ptr = &NumberOfPotholes;

This line puts the address of the variable NumberOfPotholes in the ptr
variable. Remember that ptr doesn’t hold the number of potholes;
rather, it holds the address of the variable called NumberOfPotholes.

 You specify the type of pointer by the type of item it points to. If
a pointer variable points to an integer, its type is pointer to integer.
In C++ notation, its type is int * (with a space between them) or
int* (no space); you are allowed to enter it with or without a space.
If a pointer variable points to a string, its type is pointer to string,
and notation for this type is string *.

 The ptr variable holds an address, but what’s at that address?
That address is the location in memory of the storage bin known as
NumberOfPotholes. Right at that spot in memory is the data stored
in NumberOfPotholes.



 Think this pointer concept through carefully. If you have to,
reread this section a few times until it’s locked in your head. Then
meditate on it. Wake up in the night thinking about it. Call strangers
on the telephone and chitchat about it. The more you understand
pointers, the better off your programming career will be — and the
more likely you are to make a million dollars.

Changing a variable by using a pointer
After you have a pointer variable holding another variable’s address, you
can use the pointer to access the information in the other variable. That
means you have two ways to get to the information in a variable: Use the
variable name itself (such as NumberOfPotholes), or use the pointer
variable that points to it.

If you want to store the number 6087 in NumberOfPotholes, you can do
this:

NumberOfPotholes = 6087;

Or you can use the pointer. To use the pointer, you first declare it as
follows:

ptr = &NumberOfPotholes;

Then, to change NumberOfPotholes, you don’t just assign a value to it.
Instead, you throw an asterisk in front of it, like so:

*ptr = 6087;

If ptr points to NumberOfPotholes, these two lines of code will have the
same effect: Both will change the value to 6087. This process of sticking
the asterisk before a pointer variable is called dereferencing the pointer.
Look at the DereferencePointer example, shown in Listing 8-2, which
demonstrates all this.

LISTING 8-2: Modifying the Original Variable with a
Pointer Variable



#include <iostream> 

  

using namespace std; 

  

int main() { 

  int NumberOfPotholes; 

  int *ptr; 

  

  ptr = &NumberOfPotholes; 

  *ptr = 6087; 

  

  cout << NumberOfPotholes << endl; 

  return 0; 

}

In Listing 8-2, the first line of main() declares an integer variable, and
the second line declares a pointer to an integer. The next line takes the
address of the integer variable and stores it in the pointer. Then the
fourth line modifies the original integer by dereferencing the pointer.
And just to make sure that the process worked, the next line prints the
value of NumberOfPotholes. When you run the application, you see the
following output:

6087

You can also read the value of the original variable through the pointer.
Look at the ReadPointer example, shown in Listing 8-3. This code
accesses the value of NumberOfPotholes through the pointer variable,
ptr. When the code gets the value, it saves it in another variable called
SaveForLater.

LISTING 8-3: Accessing a Value through a Pointer
#include <iostream> 

  

using namespace std; 

  

int main() { 

  int NumberOfPotholes; 

  int *ptr = &NumberOfPotholes; 

  int SaveForLater; 

  

  *ptr = 6087; 



  SaveForLater = *ptr; 

  cout << SaveForLater << endl; 

  

  *ptr = 7000; 

  cout << *ptr << endl; 

  cout << SaveForLater << endl; 

  return 0; 

}

When you run this application, you see the following output:
6087 

7000 

6087

Notice that the code changes the value through ptr again — this time to
7000. When you run the application, you can see that the value did
indeed change, but the value in SaveForLater remained the same. That’s
because SaveForLater is a separate variable, not connected to the other
two. The other two, however, are connected to each other.

Pointing at a string
Pointer variables can point to any type, including strings. However, after
you say that a variable points to a certain type, it can point to only that
type. That is, as with any variable, you cannot change its type. The
compiler won’t let you do it.

To create a pointer to a string, you simply make the type of the variable
string *. You can then set it equal to the address of a string variable.
The StringPointer example, shown in Listing 8-4, demonstrates this
idea.

LISTING 8-4: Pointing to a String with Pointers
#include <iostream> 

  

using namespace std; 

  

int main() { 

  string GoodMovie; 

  string *ptrToString; 

  

  GoodMovie = "Best in Show"; 



  ptrToString = &GoodMovie; 

  

  cout << *ptrToString << endl; 

  return 0; 

}

In Listing 8-4, you see that the pointer named ptrToString points to the
variable named GoodMovie. But when you want to use the pointer to
access the string, you need to dereference the pointer by putting an
asterisk (*) in front of it. When you run this code, you see the results of
the dereferenced pointer, which is the value of the GoodMovie variable:

Best in Show

You can change the value of the string through the pointer, again by
dereferencing it, as in the following code:

*ptrToString = "Galaxy Quest"; 

cout << GoodMovie << endl;

The code dereferences the pointer to set it equal to the string
"GalaxyQuest". Then, to show that it truly changed, the code prints the
GoodMovie variable. The result of this code, when added at the end of
Listing 8-4 (but prior to the return 0), is

Galaxy Quest

You can also use the pointer to access the individual parts of the string,
as shown in the StringPointer2 example in Listing 8-5.

LISTING 8-5: Using Pointers to Point to a String
#include <iostream> 

  

using namespace std; 

  

int main() { 

  string AMovie; 

  string *ptrToString; 

  

  AMovie = "L.A. Confidential"; 

  ptrToString = &AMovie; 

  

  for (unsigned i = 0; i < AMovie.length(); i++) { 



    cout << (*ptrToString)[i] << " "; 

  } 

  cout << endl; 

  

  return 0; 

}

When you run this application, you see the letters of the movie appear
with spaces between them, as in

L . A .  C o n f i d e n t i a l

 When you access the characters of the string through a pointer,
you need to put parentheses around the asterisk and the pointer
variable. Otherwise, the compiler gets confused and first tries to
access the index in brackets with the variable name and afterward
applies the asterisk. That’s backward, and it doesn’t make sense to
the computer, so the compiler gives you an error message. But you
can make it all better by using parentheses, as shown in Listing 8-5.

This application loops through the entire string, character by character.
The string’s length() function tells how many characters are in the
string. The code inside the loop grabs the individual characters and
prints them with a space after each.

Notice that i is of type unsigned rather than int. The length() function
returns an unsigned value rather than an int value, which makes sense
because a string can’t have a negative length. If you try to use an int for
i, the compiler displays the following warning:

warning: comparison between signed and unsigned integer

The application still runs, but you need to use the correct data types for
loop variables. Otherwise, when the loop value increases over the
amount that the loop variable can support, the application will fail.
Trying to find such an error can prove frustrating even for the best
developers. It’s important to not ignore warnings even if they appear
harmless.



 You can also change the individual characters in a string through
a pointer. You can do this by using a line like (*ptrToString)[5]
= ’X’;. Notice you still need to put parentheses around the variable
name along with the dereferencing character.

 The length of a string is also available through the pointer. You
can call the length() function by dereferencing the pointer, again
with the carefully placed parentheses, such as in the following:

for (unsigned i = 0; i < (*ptrToString).length(); i++) { 

  cout << (*ptrToString)[i] << " "; 

}

Pointing to something else
When you create a pointer variable, you must specify the type of data it
points to. After that, you cannot change the type of data it points to, but
you can change what it points to. For example, if you have a pointer to
an integer, you can make it point to the integer variable called
ExpensiveComputer. Then, later, in the same application, you can make
it point to the integer variable called CheapComputer. Listing 8-6
demonstrates this technique in the ChangePointer example.

LISTING 8-6: Using Pointers to Point to Something
Else and Back Again
#include <iostream> 

  

using namespace std; 

  

int main() { 

  int ExpensiveComputer; 

  int CheapComputer; 

  int *ptrToComp; 

  

  ptrToComp = &ExpensiveComputer; 



  *ptrToComp = 2000; 

  cout << *ptrToComp << endl; 

  

  ptrToComp = &CheapComputer; 

  *ptrToComp = 500; 

  cout << *ptrToComp << endl; 

  

  ptrToComp = &ExpensiveComputer; 

  cout << *ptrToComp << endl; 

  return 0; 

}

This code starts out by initializing all the goodies involved — two
integers and a pointer to an integer.

Next, the code points the pointer to ExpensiveComputer and uses the
pointer to put 2000 inside ExpensiveComputer. It then writes the
contents of ExpensiveComputer, again by using the pointer.

Then the code changes what the pointer points to. To do this, you set the
pointer to the address of a different variable, &CheapComputers. The next
line stores 500 in CheapComputers. And, again, you print it.

Now, just to drive home the point, in case the computer isn’t listening,
you then point the pointer back to the original variable,
ExpensiveComputer. But you don’t store anything in it. This time, you
simply print the cost of this high-powered supermachine. You do this
again by dereferencing the pointer. And when you run the application,
you see that ExpensiveComputer still has 2000 in it, which is what was
originally put in it. This means that after you point the pointer to
something else and do some finagling, the original variable remains
unchanged.

 Be careful if you use one pointer to bounce around several
different variables. It’s easy to lose track of which variable the
pointer is pointing to.

Tips on pointer variables



This section contains tips on using pointer variables. You can declare
two pointer variables of the same type by putting them together in a
single statement, as you can with regular variables. However, you must
precede each one with an asterisk, as in the following line:

int *ptrOne, *ptrTwo;

 If you try to declare multiple pointers on a single line but put an
asterisk only before the first pointer, only that one will be a pointer.
The rest will not be. This can cause serious headaches later because
this line compiles fine:

int *ptrOne, Confused;

Here, Confused is not a pointer to an integer; rather, it’s just an integer.
Beware!

 Some people like to put the asterisk immediately after the type,
as in the following example, to emphasize the fact that the type is
pointer to integer:

int* ptrOne;

However, this approach makes it easy to leave out the asterisks for any
pointer variables that follow.

Creating New Raw Pointers
It isn’t possible to predict some kinds of memory use in your application,
but the requirements aren’t known when you write the code. For
example, streaming data from the Internet or creating new records in a
database are both examples of unpredictable memory use. When
working with unpredictable memory requirements, you allocate (request
memory) and deallocate (release the memory you requested) as needed



in a process called dynamic memory management. You use the heap, an
area of unallocated memory, to perform dynamic memory management.

Most modern programming languages provide a means for managing
memory for you. The reason for using this strategy is that older memory
management techniques are error prone. You often see these common
memory errors using older methods:

Code tries to use the memory without allocating it first.
Memory remains allocated after use, creating a memory leak.
Uninitialized memory contains random data.

Consequently, most modern languages simply allow you to create and
delete variables using one simple approach, and a process called
garbage collection (the freeing of unused memory) occurs in the
background. C++ is moving in this direction. However, the transition is
taking some time.

Up to this point, you allocated memory using various approaches
including the new keyword. Using new simply meant that you needed
memory for a specific purpose. The new keyword is deprecated in C++
20 and will disappear altogether in C++ 23. The following sections
begin with two examples of using new because you see new used in all
current existing code of any complexity at this point. The remaining
three sections tell you about the updated C++ 20 method of managing
memory.

Using new
To declare a storage bin on the heap using existing methods, first you
need to set up a variable that will help you keep track of the storage bin.
This variable must be a pointer variable.

Suppose that you already have an integer declared out on the heap
somewhere. (You see how to do that in the next paragraph.) Oddly
enough, such variables don’t have names. Just think of it as an integer on
the heap. Then, with the integer variable, you could have a second
variable. This second variable is not on the heap, and it’s a pointer



holding the address of the integer variable. So if you want to access the
integer variable, you do so by dereferencing (looking at the address of)
the pointer variable.

To allocate memory on the heap, you need to do two things: First,
declare a pointer variable. Second, call a function named new. The new
function is a little different from other functions in that you don’t put
parentheses around its parameter. For this reason, it’s actually an
operator. Other operators are + and – and are for adding and subtracting
integers. These other operators behave similarly to functions, but you
don’t use parentheses.

To use the new operator, you specify the type of variable you want to
create. For example, the following line creates a new integer variable:

int *somewhere = new int;

After the computer creates the new integer variable on the heap, it stores
the address of the integer variable in somewhere. And that makes sense:
somewhere is a pointer to an integer, so it’s prefaced by the * (pointer)
operator. Thus, somewhere holds the address of an integer variable. The
UseNew example, shown in Listing 8-7, demonstrates how pointers work
when using new.

LISTING 8-7: Allocating Memory by Using new
#include <iostream> 

  

using namespace std; 

  

int main() { 

  int *ptr = new int; 

  *ptr = 10; 

  cout << *ptr << endl; 

  cout << ptr << endl; 

  return 0; 

}

When you run this application, you see this sweet and simple output (the
second value will change each time you run the example):



10 

0x73af10

In this application, you first allocate a pointer variable, which you call
ptr. Then you call new with an int type, which returns a pointer to an
integer. You save that return value in the ptr variable.

Then you start doing your magic on it. Okay, so it’s not all that magical,
but you save a 10 in the memory that ptr points to. And then you print
the value stored in the memory that ptr points to.

To see for yourself that ptr is pointing to a memory location and not the
actual value of 10, the code also prints ptr without dereferencing it
(using the * operator). The output is a hexadecimal value such as
0x9caef0, but this output will change each time because the memory
allocation occurs in a different location on the heap each time.

As you can see, ptr contains the address of the memory allocated by the
new operator. But unlike regular variables, the variable pointed at by ptr
doesn’t have a name. And because it doesn’t have a name, the only way
you can access it is through the pointer. It’s kind of like an anonymous
author with a publicist. If you want to send fan mail to the author, you
have to go through the publicist. Here, the only way to reach this
unnamed but famous variable is through the pointer.

But this doesn’t mean that the variable has a secret name such as
BlueCheese and that, if you dig deep enough, you might discover it; it
just means that the variable has no name. Sorry.

 When you call new, you get back a pointer. This pointer is of the
type that you specify in your call to new. You can then store the
pointer only in a pointer variable of the same type.



 When you use the new operator, the usual terminology is that
you are allocating memory on the heap.

By using pointers to access memory on the heap, you can take advantage
of many interesting C++ features. For example, you can use pointers
along with something called an array. An array (as described in Book 5,
Chapter 1) is simply a large storage bin that has multiple slots, each of
which holds one item. If you set up an array that holds pointers, you can
store all these pointers without having to name them individually. And
these pointers can point to complex things, called objects. (Book 2,
Chapter 1 covers objects and Book 2, Chapter 2 discusses arrays.) You
could then pass all these variables (which could be quite large, if they’re
strings) to a function by passing only the array, not the strings
themselves. That step saves memory on the stack.

In addition to objects and arrays, you can have a function allocate
memory and return a variable pointing to that memory. Then, when you
get the variable back from the function, you can use it, and when you
finish with the variable, delete it (freeing the memory). Finally, you can
pass a pointer into a function. When you do so, the function can actually
modify the data the pointer references for you. (See “Passing Pointer
Variables to Functions” and “Returning Pointer Variables from
Functions,” later in this chapter, for details.)

Using an initializer
When you call new, you can provide an initial value for the memory you
are allocating. For example, when allocating a new integer, you can, in
one swoop, also store the number 10 in the integer. The Initializer,
example shown in Listing 8-8, demonstrates how to do this.

LISTING 8-8: Putting a Value in Parentheses to
Initialize Memory That You Allocate
#include <iostream> 

  



using namespace std; 

  

int main() { 

  int *ptr = new int(10); 

  cout << *ptr << endl; 

  return 0; 

}

This code calls new, but also provides a number in parentheses. That
number is put in the memory initially, instead of being assigned to it
later. This line of code is equivalent to the following two lines of code:

int *ptr = new int; 

*ptr = 10;

 When you initialize a value in the new operator, the technical
phrase for what you are doing is invoking a constructor. The reason
is that the compiler adds a bunch of code to your application —
code that operates behind the scenes. This code is the runtime
library. The library includes a function that initializes an integer
variable if you pass an initial value. The function that does this is
known as a constructor. When you run it, you are invoking it. Thus,
you are invoking the constructor. For more information on
constructors, see Book 2, Chapter 1.

Freeing Raw Pointers
When you allocate memory on the heap by calling the new operator and
you’re finished using the memory, you need to let the computer know,
regardless of whether it’s just a little bit of memory or a lot. The
computer doesn’t look ahead into your code to find out whether you’re
still going to use the memory. So in your code, when you are finished
with the memory, you free the memory.

The way you free the memory is by calling the delete operator and
passing the name of the pointer:



delete MyPointer;

This line would appear after you’re finished using a pointer that you
allocated by using new. (Like the new operator, delete is also an operator
and does not require parentheses around the parameter.)

The FreePointer example, shown in Listing 8-9, provides a complete
demonstration of allocating a pointer, using it, and then freeing it. Note
the use of the replace() method, which first appears in the “Replacing
parts of a string” section of Book 1 Chapter 6. You use the arrow
operator (->) to access this string method of phrase. The “Using
classes and raw pointers” section of Book 2 Chapter 1 describes the
arrow operator in more detail.

LISTING 8-9: Using delete to Clean Up Your Pointers
#include <iostream> 

  

using namespace std; 

  

int main() { 

  string *phrase = 

    new string("All presidents are cool!!!"); 

  cout << *phrase << endl; 

  

  (*phrase)[20] = 'r'; 

  phrase->replace(22, 4, "oked"); 

  cout << *phrase << endl; 

  

  delete phrase; 

  return 0; 

}

When you run this application, you see the following output:
All presidents are cool!!! 

All presidents are crooked

This code allocates a new string and initializes it, saving its address in
the pointer variable called phrase. The code outputs the phrase,
manipulates it, and then writes it again. Finally, the code frees the
memory used by the phrase.



 Although people usually say that you’re deleting the pointer or
freeing the pointer, you’re actually freeing the memory that the
pointer points to. The pointer can still be used for subsequent new
operations.

 When you free memory, the memory becomes available for
other tasks. However, immediately after the call to delete, the
pointer still points to that particular memory location, even though
the memory is free. Using the pointer without pointing it to
something else causes errors. Therefore, don’t try to use the pointer
after freeing the memory it points to until you set the pointer to
point to something else through a call to new or by setting it to
another variable.

Whenever you free a pointer, a good habit is to set the pointer to the
value 0 or nullptr (when using C++ 11 or above). Then, whenever you
use a pointer, first check whether it’s equal to 0 (or nullptr) and use it
only if it’s not 0. This strategy always works because the computer will
never allocate memory for you at address 0. So the number 0 can be
reserved to mean I point to nothing at all.

The following code sample shows how to use this strategy. First, this
code frees the pointer and then clears it by setting it to 0:

delete ptrToSomething; 

ptrToSomething = 0;

The reason to use nullptr in place of 0 when you can is that nullptr is
clearer — it says precisely what you’re doing to the pointer. This code
checks whether the pointer is not 0 before using it:

ptrToComp = new int; 

*ptrToComp = 10; 

if (ptrToComp != 0) { 



  cout << *ptrToComp << endl; 

}

 Call delete only on memory that you allocated by using new.
Although the Code::Blocks compiler doesn’t seem to complain
when you delete a pointer that points to a regular variable, it serves
no purpose to do so. You can free only memory on the heap, not
local variables on the stack. In addition, you should avoid freeing
the same pointer multiple times because doing so can create hard-
to-find bugs; the application may have already reallocated that
memory for some other purpose.

 An older method of freeing a pointer involves setting the pointer
to NULL. Code::Blocks raises an error when you attempt to use NULL
normally because NULL isn’t part of the standard and it’s considered
outdated. However, you may have a lot of older code that uses
NULL. In this case, you must add #include <cstddef> to your code
to allow it to compile. However, it would be better to update the
code to use either 0 or nullptr.

Working with Smart Pointers
As mentioned previously in the chapter, smart pointers are the direction
that C++ is taking, so you need to use them in all new application
development. The reason is simple: Using smart pointers reduces the
amount of code you must create, reduces errors, makes applications
more efficient, and virtually eliminates many common application
issues, such as memory leaks. The following sections offer an overview
of smart pointers. Most of the code will run with C++ 17, but some of
the items are C++ 20 specific.



CONFIGURING CODE::BLOCKS FOR
SMART POINTERS

To use the examples in the smart pointer sections of this chapter, you must configure
Code::Blocks to use C++ 17 conventions. To do this, choose Settings ⇒ Compiler. You
see the Global Compiler Settings dialog box. Select the Have G++ Follow the Coming
C++1z (aka C++ 17) ISO C++ Language Standard option; then click OK. If you don’t
choose this setting, you see error messages during the build process. Even if you add
the required #include <memory> line in your code, the compiler will act as if it knows
nothing at all about smart pointers.

Creating smart pointers using std::unique_ptr
and std::shared_ptr
Smart pointers do a lot of work for you when it comes to memory
management, so you should use them in new projects and when
converting old projects. The biggest advantage of smart pointers is that
they automatically deallocate resources for you, so you don’t encounter
problems like memory leaks in your applications. However, they can do
a lot more for you by enforcing good programming practices through the
compiler. No longer can you create code that’s easy to crash because
you’re attempting to use a pointer that doesn’t point anywhere. You also
gain access to unique functions and operators that help you better
understand how memory is used.

 This section discusses two smart pointer classes from an
overview perspective: unique_ptr and shared_ptr. The main
difference between them is that a unique_ptr is the only pointer
that can point to a resource. If you attempt to copy a unique_ptr to
another pointer, the compiler will complain. Using a unique_ptr
keeps you from making copies that could cause problems in
deallocating a resource. However, there are times when you
actually do need to copy pointers, such as dealing with a
multithreaded environment. In this case, you use a shared_ptr



because you can copy a shared_ptr to another pointer. In fact, it
even includes a function that tells you how many references
currently exist to the resource. Whether you use unique_ptr or
shared_ptr, both object types wrap a raw pointer in an object that
performs all the management tasks for you.

Normally you use unique_ptr when working in an environment where
you don’t need to copy pointers. Using unique_ptr makes your code
significantly safer and more bulletproof. The UniquePtr example, shown
in Listing 8-10, gets you started on using unique_ptr.

RESOLVING SMART POINTER
EXPERIMENTATION PROBLEMS

Working with the new pointer types can prove frustrating when you continually see
errors instead of results. When you encounter problems using Code::Blocks to work
with new pointer types, make sure you have the correct version installed and the right
settings configured. If you still have problems, consider trying the techniques on
https://wandbox.org/, which can sometimes provide better results because the pointer
methodologies are new. In some cases, you may find that old habits are getting in the
way of new processes, so it’s also essential to verify that your code is written to use the
new pointer types.

LISTING 8-10: Using a unique_ptr to Perform
Common Tasks
#include <iostream> 

#include <memory> 

  

using namespace std; 

  

int main() { 

  unique_ptr<int> ptr1(new int()); 

  *ptr1 = 100; 

  cout << "ptr1 value: " << *ptr1 << endl; 

  

  int myValue = 42; 

  unique_ptr<int> ptr2(&myValue); 

  cout << "ptr2 value: " << *ptr2 << endl; 

  

https://wandbox.org/


  unique_ptr<int> ptr3 = make_unique<int>(99); 

  cout << "ptr3 value: " << *ptr3 << endl; 

  cout << "ptr3 address: " << ptr3.get() << endl; 

  

  unique_ptr<int> ptr4; 

  ptr4 = move(ptr3); 

  if (ptr3 == nullptr) { 

    cout << "ptr3 is nullptr." << endl; 

  } 

  cout << "ptr4 value: " << *ptr4 << endl; 

  cout << "ptr4 address: " << ptr4.get() << endl; 

  

  return 0; 

}

The example shows three ways to create a unique_ptr:

Use the new operator.

Create a variable and point to it.
Employ the make_unique() function.

In all three cases, you get a unique_ptr with the value you specify.
Notice that you must specify the pointer type using <int> (for an int
value). As with other pointers, you can’t really create a generic pointer
that can point to anything.

 A unique_ptr provides you with a number of functions. Unlike
most pointers, you can’t simply specify the pointer name and obtain
its address because unique_ptr exercises stricter control over
accessing the address information. You must use the get() function
instead, as shown in the code.

As previously mentioned, you can’t make one unique_ptr equal to
another unique_ptr. However, you can use the move() function to move
the address of one unique_ptr to another unique_ptr. The swap()
function simply swaps addresses between two pointers.



This example also shows the use of nullptr. As you can see, using
nullptr is clearer than using 0 in your code. Here is the output from this
example:

ptr1 value: 100 

ptr2 value: 42 

ptr3 value: 99 

ptr3 address: 0x5daf28 

ptr3 is nullptr. 

ptr4 value: 99 

ptr4 address: 0x5daf28

To really understand unique_ptr versus shared_ptr, you need to
compare usage side by side. The SharedPtr example, shown in Listing
8-11, demonstrates some differences that you need to consider when
choosing between the two pointer objects.

LISTING 8-11: Using a shared_ptr for Copying
#include <iostream> 

#include <memory> 

  

using namespace std; 

  

int main() { 

  int myValue = 42; 

  shared_ptr<int> ptr1(new int(myValue)); 

  cout << "ptr1 value: " << *ptr1 << endl; 

  cout << "ptr1 use count: " << ptr1.use_count() 

    << endl; 

  

  shared_ptr<int> ptr2 = ptr1; 

  cout << "ptr2 value: " << *ptr2 << endl; 

  cout << "ptr1 address: " << ptr1 << endl; 

  cout << " ptr2 address: " << ptr2 << endl; 

  cout << "ptr1 use count: " << ptr1.use_count() 

    << endl; 

  

  ptr2.reset(); 

  cout << "ptr1 use count: " << ptr1.use_count() 

    << endl; 

  

  ptr1.reset(); 

  cout << "ptr1 use count: " << ptr1.use_count() 

    << endl; 



  

  return 0; 

}

When working with a shared_ptr, you can make one pointer equal to
another pointer, as this example shows. The code demonstrates that both
ptr1 and ptr2 point to the same memory location and have the same
value. Consequently, the resource (not the pointers) is shared between
the two pointers.

To make it easier to determine how many references a resource has, you
use the use_count() function. Each additional reference increments the
count so that you’re never in the dark as to how many references the
resource has.

Of course, now you need some way to remove references when they’re
no longer needed. To perform this task, you use reset(). The code uses
ptr2.reset() to remove the second reference to myValue. As shown in
the following output, the use count decreases each time you reset() a
pointer.

ptr1 value: 42 

ptr1 use count: 1 

ptr2 value: 42 

ptr1 address: 0x6caf08 

ptr2 address: 0x6caf08 

ptr1 use count: 2 

ptr1 use count: 1 

ptr1 use count: 0

 The important thing to remember about copying pointers is that
copying a pointer only copies the pointer address, not the
underlying reference. Consequently, if you copy a pointer to an
array, there is still just one array, but now you have two references
to that array. To create a copy of an array, you would need to create
a second array of the same size and copy the data, index by index,
from the first array to the second array.



 Some significant differences exist between the C++ 17 and the
C++ 20 versions of the smart pointer classes. One of the most
important changes from a coding perspective is that C++ 20 relies
on the spaceship operator (see the “Considering the new spaceship
operator” sidebar of Book 1, Chapter 5 for details) in place of the
!=, <, <=, >, and >= operators. If you try to use these operators in a
C++ 20 application, you see an error message. See
https://en.cppreference.com/w/cpp/memory/unique_ptr and
https://en.cppreference.com/w/cpp/memory/shared_ptr for
other version differences that could cause errors when updating
your code.

Defining nullable values using std::optional and
std::nullopt
An optional value is one that may or may not be there. For example, a
caller may supply an int value when calling your function, or may send
nothing at all. In some cases, when an error occurs, the value may
simply not exist. C++ developers have tried to come up with all sorts of
solutions to the problem of values not being provided, but none of them
is as good as using optional. If a value doesn’t appear in the optional
object, it’s easy to check using nullopt.

You may wonder why optional appears in this chapter. After all, it
should possibly appear in Book 1, Chapter 6 when working with
functions. In many respects, optional appears as a pointer because it
supports many of the same features as unique_ptr and shared_ptr do.
For example, you have access to the reset() and swap() functions, as
described at
https://en.cppreference.com/w/cpp/utility/optional. It’s actually
easier to understand optional after you get to this point in the book,
which is why it appears here.

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/utility/optional


The Optional example, shown in Listing 8-12, demonstrates how to
create a function that could receive a string, but then again, perhaps not.
(Note that this example may not run in Code::Blocks because of
problems in GCC. Currently, you must change the #include
<optional> to read #include <experimental/optional> because the
support is experimental. There are other necessary changes as well,
which you can see in the OptionalExperimental project in the
downloadable source code.)

LISTING 8-12: Using optional to Avoid Instances of
Nothing
#include <iostream> 

#include <optional> 

  

using namespace std; 

  

void myFunction(optional<string> name = nullopt) { 

  if (name == nullopt) { 

    cout << "I wish I knew your name!" << endl; 

  } else { 

    cout << "Hello " << name.value() << "!" << endl; 

  } 

} 

  

int main() { 

  myFunction(); 

  myFunction("Sarah"); 

  return 0; 

}

In this case, you see myFunction(), which accepts nothing or a string.
If the caller sends nothing, then name equals nullopt. On the other hand,
if the caller sends a string, the code uses name.value() to obtain the
string and print it onscreen. Note that you can’t access the string
directly but must call value() instead. Here is the output from this
example:

I wish I knew your name! 

Hello Sarah!



 You might be tempted to think that nullopt somehow equals
nullptr. However, this isn’t the case. If you try to replace the
nullopt check in Listing 8-12 with (ptr1 == nullptr), the
compiler will complain loudly that you’re using the wrong data
type.

Passing Pointer Variables to
Functions

One of the most important uses for pointers is this: If a pointer points to
a variable, you can pass the pointer to a function, and the function can
modify the original variable. This functionality lets you write functions
that can actually modify the variables passed to them. Even though this
section discusses raw pointers, the same techniques work with smart
pointers.

Normally, when you call a function and you pass a few variables to the
function, the computer just grabs the values out of the variables and
passes those values. Take a close look at the VariablePointer example,
shown in Listing 8-13.

LISTING 8-13: A Function Cannot Change the
Original Variables Passed into It
#include <iostream> 

  

using namespace std; 

  

void ChangesAreGood(int myparam) { 

  myparam += 10; 

  cout << "Inside the function:" << endl; 

  cout << myparam << endl; 

} 

  

int main() { 



  int mynumber = 30; 

  cout << "Before the function:" << endl; 

  cout << mynumber << endl; 

  

  ChangesAreGood(mynumber); 

  cout << "After the function:" << endl; 

  cout << mynumber << endl; 

  

  return 0; 

}

Listing 8-13 includes a function called ChangesAreGood() that modifies
the parameter it receives. (It adds 10 to its parameter called myparam.) It
then prints the new value of the parameter.

The main() function initializes an integer variable, mynumber, to 30 and
prints its value. It then calls the ChangesAreGood() function, which
changes its parameter. After coming back from the ChangesAreGood()
function, main() prints the value again. When you run this application,
you see the following output:

Before the function: 

30 

Inside the function: 

40 

After the function: 

30

Before the function call, mynumber is 30. And after the function call, it’s
still 30. But the function added 10 to its parameter. This means that when
the function modified its parameter, the original variable remains
untouched. The two are separate entities. Only the value 30 went into the
function. The actual variable did not. It stayed in main(). But what if
you write a function that you want to modify the original variable?

A pointer contains a number, which represents the address of a variable.
If you pass this address into a function and the function stores that
address into one of its own variables, its own variable also points to the
same variable that the original pointer did. The pointer variable in
main() and the pointer variable in the function both point to the same
variable because both pointers hold the same address.



That’s how you let a function modify data in a variable: You pass a
pointer. But when you call a function, the process is easy because you
don’t need to make a pointer variable. Instead, you can just call the
function, putting an & in front of the variable. Then you’re not passing
the variable or its value — instead, you’re passing the address of the
variable.

The VariablePointer2 example, shown in Listing 8-14, is a modified
form of Listing 8-13; this time, the function actually manages to modify
the original variable.

LISTING 8-14: Using Pointers to Modify a Variable
Passed into a Function
#include <iostream> 

  

using namespace std; 

  

void ChangesAreGood(int *myparam) { 

  *myparam += 10; 

  cout << "Inside the function:" << endl; 

  cout << *myparam << endl; 

} 

  

int main() { 

  int mynumber = 30; 

  cout << "Before the function:" << endl; 

  cout << mynumber << endl; 

  

  ChangesAreGood(&mynumber); 

  cout << "After the function:" << endl; 

  cout << mynumber << endl; 

  

  return 0; 

}

When you run this application, you see the following output:
Before the function: 

30 

Inside the function: 

40 

After the function: 

40



Notice the important difference between this and the output from Listing
8-13: The final line of output is 40, not 30. The variable was modified by
the function!

To understand how this happened, first look at main(). The only
difference in main() is that it has an ampersand (&) in front of the
mynumber argument in the call to ChangesAreGood(). ChangesAreGood()
receives the address of mynumber.

Now the function has some major changes. The function header takes a
pointer rather than a number. You perform this task by adding an asterisk
(*) so that the parameter is a pointer variable. This pointer receives the
address being passed into it. Thus, it points to the variable mynumber.
Therefore, any modifications made by dereferencing the pointer will
change the original variable. The following line changes the original
variable.

 (*myparam) += 10;

PASSING BY VALUE VERSUS BY
REFERENCE

If you work with other languages, you’ll come across the terms passing by value and
passing by reference. The first term, passing by value, means sending the actual value
of a variable to a function when you call it. When working with C++, you accomplish this
task by calling the function with the variable, as shown in Listing 8-13. The second
term, passing by reference, means sending the address of the variable to the function
so that the function can modify the original content of that variable. When working with
C++, you accomplish this task by calling the function with a pointer, as shown in Listing
8-14. C++ uses the terminology it does because C++ can work with pointers directly
rather than hide the underlying mechanics of what is happening using special
techniques or keywords.

 The ChangesAreGood() function in Listing 8-14 no longer
modifies its own parameter. The parameter holds the address of the



original mynumber variable, and that never changes. Throughout the
function, the pointer variable myparam holds the mynumber address.
And any changes the function performs are on the dereferenced
variable, which is mynumber.

Returning Pointer Variables from
Functions

Functions can return values, including pointers. To set up a function to
return a pointer, specify the type followed by an asterisk at the beginning
of the function header. The ReturnPointer example, shown in Listing 8-
15, demonstrates this technique. The function returns a pointer that is the
result of a new operation.

LISTING 8-15: Returning a Pointer from a String
Involves Using an Asterisk in the Return Type
#include <iostream> 

#include <sstream> 

#include <stdlib.h> 

  

using namespace std; 

  

string *GetSecretCode() { 

  string *code = new string; 

  code->append("CR"); 

  

  int randomnumber = rand(); 

  ostringstream converter; 

  converter << randomnumber; 

  code->append(converter.str()); 

  

  code->append("NQ"); 

  return code; 

} 

  

int main() { 

  string *newcode; 

  

  for (int index = 0; index < 5; index++) { 



    newcode = GetSecretCode(); 

    cout << *newcode << endl; 

  } 

  

  return 0; 

}

The main() function creates a pointer to a string named newcode.
GetSecretCode() returns a pointer to a string, so newcode and the
function return value match. When you use newcode, you must
dereference it.

When you run this application, you see something like the following
output:

CR41NQ 

CR18467NQ 

CR6334NQ 

CR26500NQ 

CR19169NQ

 Never return from a function the address of a local variable in
the function. The local variables live in the stack space allocated for
the function, not in the heap. When the function is finished, the
computer frees the stack space used for the function, making room
for the next function call. If you try this, the variables will be okay
for a while, but after enough function calls follow, the variable’s
data will get overwritten.

RANDOM NUMBERS AND STRINGS
Some special code appears in GetSecretCode() that requires explanation. The call to
int randomnumber = rand(); generates a random number. To obtain a random number
and convert it to a string, you add two more include lines:

#include <stdlib.h> 

#include <sstream>

The first line provides access to the rand() function. The second line provides access to
the ostringstream type. Here are the three lines that perform the magic:



int randomnumber = rand(); 

ostringstream converter; 

converter << randomnumber;

The first of these creates a random number by calling rand(), which returns an int. The
next line creates a variable of type ostringstream, which is a type that’s handy for
converting numbers to strings. A variable of this type has features similar to that of a
console. You can use the insertion operator (<<), except that instead of going to the
console, anything you write goes into a string of type ostringstream (which comes from
the words output, string, and stream; usually, things that allow the insertion operator <<
or the extraction operator >> to perform input and output are called streams). You can
add the resulting string onto the code string variable using:

code->append(converter.str());

The part inside parentheses — converter.str() — returns an actual string version of
the converter variable. You use the append() function to add the string to code.

 Just as the parameters to a function are normally values, a
function normally returns a value. In the case of returning a pointer,
the function is still returning just a value — it is returning the value
of the pointer, which is a number representing an address.
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Chapter 1

Working with Classes
IN THIS CHAPTER

 Understanding objects and classes
 Becoming familiar with methods and properties
 Making parts of a class public, private, and protected
 Using constructors and destructors
 Building hierarchies of classes

Back in the early 1990s, the big buzzword in the computer world was
object-oriented. For anything to sell, it had to be object-oriented.
Programming languages were object-oriented. Software applications
were object-oriented. Computers were object-oriented. Unfortunately,
object-oriented was simply a cool catchphrase at the time that meant
little in real terms. Often, ideas begin poorly formed and gain resolution
as people work to implement the idea in the real world.

Now it’s possible to explore what object-oriented really means and how
you can use it to organize your C++ applications. In this chapter, you
discover object-oriented programming and see how you can do it in
C++. Although people disagree on the strict definition of object-
oriented, in this book it means programming with objects and classes.

Understanding Objects and Classes
Consider a pen, a regular, old pen. Here’s what you can say about it:

Ink Color: Black
Shell Color: Light gray
Cap Color: Black



Style: Ballpoint
Length: Six inches
Brand: Paper Mate
Ink Level: 50 percent full
Capability #1: Write on paper
Capability #2: Break in half
Capability #3: Run out of ink

Now, look around for other things, such as a printer. Here’s a description
of a printer:

Kind: Laser
Brand: HP
Model: MFP M479fdw
Ink Color: Color
Case Color: Cream
Input trays: One
Output trays: One
Connection: Ethernet/Wi-Fi/ Wi-Fi Direct
Capability #1: Reads print job requests from the device
Capability #2: Prints on sheets of paper
Capability #3: Prints a test page
Capability #4: Needs the toner cartridges replaced when empty

These lists describe the objects you might see. They provide dimensions,
color, model, brand, and other details. The lists also describe what the
objects can do. The pen can break in half and run out of ink. The printer
can take print jobs, print pages, and have its cartridges replaced.

When describing what objects can do, you carefully write it from the
perspective of the object itself, not from the perspective of the person



using the object. A good way to name the capability is to test it by
preceding it with the words “I can” and see if it makes sense. Thus,
because “I can write on paper” works from the perspective of a pen, the
list contains write on paper for one of the pen’s capabilities. But is
seeing all the objects in the universe possible, or are some objects
hidden? Certainly, some objects are physical, like atoms or the dark side
of the moon, and you can’t see them. But other objects are abstract. For
example, you may have a credit card account. What is a credit card
account, exactly? A credit card account is abstract because you can’t
touch it — it has no physical presence. The following sections of the
chapter examine various kinds of objects: those with physical
representations and those that are abstract.

USING ENUMERATIONS
Someone may think that the number 12 is a good representation of the color blue, and
the number 86 is a good representation of the color red. Purple? That’s 182. Beige?
That’s getting up there — it’s 1047. Yes, this sounds kind of silly. But suppose that you
want to create a variable that holds the color blue. Using the standard types of integers,
floating-point numbers, characters, and letters, you don’t have a lot of choices. In the
old days, people would just pick a number to represent each color and store that
number in a variable. Or, you could have saved a string, as in blue. But C++ presents a
better alternative. It’s called an enumeration, which mates a human-understandable
term like blue to a computer-friendly value like 12. Remember that for each type, there’s
a whole list of possible values. An integer, for example, can be a whole number within a
particular range. (This range varies between computers, but it’s usually pretty big.)
Strings can be any characters, all strung together. But what if you want a value called
blue? Or red? Or even beige? Then you need enumerations. This line creates an
enumeration type:

enum MyColor {blue, red, green, yellow, black, beige};

You now have a new type called MyColor, which you can use the same way you can use
other types, such as int, double, or string. For example, you can create a variable of
type MyColor and set its value to one of the values in the curly braces:

MyColor inkcolor = blue; 

MyColor shellcolor = black;

The variable inkcolor is of type MyColor, and its value is blue. The variable shellcolor
is also of type MyColor, and its value is black.



Classifying classes and objects
When you pick up a pen, you can ask somebody, “What type of object is
this an instance of?” Most people would probably say, “a pen.” In
computer programming, instead of using type of object, you say class.
This thing in your hand belongs to the pen class. Now if you point to the
object parked out in the driveway and ask, “What class does that belong
to?” the answer is, “class Car.” Of course, you could be more specific.
You may say that the object belongs to class 2020 Ford Taurus.

When you see a pen, you might ask what class this object belongs to. If
you then pick up another pen, you see another example of the same
class. One class; several examples. If you stand next to a busy street, you
see many examples of the class called car. Or you may see many
examples of the class Ford Explorer, a few instances of the class Toyota
Corolla, and so on. It depends on how you classify those objects roaring
down the road. Regardless, you likely see several examples of any given
class.

So when you organize things, you specify a class, which is the type of
object. And when you’re ready, you can start picking out examples (or
instances) of the class. Each class may have several instances. Some
classes have only one instance. That’s a singleton class. For example, at
any given time, the class United States President would have one
instance.

CLASS NAMES AND CLASS FILES
In Listings 1-3 and 1-5, nearby in this chapter, you see the filenames match the name of
the class. Common practice when creating a class is to put the class definition in a
header file of the same name as the class but with an .h extension. And you put the
class method code in a source code file of the same name as the class but this time
with a .cpp extension. You also capitalize the filenames the same as the class name;
thus, the files are called Pen.h and Pen.cpp. Naming the files the same as classes has
lots of advantages:

You automatically know the name of the header file you need to include if you
want to use a certain class.

It provides a general consistency, which is always good in reducing the
complexities of programming.



When you see a header file, you know what class is probably inside it.

Describing methods and data
If you choose a class, you can describe its characteristics. However,
because you’re describing only the class characteristics, you don’t
actually specify them. You may say the pen has an ink color, but you
don’t actually say what color. That’s because you don’t yet have an
example of the class Pen. You have only the class itself. When you
finally find an example, it may be one color, or it may be another. So, if
you’re describing a class called Pen, you may list the characteristics
presented in the introduction to this section.

You don’t specify ink color, shell color, length, or any of these
properties (terms that describe the class) as actual values. You’re listing
only general characteristics for all instances of the class Pen. That is,
every pen has these properties. But the actual values for these properties
might vary from instance to instance. One pen may have a different ink
color from another, but both might have the same brand. Nevertheless,
they are both separate instances of the class Pen.

After creating an instance of class Pen, you can provide values for the
properties. For example, Table 1-1 lists the property values of three
actual pens.

TABLE 1-1 Specifying Property Values for Instances of
Class Pen

Property Name First Pen Second Pen Third Pen

Ink Color Blue Red Black

Shell Color Grey Red Grey

Cap Color Blue Black Black

Style Ballpoint Fountain Felt-tip

Length 5.5 inches 5 inches 6 inches

Brand Office Depot Parker Paper Mate



Property Name First Pen Second Pen Third Pen

Ink Level 30% 60% 90%

In Table 1-1, the first column holds the property names. The second
column holds property values for the first pen. The third column holds
the property values for the second pen, and the final column holds the
property values for the third pen. All the pens in the class share
properties. But the values for these properties may differ from pen to
pen. When you instantiate (build or create) a new Pen, you follow the
list of properties, giving the new pen instance its own values. You may
make the shell purple with yellow speckles, or you may make it
transparent. But you would give it a shell that has some color, even if
that color is transparent.

In Table 1-1, you didn’t see a list of methods (ways of interacting with
the Pen class to exercise its capabilities). But all these pens have the
same methods:

Method #1: Write on paper
Method #2: Break in half
Method #3: Run out of ink

Unlike properties, methods don’t change from instance to instance. They
are the same for each class.

 When you describe classes to build a computer application using
a class, you are modeling. In the preceding examples, you modeled
a class called Pen. In the following section, you implement this
model by writing an application that mimics a pen using the Pen
class.



 If you work with enums (the code form of enumerations), you
need to decide what to name your new type. For example, you can
choose MyColor or MyColors. Many people, when they write a line
such as enum MyColor {blue, red, green, yellow, black,
beige};, make the name plural (MyColors) because this is a list of
colors. It’s best to make the term singular, as in MyColor, because
you use only one color at a time. When you declare a variable, it
makes more sense: MyColor inkcolor; would mean that inkcolor
is a color — not a group of colors.

Implementing a class
To implement a class in C++, you use the keyword class. And then you
add the name of the class, such as Pen. You then add an open brace, list
your properties and methods, and end with a closing brace.

 Most people capitalize the first letter of a class name in C++,
and if their class name is a word, they don’t capitalize the
remaining letters. Although you don’t have to follow this rule,
many people do. You can choose any name for a C++ class
provided it is not a C++ keyword; it consists only of letters, digits,
and underscores; and it does not start with a number.

The PenClass example, shown in Listing 1-1, contains a C++ class
description that appears inside the Pen.h header file. (See Book 1,
Chapter 7, for information on how to put code in a header file.) Review
the header file, and you see how it implements the different
characteristics. The properties of a header file are just like variables:
They have a type and a name. The methods are implemented using
functions. All this code goes inside curly brackets and is preceded by a
class header. The header gives the name of the class. And, oh yes, the
word public is stuck in there, and it has a colon after it. The “Accessing



members,” section later in this chapter explains the word public. By
itself, this code isn’t very useful, but you put it to use in Listing 1-2, an
application that you can actually compile and run.

LISTING 1-1: Pen.h Contains the Class Description
for Pen
#ifndef PEN_H_INCLUDED 

#define PEN_H_INCLUDED 

using namespace std; 

enum Color { 

  blue, 

  red, 

  black, 

  clear, 

  grey 

}; 

  

enum PenStyle { 

  ballpoint, 

  felt_tip, 

  fountain_pen 

}; 

  

class Pen { 

public: 

  Color InkColor; 

  Color ShellColor; 

  Color CapColor; 

  PenStyle Style; 

  float Length; 

  string Brand; 

  int InkLevelPercent; 

   

  void write_on_paper(string words) { 

    if (InkLevelPercent <= 0) { 

      cout << "Oops! Out of ink!" << endl; 

    } 

    else { 

      cout << words << endl; 

      InkLevelPercent = InkLevelPercent - words.length(); 

    } 

  } 

   

  void break_in_half() { 



    InkLevelPercent = InkLevelPercent / 2; 

    Length = Length / 2.0; 

  } 

   

  void run_out_of_ink() { 

    InkLevelPercent = 0; 

  } 

}; 

#endif // PEN_H_INCLUDED

 When you write a class, you always end it with a semicolon.
Write that down on a sticky note and hang it on the refrigerator. The
effort spent in doing this will be well worth avoiding the frustration
of wondering why your code won’t compile.

 In a class definition, you describe the characteristics and
capabilities (that is, supply the properties and methods,
respectively).

Note in Listing 1-1, earlier in this chapter, that the methods access the
properties. However, we said that these variables don’t have values yet,
because this is just a class, not an instance of a class. How can that be?
When you create an instance of this class, you can give values to these
properties. Then you can call the methods. And here’s the really great
part: You can make a second instance of this class and give it its own
values for the properties. Yes, the two instances will each have their own
sets of properties. And when you run the methods for the second
instance, these functions operate on the properties for the second
instance. Isn’t C++ smart? Now look at Listing 1-2. This is a source file
that uses the header file in Listing 1-1. In this code, you see the Pen class
in action.

LISTING 1-2: main.cpp Contains Code That Uses the
Class Pen



#include <iostream> 

#include "Pen.h" 

  

using namespace std; 

  

int main() { 

  Pen FavoritePen; 

  FavoritePen.InkColor = blue; 

  FavoritePen.ShellColor = grey; 

  FavoritePen.CapColor = blue; 

  FavoritePen.Style = ballpoint; 

  FavoritePen.Length = 5.5; 

  FavoritePen.Brand = "Office Depot"; 

  FavoritePen.InkLevelPercent = 30; 

   

  Pen WorstPen; 

  WorstPen.InkColor = red; 

  WorstPen.ShellColor = red; 

  WorstPen.CapColor = black; 

  WorstPen.Style = fountain_pen; 

  WorstPen.Length = 5.0; 

  WorstPen.Brand = "Parker"; 

  WorstPen.InkLevelPercent = 60; 

   

  cout << "This is my favorite pen" << endl; 

  cout << "Color: " << FavoritePen.InkColor << endl; 

  cout << "Brand: " << FavoritePen.Brand << endl; 

  cout << "Ink Level: " << FavoritePen.InkLevelPercent 

    << "%" << endl; 

  FavoritePen.write_on_paper("Hello I am a pen"); 

  cout << "Ink Level: " << FavoritePen.InkLevelPercent 

    << "%" << endl; 

   

  return 0; 

}

There are two variables of class Pen: FavoritePen and WorstPen. To
access the properties of these objects, you type the name of the variable
holding the object, a dot (or period), and then the property name. For
example, to access the InkLevelPercent member of WorstPen, you
type:

WorstPen.InkLevelPercent = 60;

Remember, WorstPen is the variable name, and this variable is an object.
It is an object or an instance of class Pen. This object has various



properties, including InkLevelPercent.

You can also run some of the methods that are in these objects. This
code calls:

FavoritePen.write_on_paper("Hello I am a pen");

This called the function write_on_paper() for the object FavoritePen.
Look at the code for this function, which is in the header file, Listing 1-
1:

void write_on_paper(string words) { 

  if (InkLevelPercent <= 0) { 

    cout << "Oops! Out of ink!" << endl; 

  } 

  else { 

    cout << words << endl; 

    InkLevelPercent = InkLevelPercent - words.length(); 

  } 

}

This function uses the variable called InkLevelPercent. But
InkLevelPercent isn’t declared in this function. The reason is that
InkLevelPercent is part of the object and is declared in the class.
Suppose you call this method for two different objects, as in the
following:

FavoritePen.write_on_paper("Hello I am a pen"); 

WorstPen.write_on_paper("Hello I am another pen");

The first of these lines calls write_on_paper() for the FavoritePen
object; thus, inside the code for write_on_paper(), the
InkLevelPercent refers to InkLevelPercent for the FavoritePen
object. It looks at and possibly decreases the variable for that object
only. But WorstPen has its own InkLevelPercent property, separate
from that of FavoritePen. So in the second of these two lines,
write_on_paper() accesses and possibly decreases the
InkLevelPercent that lives inside WorstPen. In other words, each object
has its own InkLevelPercent. When you call write_on_paper(), the
function modifies the property based on which object you are calling it



with. The first line calls it with FavoritePen. The second calls it with
WorstPen. When you run this application, you see the following output:

This is my favorite pen 

Color: 0 

Brand: Office Depot 

Ink Level: 30% 

Hello I am a pen 

Ink Level: 14%

You should notice something about the color line. Here’s the line of code
that writes it:

cout << "Color: " << FavoritePen.InkColor << endl;

THE STRING CLASS
If you’ve been reading the previous chapters of Book 1 (and now this first chapter of
Book 2), and trying the applications, you have seen the string type. Now for the big
secret: string is actually a class. When you create a variable of type string, you are
creating an object of class string. That’s why, to use the string functions, you first type
the variable name, a dot, and then the function name: You are really calling a method
for the string object that you created. Similarly, when you work with pointers to strings,
instead of a dot you can use the -> notation to access the methods. (See “Using
classes and raw pointers,” later in this chapter, for more information.) When working
with newer versions of C++, the string class is part of the std namespace, which is why
you add using namespace std; to the beginning of your code. If you use an older
version of C++, the string class appears as part of the string file. In this case, you
include <string> to provide the necessary header files to declare the string class.

This line outputs the InkColor member for FavoritePen. But what type
is InkColor? It’s the new Color enumerated type. But something is
wrong. It printed 0 despite being set as follows:

FavoritePen.InkColor = blue;

The code sets it to blue, not 0. Unfortunately, that’s the breaks with
using enum. You can use it in your code, but under the hood, it just stores
numbers. When printed, you get a number. The compiler chooses the
numbers for you, and it starts the first entry in the enum list as 0, the
second as 1, then 2, then 3, and so on. Thus, blue is stored as 0, red as 1,



black as 2, clear as 3, and grey as 4. Fortunately, people have found a
way to create a new class that handles the enum for you (that is, it wraps
around the enum), and then you can print what you really want: blue,
red, black, clear, and grey. Book 2, Chapter 2 has tips on how to do
this astounding feat.

 Remember that you can create several objects (also called
instances) of a single class. Each object gets its own properties,
which you declare in the class. To access the members of an object,
you use a period, or dot.

Separating method code
When you work with functions, you can either make sure that the code
to your function is positioned before any calls to the function, or you can
use a forward reference, also called a function prototype. Book 1,
Chapter 6 discusses this feature.

When you work with classes and methods, you have a similar option.
Most C++ programmers prefer to keep the code for their methods
outside the class definition. The reason for placing them outside is to
make the code easier to read; you don’t end up with a single, huge block
of code that is incredibly difficult to follow. In addition, someone using
the class may not care about how the methods work, so keeping things
simple is the best option. The class definition contains only method
prototypes, or, at least, mostly method prototypes. If the method is one
or two lines of code, people may leave it in the class definition.

When you use a method prototype in a class definition, you write the
prototype by ending the method header with a semicolon where you
would normally have the open brace and code. If your method looks like
this:

void break_in_half() { 

    InkLevelPercent = InkLevelPercent / 2; 

    Length = Length / 2.0; 

}



a method prototype would look like this:
void break_in_half();

After you write the method prototype in the class, you write the method
code again outside the class definition. However, you need to doctor it
up just a bit. In particular, you need to throw in the name of the class, so
that the compiler knows which class this method goes with. The
following is the same method described earlier, but with the class
information included. You separate the class name and method name
with a scope resolution operator (::) that links the method to the class:

void Pen::break_in_half() { 

    InkLevelPercent = InkLevelPercent / 2; 

    Length = Length / 2.0; 

}

You put the method after your class definition. And you would want to
put the method code inside one of your source code files if your class
definition is in a header file.

 You can use the same method name in different classes. As are
variables in different functions, method names are associated with a
particular class using the scope resolution operator. Although you
don’t want to go overboard on duplicating method names, if you
feel a need to, you can certainly do it without a problem. For
example, toString() is a common method name and you often see
it provided with a wide range of classes in your application.

The PenClass2 example, shown in Listings 1-3 and 1-4, contains the
modified version of the Pen class that appeared earlier in this chapter in
Listing 1-1. You can use these two files together with Listing 1-2, which
hasn’t changed.

LISTING 1-3: Using Method Prototypes with the
Modified Pen.h file



#ifndef PEN_H_INCLUDED 

#define PEN_H_INCLUDED 

  

using namespace std; 

enum Color { 

  blue, 

  red, 

  black, 

  clear, 

  grey 

}; 

  

enum PenStyle { 

  ballpoint, 

  felt_tip, 

  fountain_pen 

}; 

  

class Pen { 

public: 

  Color InkColor; 

  Color ShellColor; 

  Color CapColor; 

  PenStyle Style; 

  float Length; 

  string Brand; 

  int InkLevelPercent; 

  void write_on_paper(string words); 

  void break_in_half(); 

  void run_out_of_ink(); 

}; 

  

#endif // PEN_H_INCLUDED

LISTING 1-4: Containing the Methods for Class Pen
in the New Pen.cpp File
#include <iostream> 

#include "Pen.h" 

  

using namespace std; 

  

void Pen::write_on_paper(string words) { 

  if (InkLevelPercent <= 0) { 

    cout << "Oops! Out of ink!" << endl; 

  } 



  else { 

    cout << words << endl; 

    InkLevelPercent = InkLevelPercent - words.length(); 

  } 

} 

  

void Pen::break_in_half() { 

  InkLevelPercent = InkLevelPercent / 2; 

  Length = Length / 2.0; 

} 

  

void Pen::run_out_of_ink() { 

  InkLevelPercent = 0; 

}

All the functions from the class are now in a separate source (.cpp) file.
The header file now just lists prototypes and is a little easier to read. The
source file includes the header file at the top. That’s required; otherwise,
the compiler won’t know that Pen is a class name, and it will get
confused (as it so easily can).

The parts of a class
Here is a summary of the parts of a class and the different ways classes
can work together:

Class: A class is a type. It includes properties and methods.
Properties describe the class, and methods describe its behaviors.
Object: An object is an instance of a class. Think of the class as a
blueprint and the object as the building created from the blueprint.
You need only one blueprint to build multiple buildings of precisely
the same type. Each building is an instance of that blueprint.
Class definition: The class definition describes the class. It starts
with the word class, and then has the name of the class, followed by
an open brace and closing brace. Inside the braces are the members
of the class.
Property: A property is a characteristic in a class, such as a color,
style, or other descriptive element. You list the properties inside the
class (normally before any methods, but there is no rule that says you



must do so). Each instance of the class gets its own copy of each
property.
Method: A method is a capability of a class — some task that the
class can perform. As with properties, you list methods inside the
class. When you call a method for a particular instance, the method
accesses the properties for the instance.

When you divide the class, you put part in the header file and part in the
source code file. The following list describes what goes where:

Header file: Put the class definition in the header file. Properties
appear as part of the class definition within the header. You can
include the method code inside the class definition if it’s a short
method. Most people prefer not to put any method code longer than a
line or two in the header — in fact, many don’t put any method code
at all in the header. You may want to name the header file the same
as the class but with an .h or .hpp extension. Thus, the class Pen, for
instance, might be in the file Pen.h.

Source file: If your class has methods, and you didn’t put the code in
the class definition, you need to put the code in a source file. When
you do, precede the function name with the class name and the scope
resolution operator (::). If you named the header file the same as the
class, you probably want to name the source file the same as the
class as well but with a .cpp extension.

Working with a Class
Many handy tricks are available for working with classes. In this section,
you explore several clever ways of working with classes, starting with
the way you can hide certain parts of your class from other functions that
are accessing them.

Accessing members
When you work with an object in real life, there are often parts of the
object that you interact with and other parts that you don’t. For example,



when you use the computer, you type on the keyboard but don’t open the
box and poke around with a wire attached to a battery. For the most part,
the stuff inside is off-limits except when you’re upgrading it.

In object terminology, the words public and private refer to properties
and methods. When you design a class, you might want to make some
properties and methods freely accessible by class users. You may want to
keep other members tucked away. A class user is the part of an
application that creates an instance of a class and calls one of its
methods. In Listing 1-2, earlier in the chapter, main() is a class user. If
you have a function called FlippityFlop() that creates an instance of
your class and does a few things to the instance, such as change some its
properties, FlippityFlop() is a class user. In short, a user is any
function that accesses your class.

When designing a class, you may want only specific users calling certain
methods. You may want to keep other methods hidden away, to be called
only by other methods within the class. Suppose you’re writing a class
called Oven. This class includes a method called Bake(), which takes a
number as a parameter representing the desired oven temperature. Now
you may also have a method called TurnOnHeatingElement() and one
called TurnOffHeatingElement().

Here’s how it would work. The Bake() method starts out calling
TurnOnHeatingElement(). Then it keeps track of the temperature, and
when the temperature is correct, it calls TurnOffHeatingElement(). You
wouldn’t want somebody walking in the kitchen and calling the
TurnOnHeatingElement() method without touching any of the dials,
only to leave the room as the oven gets hotter and hotter with nobody
watching it. You allow the users of the class to call only Bake(). The
other two methods, TurnOnHeatingElement() and
TurnOffHeatingElement(), are reserved for use only by the Bake()
function.



 You bar users from calling functions by making specific
functions private. Functions that you want to allow access to you
make public. After you design a class, if you write a function that
instantiates an object based on that class that tries to call one of an
object’s private methods, you get a compiler error when you try to
compile it. The compiler won’t allow you to call it.

The OvenClass example, shown in Listing 1-5, defines a sample Oven
class and a main() that uses it. Look at the class definition. It has two
sections: one private and the other public. The code for the functions
appears after the class definition. The two private functions don’t do
much other than print a message. (Although they’re also free to call
other private functions in the class.) The public function, Bake(), calls
each of the private functions, because it’s allowed to.

LISTING 1-5: Using the Public and Private Words to
Hide Parts of Your Class
#include <iostream> 

  

using namespace std; 

  

class Oven { 

private: 

  void TurnOnHeatingElement(); 

  void TurnOffHeatingElement(); 

public: 

  void Bake(int Temperature); 

}; 

  

void Oven::TurnOnHeatingElement() { 

  cout << "Heating element is now ON! Be careful!" << endl; 

} 

  

void Oven::TurnOffHeatingElement() { 

  cout << "Heating element is now off. Relax!" << endl; 

} 

  

void Oven::Bake(int Temperature) { 



  TurnOnHeatingElement(); 

  cout << "Baking!" << endl; 

  TurnOffHeatingElement(); 

} 

  

int main() { 

  Oven fred; 

  fred.Bake(875); 

  return 0; 

}

When you run this application, you see some messages:
Heating element is now ON! Be careful! 

Baking! 

Heating element is now off. Relax!

Nothing too fancy here. Now if you tried to include a line in your
main() such as the one in the following code, where you call a private
function

fred.TurnOnHeatingElement();

you see an error message telling you that you can’t do it because the
function is private. In Code::Blocks, you see this message:

error: 'void Oven::TurnOnHeatingElement()' is private

 When you design your classes, consider making all the functions
private by default, and then only make those public that you want
users to access. Some people, however, prefer to go the other way
around: Make them all public, and only make those private that you
are sure you don’t want users to access. There are good arguments
for either approach; however, the preference in this book is to make
public only what must be public. This approach minimizes the risk
of some other application that’s using that class creating errors by
calling things the programmer doesn’t really understand.



 You don’t necessarily need to list the private members first
followed by the public members. You can put the public members
first if you prefer. Some people put the public members at the top so
they see them first. That makes sense. Also, you can have more
than one private section and more than one public section. For
example, you can have a public section, a private section, and then
another public section, as in the following code:

class Oven { 

public: 

    void Bake(int Temperature); 

private: 

    void TurnOnHeatingElement(); 

    void TurnOffHeatingElement(); 

public: 

    void Broil(); 

};

Using classes and raw pointers
This and other sections of the chapter discuss the use of raw pointers
with objects. In the “Understanding the Changes in Pointers for C++ 20”
section of Book 1, Chapter 8, you discover that there are other pointer
types, including smart and optional pointers. Because most code still
relies on raw pointers to work with objects, the majority of this chapter
focuses on their use.

As with any variable, you can have a pointer variable that points to an
object. As usual, the pointer variable’s type must match the type of the
class. This creates a pointer variable that points to a Pen instance:

Pen *MyPen;

The variable MyPen is a pointer, and it can point to an object of type Pen.
The variable’s own type is pointer to Pen, or in C++ notation, Pen *.
Because you’re always working with pointers when interacting with
objects, you leave ptr off the variable name to save typing time and



focus attention on the variable’s purpose, which is to serve as your
personal pen.

 A line of code like Pen *MyPen; creates a variable that serves as
a pointer to an object. But this line, by itself, does not actually
create an instance. By itself, it points to nothing. To create an
instance, you have to call new. This is a common mistake among
C++ programmers; sometimes people forget to call new and wonder
why their applications crash.

After you create the variable MyPen, you can create an instance of class
Pen and point MyPen to it using the new keyword, like so:

MyPen = new Pen;

Or you can combine both Pen *MyPen; and the preceding line:

Pen *MyPen = new Pen;

Now you have two variables: You have the actual object, which is
unnamed and sitting on the heap. (See the “Heaping and Stacking the
Variables” section of Book 1, Chapter 8, for more information on
pointers and heaps.) You also have the pointer variable, which points to
the object: two variables working together. Because the object is out on
the heap, the only way to access it is through the pointer. To access the
members through the pointer, you use a special notation — a minus sign
followed by a greater-than sign. It bears a passing resemblance to an
arrow (and is therefore called the arrow operator), as the following line
makes clear:

MyPen->InkColor = red;

This goes through the MyPen pointer to set the InkColor property of the
object to red.

As with other variables you created with new, after you are finished
using an object, you should call delete to free the memory used by the



object pointed to by MyPen. To do so, start with the word delete and
then the name of the object pointer, MyPen, as in the following:

delete MyPen;

CREATING A PEN.CPP AND PEN.H
REFERENCE

To use this example and others in the chapter that reference Pen.cpp and Pen.h, you
must include Pen.cpp and Pen.h from the PenClass2 example using the technique
described in the “Creating a project with multiple existing files” section of Book 1,
Chapter 7. Notice that because Pen.h doesn’t appear in the current directory, you must
make a relative reference (the ../PenClass2/ part) to it in Listing 1-6. As shown in the
following figure, if you add Pen.cpp and Pen.h to the project first, and then type the
#include " statement, Code::Blocks will actually provide the relative reference for you.

 Store a 0 in the pointer after you delete the object it points to.
When you call delete on a pointer to an object, you are deleting
the object itself, not the pointer. If you don’t store a 0 in the pointer,
it still points to where the object used to be.

The PenClass3 example, shown in Listing 1-6, demonstrates the process
of declaring a pointer, creating an object and pointing to it, accessing the
object’s members through the pointer, deleting the object, and clearing
the pointer back to 0.



LISTING 1-6: Managing an Object’s Life
#include <iostream> 

#include "../PenClass2/Pen.h" 

  

using namespace std; 

  

int main() { 

  Pen *MyPen; 

  MyPen = new Pen; 

  MyPen->InkColor = red; 

  cout << MyPen->InkColor << endl; 

  delete MyPen; 

  MyPen = 0; 

  return 0; 

}

 Table 1-2 reiterates the process (steps) shown in Listing 1-6 in a
more formal way. The table is called “Steps to Using Objects”
rather than something more specific such as “Using Objects with
Pointers” because the majority of your work with objects will be
through pointers. Therefore, this is the most common way of using
pointers.

TABLE 1-2 Steps to Using Objects

Step Sample Code Action

1 Pen *MyPen; Declares the pointer

2 MyPen = new Pen; Calls new to create the object

3
MyPen->InkColor =

red;

Accesses the members of the object through the
pointer

4 delete MyPen; Deletes the object

5 MyPen = 0; Clears the pointer

Now that you have an overview of the process through Listing 1-6 and
understand the basics through Table 1-2, you can see how to formalize



the procedure. The following steps describe precisely how to work with
raw pointers and objects:

1. Declare the pointer.
The pointer must match the type of object you intend to work with,
except that the pointer’s type name in C++ is followed by an
asterisk, *.

2. Call new, passing the class name, and store the results of new in
the pointer.
You can combine Steps 1 and 2 into a single step.

3. Access the object’s members through the pointer with the arrow
operator, ->.
You could dereference the pointer and put parentheses around it, but
everyone uses the shorthand notation.

4. When you are finished with the pointer, call delete.
This step frees the object from the heap. Remember that this does not
delete the pointer itself, but frees the object memory.

5. Clear the pointer by setting it to 0.

 If your delete statement is at the end of the application, you
don’t need to clear the pointer to 0 because the pointer is going out
of scope. The pointer won’t exist any longer, so setting it to 0 isn’t
essential, but it’s good practice because you get into the habit of
doing it in places where clearing the pointer to 0 would be important.

Using classes and smart pointers
If you’re working with C++ 17 or above, you probably want to use smart
pointers with your objects, rather than the labor-intensive and error-
prone raw pointers. The SmartPtr example, shown in Listing 1-7, shows
the same process as Listing 1-6 but uses smart pointers instead. You still
need to add Pen.cpp and Pen.h from PenClass2.



LISTING 1-7: Managing an Object’s Life Using Smart
Pointers
#include <iostream> 

#include <memory> 

#include "../PenClass2/Pen.h" 

  

using namespace std; 

  

int main() { 

  unique_ptr<Pen> MyPen; 

  MyPen.reset(new Pen()); 

  MyPen->InkColor = red; 

  cout << MyPen->InkColor << endl; 

  MyPen.reset(); 

  return 0; 

}

 You wouldn’t ordinarily assign an object to a unique_ptr as a
separate step, but this example shows you how by using reset().
In this case, you actually reset MyPen to point to a new object, new
Pen(), which must include the opening and closing parentheses. If
you were to do this in an application, reset() would take care of
freeing any old object before pointing MyPen to any new object. The
“Creating smart pointers using std::unique_ptr and std::shared_ptr”
section of Book 1, Chapter 8 shows the standard approach to
creating smart pointers.

Notice that you still use the arrow operator to assign the color red to
MyPen->InkColor and to retrieve the value later. This part of the code
appears the same as when using a raw pointer. The final step is to free
the object memory using reset(). The pointer will automatically delete
itself, saving you a line of code in this example.

Passing objects to functions
When you write a function, normally you base your decision about using
pointers on whether or not you want to change the original variables



passed into the function. Suppose you have a function called AddOne(),
and it takes an integer as a parameter. If you want to modify the original
variable, you can use a pointer (or you can use a reference). If you don’t
want to modify the variable, just pass the variable by value.

The following prototype represents a function that can modify the
variable passed into it:

void AddOne(int *number);

And this prototype represents a function that cannot modify the variable
passed into it:

void AddOne(int number);

With objects, you can do something similar. For example, this function
takes a pointer to an object and can, therefore, modify the object:

void FixFlatTire(Car *mycar);

This version doesn’t allow modification of the original object:
void FixFlatTire(Car mycar);

However, unlike a primitive type, the function gets its own instance. In
other words, every time you call this function, it creates an entirely new
instance of class Car. This instance would be a duplicate copy of the
myCar object that is an instance of class Car — it wouldn’t be the same
instance.

When you work with objects, a complete copy is not always a sure thing.
The original object may have properties that are pointers to other
objects, but the object copy may not get copies of those pointers. The
properties that contain pointers may end up blank (due to a lack of
proper copying technique), point to the same values as the original (a
shallow copy), or point to new variables (a deep copy). The difference is
the kind of copy that the object provides:

Shallow: C++ copies the object and its property values precisely as
provided in the original object. If the original object doesn’t rely on
any sort of dynamic memory allocation, as is the case when working
the primitives, the copy will work precisely as planned.



Deep: C++ not only copies the original object, but also allocates
memory for any objects pointed to by the original object. So, the
copy not only copies the original object, but any objects pointed to
by that object. The two copies are completely separate.

 A problem occurs when any of the subsidiary objects also have
pointers to other objects. Now you have an entirely new level of
objects to worry about. The topic of shallow and deep copying can
become incredibly complex. If you want to know more, check out
the article at https://www.learncpp.com/cpp-tutorial/915-
shallow-vs-deep-copying/.

 The smart move with objects is to always pass objects as
pointers. Don’t pass objects directly into functions. Yes, it risks bad
code changing the object, but careful C++ programmers want the
actual object, not a copy. Having access to the original outweighs
the risk of an accidental change. This chapter explains how to
prevent accidental changes by using the const parameters in the
next section.

Because your function receives its objects as pointers, you continue
accessing them by using the arrow operator. For example, the function
FixFlatTire() may do this:

void FixFlatTire(Car *mycar) { 

  mycar->RemoveTire(); 

  mycar->AddNewTire(); 

}

Or, if you prefer references, you would do this:
void FixFlatTire2(Car &mycar) { 

  mycar.RemoveTire(); 

  mycar.AddNewTire(); 

}

https://www.learncpp.com/cpp-tutorial/915-shallow-vs-deep-copying/


Remember that pointers contain the address of an object, while a
reference is simply another name (alias) for an object. Even though the
reference is still an address, it’s the actual address of the object, rather
than a pointer to the object. (Book 1, Chapter 8 discusses pointers in
more detail.) In this code, because you’re dealing with a reference, you
access the object’s members using the dot operator (.) rather than the
arrow operator (->).

 Another reason to use only pointers and references as parameters
for objects is that a function that takes an object as a parameter
usually wants to change the object. Such changes require pointers
or references.

Using const parameters in functions
A constant is a variable or object that another function can’t change even
when you pass a reference to it to another function. To define a variable
or an object as constant, unchangeable, you use the const keyword. For
example, to define a variable as constant, you use:

const int MyInt = 3;

If someone were to come along and try to use this code:
MyInt = 4;

The compiler would display an error message saying, error:
assignment of read-only variable ’MyInt’. The same holds true for
a function using a const primitive like this one:

void DisplayInt(const int Value) { 

  cout << Value << endl; 

}

It’s possible to display Value or interact with it in other ways, but trying
to change Value will raise an error. This version will raise an error
because Value is being changed:



void DisplayInt(const int Value) { 

  Value += 1; 

  cout << Value << endl; 

}

The const keyword is useful when working with objects because you
generally don’t want to pass an object directly. That involves copying
the object, which is messy. Instead, you normally pass by using a pointer
or reference, which would allow you to change the object. If you put the
word const before the parameter, the compiler won’t allow you to
change the parameter. The PenClass4 example that appears in Listing 1-
8 has const inserted before the parameter. The function can look at the
object but can’t change it.

LISTING 1-8: The Inspect Function Is Not Allowed to
Modify Its Parameter
#include <iostream> 

#include "../PenClass2/Pen.h" 

  

using namespace std; 

  

void Inspect(const Pen *Checkitout) { 

  cout << Checkitout->Brand << endl; 

} 

  

int main() { 

  Pen *MyPen = new Pen(); 

  MyPen->Brand = "Spy Plus Camera"; 

  Inspect(MyPen); 

  return 0; 

}

Now suppose that you tried to change the object in the Inspect function.
You may have put a line in that function like this:

Checkitout->Length = 10.0;

If you try this, the compiler issues an error. In Code::Blocks, you get:
error: assignment of member ’Pen::Length’ in read-only

object.



 If you have multiple parameters, you can mix const and non-
const. If you go overboard, this can be confusing. The following
line shows two parameters that are const and another that is not.
The function can modify only the members of the object called one.

void Inspect(const Pen *Checkitout, Spy *one, 

             const Spy *two);

Using the this pointer
Consider a function called OneMoreCheeseGone(). It’s not a method, but
it takes an object of instance Cheese as a parameter. Its prototype looks
like this:

void OneMoreCheeseGone(Cheese *Block);

This is just a simple function with no return type. It takes an object
pointer as a parameter. For example, after you eat a block of cheese, you
can call:

OneMoreCheeseGone(MyBlock);

Now consider this: If you have an object on the heap, it has no name.
You access it through a pointer variable that points to it. But what if the
code is currently executing inside a method of an object? How do you
refer to the object itself?

C++ has a secret variable that exists inside every method: this. It’s a
pointer variable. The this variable always points to the current object.
So if code execution is occurring inside a method and you want to call
OneMoreCheeseGone(), passing in the current object (or block of
cheese), you would pass this.

The following sections discuss what you might call the standard use of
this, the version of this that exists in most code now. Once you
understand the standard use of this, you move on to modifications to



this that occur in C++ 20. Like most pointer usage in C++ 20, this has
undergone changes to make it safer, smarter, and easier.

Defining standard this pointer usage
This section tells you how this is used for application development in
most applications today. The CheeseClass example, shown in Listing 1-
9, demonstrates this.

LISTING 1-9: Passing an Object from Inside Its
Methods by Using the this Variable
#include <iostream> 

  

using namespace std; 

  

class Cheese { 

public: 

  string status; 

  void eat(); 

  void rot(); 

}; 

  

int CheeseCount; 

  

void OneMoreCheeseGone(Cheese *Block) { 

  CheeseCount--; 

  Block->status = "Gone"; 

}; 

  

void Cheese::eat() { 

  cout << "Eaten up! Yummy" << endl; 

  OneMoreCheeseGone(this); 

} 

  

void Cheese::rot() { 

  cout << "Rotted away! Yuck" << endl; 

  OneMoreCheeseGone(this); 

} 

  

int main() { 

    Cheese *asiago = new Cheese(); 

    Cheese *limburger = new Cheese(); 

  

    CheeseCount = 2; 



    asiago->eat(); 

    limburger->rot(); 

  

    cout << endl; 

    cout << "Cheese count: " << CheeseCount << endl; 

    cout << "asiago: " << asiago->status << endl; 

    cout << "limburger: " << limburger->status << endl; 

    return 0; 

}

The this listing has four main parts. First is the definition for the class
called Cheese. The class contains a couple of methods.

Next is the function OneMoreCheeseGone() along with a global variable
that it modifies. This function subtracts one from the global variable and
stores a string in a property, status, of the object passed to it.

Next come the actual methods for class Cheese. (You must put these
functions after OneMoreCheeseGone() because they call it. If you use a
function prototype as a forward reference for OneMoreCheeseGone(), the
order doesn’t matter.)

Finally, main() creates two new instances of Cheese. Then it sets the
global variable to 2, which keeps track of the number of blocks left.
Next, it calls the eat() function for the asiago cheese and rot() for the
limburger cheese. And then it prints the results of everything that
happened: It displays the Cheese count, and it displays the status of
each object.

When you run the application in Listing 1-9, you see this output:
Eaten up! Yummy 

Rotted away! Yuck 

  

Cheese count: 0 

asiago: Gone 

limburger: Gone

The first line is the result of calling asiago->eat(), which prints one
message. The second line is the result of calling limburger->rot(),
which prints another message. The third line is simply the value in the
variable CheeseCount. This variable was decremented once each time



the computer called OneMoreCheeseGone(). Because the function was
called twice, CheeseCount went from 2 to 1 to 0. The final two lines
show the contents of the status variable in the two objects.
(OneMoreCheeseGone() stores "Gone" in these variables.)

Take a careful look at the OneMoreCheeseGone() function. It operates on
the current object provided as a parameter by setting its status variable to
the string Gone. The eat() method calls it, passing the current object
using this. The rot() method also calls it, again passing the current
object via this.

Changes to the this pointer in C++ 20
Unless you’re actually working with C++ 20 at a somewhat detailed
level, you can probably skip this section and not really lose much. Of
course, you may just be curious and learning something new is always a
good thing.

C++ 20 brings a few changes to the this pointer with it. Even though
you don’t see anything about functional programming until Book 3, it’s
important to know that like the examples in this chapter, you can use the
this pointer in a lambda expression. A lambda expression is a
mathematically based approach to dealing with certain kinds of
programming problems that is concise and easier to understand than
some standard C++ approaches. You can also pass a lambda expression,
essentially a kind of function, to other functions as you would any other
argument. The change of the use of the this pointer for lambda
expressions is simply a clarification — you must now actually declare
use of the this pointer before you’re allowed to use it. You can get an
overview of lambda expressions in the “Using Lambda Expressions for
Implementation” section of Book 3 Chapter 1 and read about using
lambda expressions in your code in Book 3 Chapter 2. The discussion at
http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2018/p0806r2.html will fill in
some very technical details if you’re interested.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0806r2.html


It’s important to note that the C++ definition of an object as described in
this chapter differs from the definition used by some other languages.
There is lengthy and involved discussion of the topic at
https://blog.panicsoftware.com/objects-their-lifetimes-and-

pointers/, but the point is that if you understand objects as described in
this chapter, then you know how C++ developers view them. You may
have noticed that there is a great deal of emphasis in this chapter on
destroying objects by releasing their storage. The “Starting and Ending
with Constructors and Destructors” section of this chapter discusses
another technique, which is to call a destructor. However, until C++ 20,
standard objects, such as string, don’t have a destructor as such, the
calling of it is a no-op (a no operation, nothing happens). Because the
manner in which objects are destroyed is changing, so is the use of the
this pointer, which relies on the existence of an object to work.

 The this pointer can also come into play in situations that most
people are unlikely to see unless they’re performing advanced
tasks. For example, you can use the this pointer to access
initialized members of a partially constructed object—one that
hasn’t had every member fully initialized.

Overloading methods
You may want a method in a class to handle different types of
parameters. For example, you might have a class called Door and a
method called GoThrough(). You might want the GoThrough() method
to take as parameters objects of class Dog, class Human, or class Cat.
Depending on which class is entering, you might want to change the
GoThrough() function’s behavior.

A way to handle this is by overloading the GoThrough() function. C++
lets you design a class that has multiple methods that are all named the
same. However, the parameters must differ between these methods. With

https://blog.panicsoftware.com/objects-their-lifetimes-and-pointers/


the GoThrough() method, one version will take a Human, another a Dog,
and another a Cat.

View the code for the DoorClass example in Listing 1-10 and notice the
GoThrough() methods. There are three of them. To use these methods,
main() creates four different objects — a cat, a dog, a human, and a
door. It then sends each creature through the door.

LISTING 1-10: Overloading Functions in a Class
#include <iostream> 

  

using namespace std; 

  

class Cat { 

public: 

  string name; 

}; 

  

class Dog { 

public: 

  string name; 

}; 

  

class Human { 

public: 

  string name; 

}; 

  

class Door { 

private: 

  int HowManyInside; 

public: 

  void Start(); 

  void GoThrough(Cat *acat); 

  void GoThrough(Dog *adog); 

  void GoThrough(Human *ahuman); 

}; 

  

void Door::Start() { 

  HowManyInside = 0; 

} 

  

void Door::GoThrough(Cat *somebody) { 

  cout << "Welcome, " << somebody->name << endl; 



  cout << "A cat just entered!" << endl; 

  HowManyInside++; 

} 

  

void Door::GoThrough(Dog *somebody) { 

  cout << "Welcome, " << somebody->name << endl; 

  cout << "A dog just entered!" << endl; 

  HowManyInside++; 

} 

  

void Door::GoThrough(Human *somebody) { 

  cout << "Welcome, " << somebody->name << endl; 

  cout << "A human just entered!" << endl; 

  HowManyInside++; 

} 

  

int main() { 

  Door entrance; 

  entrance.Start(); 

  

  Cat *SneekyGirl = new Cat; 

  SneekyGirl->name = "Sneeky Girl"; 

  Dog *LittleGeorge = new Dog; 

  LittleGeorge->name = "Little George"; 

  Human *me = new Human; 

  me->name = "John"; 

  

  entrance.GoThrough(SneekyGirl); 

  entrance.GoThrough(LittleGeorge); 

  entrance.GoThrough(me); 

  

  delete SneekyGirl; 

  delete LittleGeorge; 

  delete me; 

  return 0; 

}

The application allows dogs and cats to enter like humans. The
beginning of this application declares three classes, Cat, Dog, and Human,
each with a name member. Next is the Door class. A private member,
HowManyInside, tracks how many beings have entered. The Start()
function activates the door. Finally, the class contains the overloaded
functions. They all have the same name and the same return type. You
can have different return types, but for the compiler to recognize the



functions as unique, they must differ by parameters. These do; one takes
a Cat pointer; one takes a Dog pointer; and one takes a Human pointer.

Next is the code for the methods. The first function, Start() sets
HowManyInside to 0. The next three functions are overloaded. They do
similar things, but they write slightly different messages. Each takes a
different type.

The first step in main() is to create a Door instance. The code doesn’t
use a pointer to show that you can mix pointers with stack variables in
an application. After creating the Door instance, the code calls Start().
Next, the code creates three creature instances: Cat, Dog, and Human, and
sets the name property for each.

The calls to the entrance.GoThrough() method passes a Cat, a Dog, and
a Human (all in order). Because you can see the Door class, you know the
code calls three different methods that are all named the same. But when
using the class, you consider them one method that accepts a Cat, a Dog,
or a Human. That’s the goal of overloading: to create what feels like
versions of the one function. Here’s what you see when you run this
application:

Welcome, Sneeky Girl 

A cat just entered! 

Welcome, Little George 

A dog just entered! 

Welcome, John 

A human just entered!

Starting and Ending with
Constructors and Destructors

You can add two special methods to your class that let you provide
special startup and shutdown functionality: a constructor and a
destructor. The following sections provide details about these methods.

Starting with constructors



When you create a new instance of a class, you may want to do some
basic object setup. Suppose you have a class called Apartment, with a
private property called NumberOfOccupants and a method called
ComeOnIn(). The code for ComeOnIn() adds 1 to NumberOfOccupants.

When you create a new instance of Apartment, you probably want to
start NumberOfOccupants at 0. The best way to do this is by adding a
special method, a constructor, to your class. This method has a line of
code such as

NumberOfOccupants = 0;

Whenever you create a new instance of the class Apartment, the
computer first calls this constructor for your new object, thereby setting
NumberOfOccupants to 0. Think of the constructor as an initialization
function: The computer calls it when you create a new object.

To write a constructor, you add it as another method to your class, and
make it public. You name the constructor the same as your class. For the
class Apartment, you name the constructor Apartment(). The
constructor has no return type, not even void. You can have parameters
in a constructor; see “Adding parameters to constructors,” later in this
chapter. Listing 1-11, later in this section, shows a sample constructor
along with a destructor, which is covered in the next section.

Ending with destructors
When you delete an instance of a class, you might want some cleanup
code to straighten things out before the object memory is released. For
example, your object may have properties that are pointers to other
objects. It’s essential to delete those other objects. You put cleanup code
in a special function called a destructor. A destructor is a finalization
function that the computer calls before it deletes your object.

The destructor function gets the same name as the class, except it has a
tilde, ~, at the beginning of it. (The tilde is usually in the upper-left
corner of the keyboard.) For a class called Squirrel, the destructor
would be ~Squirrel(). The destructor doesn’t have a return type, not



even void, because you can’t return anything from a destructor (the
object is gone, after all). You just start with the function name and no
parameters. The next section, “Sampling constructors and destructors,”
shows an example that uses both constructors and destructors.

 Constructors and destructors are a way of life for C++
programmers. Nearly every class has a constructor, and many also
have a destructor.

Sampling constructors and destructors
The WalnutClass example, shown in Listing 1-11, uses a constructor
and destructor. This application involves two classes, the main one
called Squirrel that demonstrates the constructor and destructor, and
one called Walnut, which is used by the Squirrel class.

LISTING 1-11: Initializing and Finalizing with
Constructors and Destructors
#include <iostream> 

  

using namespace std; 

  

class Walnut { 

public: 

  int Size; 

}; 

  

class Squirrel { 

private: 

  Walnut *MyDinner; 

public: 

  Squirrel(); 

  ~Squirrel(); 

}; 

  

Squirrel::Squirrel() { 

  cout << "Starting!" << endl; 

  MyDinner = new Walnut; 

  MyDinner->Size = 30; 



} 

  

Squirrel::~Squirrel() { 

  cout << "Cleaning up my mess!" << endl; 

  delete MyDinner; 

} 

  

int main() { 

  Squirrel *Sam = new Squirrel; 

  Squirrel *Sally = new Squirrel; 

  

  delete Sam; 

  delete Sally; 

  return 0; 

}

The Squirrel class has a property called MyDinner that is a pointer to a
Walnut instance. The Squirrel constructor creates an instance of Walnut
and stores it in MyDinner. The destructor deletes the instance of Walnut.
In main(), the code creates two instances of Squirrel. Each instance
gets its own Walnut to eat. Each Squirrel creates its Walnut when it
starts and deletes the Walnut when the Squirrel is deleted.

Notice in this code that the constructor has the same name as the class,
Squirrel(). The destructor also has the same name, but with a tilde, ~,
tacked on to the beginning of it. Thus, the constructor is Squirrel() and
the destructor is ~Squirrel(). Destructors never take parameters and
you can’t call them directly, but the runtime calls them automatically
when it’s time to destroy an object.

When you run this application, you can see the following lines, which
were spit up by the Squirrel in its constructor and destructor. (You see
two lines of each because main() creates two squirrels.)

Starting! 

Starting! 

Cleaning up my mess! 

Cleaning up my mess!

If the Walnut class also had a constructor and destructor, and you made
the MyDinner property a variable in the Squirrel class, rather than a
pointer, the computer would create the Walnut instance after it creates



the Squirrel instance, but before it calls the Squirrel() constructor. It
then deletes the Walnut instance when it deletes the Squirrel instance,
after calling the ~Squirrel() destructor. The code performs these steps
for each instance of Squirrel.

CONSTRUCTORS AND DESTRUCTORS
WITH STACK VARIABLES

Listing 1-11 creates two Squirrels on the heap by using pointers and calling

Squirrel *Sam = new Squirrel; 

Squirrel *Sally = new Squirrel;

But you could also create them on the stack by declaring them without pointers:

Squirrel Sam; 

Squirrel Sally;

If you do this, the application will run fine, provided that you remove the delete lines.
You do not delete stack variables. The computer calls the destructor when the main()
function ends. That’s the general rule with objects on the stack: They are created when
you declare them, and they stay until the function ends.

Adding parameters to constructors
Like other methods, constructors allow you to include parameters. When
you do, you can use these parameters in the initialization process. To use
them, you list the arguments inside parentheses when you create the
object. Because constructors have parameters, you can create multiple
overloaded constructors for a class by varying the number and type of
parameters.

 Although int has a constructor, it isn’t a class. However, the
runtime library (that big mass of code that gets put in with your
application by the linker) includes a constructor and destructor that
you can use when calling new for an integer.



Suppose that you want the Squirrel class to have a name property.
Although you could create an instance of Squirrel and then set its name
property, you can specify the name directly by using a constructor. The
constructor’s prototype looks like this:

Squirrel(string StartName);

Then, you create a new instance like so:
Squirrel *Sam = new Squirrel("Sam");

The constructor is expecting a string, so you pass a string when you
create the object.

The SquirrelClass example, shown in Listing 1-12, presents an
application that includes all the basic elements of a class with a
constructor that accepts parameters.

LISTING 1-12: Placing Parameters in Constructors
#include <iostream> 

  

using namespace std; 

  

class Squirrel { 

private: 

    string Name; 

public: 

    Squirrel(string StartName); 

    void WhatIsMyName(); 

}; 

  

Squirrel::Squirrel(string StartName) { 

    cout << "Starting!" << endl; 

    Name = StartName; 

} 

  

void Squirrel::WhatIsMyName() { 

    cout << "My name is " << Name << endl; 

} 

  

int main() 

{ 

    Squirrel *Sam = new Squirrel("Sam"); 

    Squirrel *Sally = new Squirrel("Sally"); 



  

    Sam->WhatIsMyName(); 

    Sally->WhatIsMyName(); 

  

    delete Sam; 

    delete Sally; 

    return 0; 

}

In main(), you pass a string into the constructors. The constructor code
takes the StartName parameter and copies it to the Name property. The
WhatIsMyName() method writes Name to the console.

Building Hierarchies of Classes
When you start going crazy describing classes, you usually discover
hierarchies of classes. For example, you have a class Vehicle that you
want to divide into classes: Car, PickupTruck, TractorTrailer, and
SUV. The Car class is further divided into the StationWagon,
FourDoorSedan, and TwoDoorHatchback classes.

Or you could divide Vehicle into car brands, such as Ford, Honda, and
Toyota. Then you could divide the class Toyota into models, such as
Prius, Avalon, Camry, and Corolla. You can create similar groupings of
objects for the other class hierarchies; your decision depends on how
you categorize things and how the hierarchy is used. In the hierarchy,
class Vehicle is at the top. This class has properties you find in every
brand or model of vehicle. For example, all vehicles have wheels. How
many they have varies, but it doesn’t matter at this point, because classes
don’t have specific values for the properties.

Each brand has certain characteristics that might be unique to it, but each
has all the characteristics of class Vehicle. That’s called inheritance.
The class Toyota, for example, has all the properties found in Vehicle.
And the class Prius has all the properties found in Toyota, which
includes those inherited from Vehicle.

Creating a hierarchy in C++



In C++, you can create a hierarchy of classes. When you take one class
and create a new one under it, such as creating Toyota from Vehicle,
you are deriving a new class, which means Toyota is a child of Vehicle
in the hierarchy.

To derive a class from an existing class, you write the new class as you
would any other class, but you extend the header after the class name
with a colon, :, the word public, and then the class you’re deriving
from, as in the following class header line:

class Toyota : public Vehicle {

When you do so, the class you create (Toyota) inherits the properties
and methods from the parent class (Vehicle). For example, if Vehicle
has a public property called NumberOfWheels and a public method called
Drive(), the class Toyota has these members, although you didn’t write
the members in Toyota.

The VehicleClass example, shown in Listing 1-13, demonstrates class
inheritance. It starts with a class called Vehicle, and a derived class
called Toyota. You create an instance of Toyota in main() and call two
methods for the instance, MeAndMyToyota() and Drive(). The definition
of the Toyota class doesn’t show a Drive() function. The Drive()
function is inherited from the Vehicle class. You can call this function
like a member of the Toyota class because in many ways it is.

LISTING 1-13: Deriving One Class from Another
#include <iostream> 

  

using namespace std; 

  

class Vehicle { 

public: 

  int NumberOfWheels; 

  

  void Drive() { 

    cout << "Driving, driving, driving…" << endl; 

  } 

}; 



  

class Toyota : public Vehicle { 

public: 

  void MeAndMyToyota() { 

    cout << "Just me and my Toyota!" << endl; 

  } 

}; 

  

int main() { 

  Toyota MyCar; 

  MyCar.MeAndMyToyota(); 

  MyCar.Drive(); 

  return 0; 

}

When you run this application, you see the output from two functions:
Just me and my Toyota! 

Driving, driving, driving…

Understanding types of inheritance
When you create a class, its methods can access both public and private
properties and methods. Users of the class can access only the public
properties and methods. When you derive a new class, it cannot access
the private members in the parent class. Private members are reserved
for a class itself and not for any derived class. When members need to be
accessible by derived classes, there’s a specification you can use beyond
public and private: protected.

 Protected members and private members work the same way
from a user perspective, but derived classes can access both
protected and public members. Private members are hidden from
both users and derived classes. Always use protected members
when possible when you plan to derive classes from a parent class.

Creating and Using Object Aliases
An alias is another name for something. If your name is Robert,
someone could use an alias of Bob when calling your name. Both Robert



and Bob point to the same person — you. However, the names are
actually different. One is your real name, Robert, and the other is your
alias, Bob. In real life, using aliases can make things easier: saying Bob
is definitely easier than saying Robert (although not by much). Using
aliases in C++ applications can make things easier, too.

 One of the most common reasons to use an alias in C++ is to
change the manner in which an object is accessed. Moving a pointer
to an object is always going to be easier than moving the object
itself because a pointer is simply a number that specifies the
address of the object. The object could contain complex data and
pointers to yet other objects. Moving objects is complicated and
messy, so developers try to avoid it at all cost.

However, sending a pointer to someone gives the recipient access to the
original data. The recipient could modify the data in ways that you don’t
want. So, you could create an alias of the original object that is a
constant. No one can modify a constant. The ObjectAlias example,
shown in Listing 1-14, demonstrates how to create a constant alias of a
string object. The same technique works with any other sort of object
you might want to work with.

LISTING 1-14: Creating an Object Alias
#include <iostream> 

  

using namespace std; 

  

int main() { 

  string OriginalString = "Hello"; 

  const string &StringCopy(OriginalString); 

  OriginalString = "Goodbye"; 

  cout << OriginalString << endl; 

  cout << StringCopy << endl; 

  return 0; 

}



The code begins by creating a string named OriginalString that
contains a value of Hello. It then creates a const string alias of
OriginalString named StringCopy. When the code changes the value
of OriginalString, the value of StringCopy is also changed because
StringCopy points to the same location in memory. So when you run
this example, you see output of

Goodbye 

Goodbye

It may not seem like you’ve accomplished anything, but if you try to
modify the value of StringCopy, Code::Blocks outputs an error message
like this:

error: passing 'const string {aka const 

std::basic_string<char>}' as 'this' argument of 

'std::basic_string<_CharT, _Traits, _Alloc>& 

std::basic_string<_CharT, _Traits, 

_Alloc>::operator=(const _CharT*) [with _CharT = char; 

_Traits = std::char_traits<char>; _Alloc = 

std::allocator<char>; std::basic_string<_CharT, _Traits, 

_Alloc> = std::basic_string<char>]' discards qualifiers 

[-fpermissive]|

The point is that you can’t modify the value of StringCopy, but you can
modify the value of OriginalString. Sending StringCopy to someone
who needs access to the value is safe. Just to ensure that you understand
what is happening, try making StringCopy a standard string rather than
a const string. You’ll be able to modify the value, and the
modification will now affect OriginalString as well. StringCopy truly
is an alias of OriginalString, but as a const string, it’s an alias that
prevents modification of the underlying string value.
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Chapter 2

Using Advanced C++ Features
IN THIS CHAPTER

 Using comments
 Working with conversions, consoles, and preprocessor directives
 Manipulating constants, enums, and random numbers
 Structuring code and data with switches and arrays

This chapter will amaze you because C++ has amazing advanced
features. It begins by helping you understand how to leave notes for
yourself so that you don’t embarrass yourself in front of your boss when
you forget how your code works. Comments can do a lot more, but for
the most part, they’re there to help you remember.

The next sections are all about helping your code jump through new
hoops. You discover that you can turn an int into a string, connect
with the user at the command line, and tell the compiler to do something
new with your code as part of a preprocessor directive. In case that isn’t
enough, you also find out new ways to create variables using constants,
enums, and random numbers.

The final sections are about working with code using switches so that
you don’t have to keep creating huge if…else if statement chains. You
also gain knowledge of the humble array, which will make your life
considerably easier in so many ways that space doesn’t allow total
disclosure. Suffice it to say that storing lists of data elements in a
convenient form is just the start.

Filling Your Code with Comments



Your boss is irritable because that rush job you did was a little too rushed
and now the application keeps crashing. So, you have your boss standing
there, right behind you, wanting you to explain your code, except that
you can’t. Your nervousness makes all the code look like a jumble of
alien words that you swear you didn’t write, even though you know you
did. Why can’t you remember? At this point, you’d just love to go
somewhere and hide for a while, but the boss is smoking mad and you’ll
never make your escape. You can avoid this situation and many others in
which your memory about your code is apt to fail. To remember what
your code does, you put comments into it. A comment is simply some
words in the code that the compiler ignores and include for the benefit of
the humans reading the code. Comments are also quite useful for
colleagues who come by to help you out of jams, or to allow someone to
fix your code over the weekend when you’d much rather spend time at
the beach. Comments are essential to good coding. For example, you
may have some code like this:

total = 10; 

for (i = 0; i < 10; i++) 

{ 

    total = (total + i) * 3; 

}

But this code may not be clear to you if you put it away for six months
and come back later to look at it. So instead, you can add some
comments. You denote a comment in C++ by starting a line with two
slashes, like this:

// Initialize total to the number 

// of items involved. 

total = 10; 

  

// Calculate total for the 

// first ten sets. 

for (i = 0; i < 10; i++) 

{ 

    total = (total + i) * 3; 

}

Now anyone working on the project can understand what the code does.
Note the white space between the groups of code. Using white space



helps someone looking at the code see where one thought ends and
another begins. You should always include white space in your code so
that everyone can read the code more easily. Of course, you could put in
comments like this:

// My salary is too low 

// I want a raise 

total = 10; 

  

// Someday they'll recognize 

// my superior talents! 

for (i = 0; i < 10; i++) 

{ 

    total = (total + i) * 3; 

}

However, comments like this don’t have much use in the code; besides,
they may have the reverse effect from the one you’re hoping for! The
compiler ignores comments; they’re meant for other humans. You can
write whatever you want as comments, and the compiler pretends that
it’s not even there.

 A comment begins with //, and it can begin anywhere on the
line. In fact, contrary to what you might think, you can even put
comments at the end of a line containing C++ code, instead of on a
separate line. Using comments on a code line lets you focus a
comment on just that line, as follows:

int subtotal = 10;  // Initialize subtotal to 10.

This comment gives a little more explanation of what the line does. You
usually use line comments like this when you want to tell others what
kind of information a variable holds or explain a complex task.
Normally, you explain blocks of code as shown earlier in this section.

 You can use two kinds of comments in C++. One is the double
slash (as already described). The other kind of comment begins



with a slash-asterisk, /*, and ends with an asterisk-slash, */. The
comments go between these delimiters (special character
sequences) and can span several lines, as in the following example:

/* This application separates the parts of the 

   sandwich into its separate parts. This 

   process is often called "separation of 

   parts". 

   (c) 2020 Sandwich Parts Separators, Inc. 

*/

This is all one comment, and it spans multiple lines. You normally use
this kind of comment to provide an overview of a task or describe the
purpose of a function. This kind of comment also works well for the
informational headings that some large company applications require. As
with other comments, you can put these anywhere in your code, as long
as you don’t break a string or word in two by putting a comment in the
middle. Much of the code in the remainder of this chapter has comments
in it so that you can see how to use comments and so that you can get a
few more ideas about how the code works.

 Some beginning programmers get the mistaken idea that
comments appear in the application window when the application
runs. That is not the case. A comment does not write anything to
the console. To write things to the console, use cout.

Converting Types
Sometimes, you just don’t have the type of things you want. You might
want to trade in your 2014 Ford Taurus for that brand-new Porsche. But,
needless to say, unless you have plenty of money, that might be difficult.

But converting between different types in C++ — now, that’s a lot easier.
For example, you may have a string variable called digits, and it holds
the string "123". Further, you want to somehow get the numbers inside



that string into an integer variable called amount. Thus, you want amount
to hold the value 123; that is, you want to convert the string to a number.

Understanding how int and string conversions
work
In Listing 2-1, later in this chapter, you see how you can convert
between numbers and strings. Book 1, Chapter 8 shows some sample
code for converting a number to a string. This example employs that
same technique along with a similar technique for converting a string
back to a number.

Converting strings is an interesting concept in C++ because an
outstanding feature lets you write to and read from a string just as you
would to and from a console. For example, although you can write a
number 12 out to a console by using code like this:

cout << 12;

you can actually do the same thing with strings: You can write a number
12 to a string, as in

mystring << 12;

After this line runs, mystring contains the value "12". However, to do
this, you need to use a special form of string called a stringstream. In
the never-ending world of computer terminology, a stream is something
that you can write to and read from in a flowing fashion (think about bits
flowing through a wire — much as a stream flows along a waterbed).
For example, you might write the word "hello" to a stringstream, and
then the number 87, and then the word "goodbye". After those three
operations, the string contains the value "hello87goodbye".

Similarly, you can read from a stream. In the section “Reading from the
Console,” later in this chapter, you discover how you can read from a
console by using the > notation. When you read from the console,
although your application stops and waits for the user to enter
something, the real stream technology takes place after the user types
something and presses Enter: After the console has a series of characters,



your application reads in the characters as a stream, one character after
another. You can read a string, and then a series of numbers, and another
string, and so on.

With stringstream, you can do something similar. You would fill the
string with something rather than have the user fill it, as in the case of a
console. From there, you can begin to read from the string, placing the
values into variables of different types. One of these types is int. But
because the stringstream is, at heart, just a string, that’s how you
convert a string of digits to an integer: You put the digit characters in the
string and read the string as a stream into your integer.

The only catch to using these techniques is that you need to know in
advance which kind of streaming you want to do. If you want to write to
the stringstream, you create an instance of a class called
ostringstream. (The o is for output.) If you want to read from a
stringstream, you create an instance of a class called istringstream.
(The i is for input.)

Seeing int and string conversions in action
The TypeConvert example, shown in Listing 2-1, demonstrates several
kinds of int and string conversions that include truncating (lopping the
decimal portion off) and rounding (bringing the number value up or
down to the nearest whole number). The listing also includes two handy
functions that you may want to save for your own programming
experience later. One is called StringToNumber() (converts a string to a
number) and the other is called NumberToString() (converts a number
to a string). This example includes plenty of comments as well as
demonstrates some extremely simple onscreen formatting using the tab
(\t) escape character (see the “Tabbing your output” section of Book 1,
Chapter 3 for details).

LISTING 2-1: Converting Between Types Is Easy
#include <iostream> 

#include <sstream>   // for istringstream, ostringstream 

  



using namespace std; 

  

int StringToNumber(string MyString) { 

  // Converts from string to number. 

  istringstream converter(MyString); 

  // Contains the operation results. 

  int result; 

  

  // Perform the conversion and return the results. 

  converter >> result; 

  return result; 

} 

  

string NumberToString(int Number) { 

   // Converts from number to string. 

  ostringstream converter; 

  

  // Perform the conversion and return the results. 

  converter << Number; 

  return converter.str(); 

} 

  

int main() { 

  // Contains the theoretical number of kids. 

  float NumberOfKids; 

  // Contains an actual number of kids. 

  int ActualKids; 

  

  /* You can theoretically have 2.5 kids, but in the 

     real world, you can't. Convert the theoretical number 

     of kids to a real number by truncating NumberOfKids 

     and display the results. */ 

  NumberOfKids = 2.5; 

  ActualKids = (int)NumberOfKids; 

  cout << "Float to Integer" << "\tTruncated" << endl; 

  cout << NumberOfKids << "\t\t\t" << ActualKids << endl; 

  

  // Perform the same task as before, but use a 

  // theoretical 2.1 kids this time. 

  NumberOfKids = 2.1; 

  ActualKids = (int)NumberOfKids; 

  cout << NumberOfKids << "\t\t\t" << ActualKids << endl; 

  

  // This time we'll use 2.9 kids. 

  NumberOfKids = 2.9; 

  ActualKids = (int)NumberOfKids; 

  cout<<NumberOfKids<<"\t\t\t"<<ActualKids<<endl<<endl; 

  



  // This process rounds the number, instead of 

  // truncating it. We do it using the same three 

  // numbers as before. 

  NumberOfKids = 2.5; 

  ActualKids = (int)(NumberOfKids + .5); 

  cout << "Float to Integer" << "\tRounded" << endl; 

  cout << NumberOfKids << "\t\t\t" << ActualKids << endl; 

  

  // Do it again using 2.1 kids. 

  NumberOfKids = 2.1; 

  ActualKids = (int)(NumberOfKids + .5); 

  cout << NumberOfKids << "\t\t\t" << ActualKids << endl; 

  

  // Do it yet again using 2.9 kids. 

  NumberOfKids = 2.9; 

  ActualKids = (int)(NumberOfKids + .5); 

  cout<<NumberOfKids<<"\t\t\t"<<ActualKids<<endl<<endl; 

  

  // In this case, use the StringToNumber() function to 

  // perform the conversion. 

  cout << "String to number" << endl; 

  int x = StringToNumber("12345") * 50; 

  cout << x << endl << endl; 

  

  // In this case, use the NumberToString() function to 

  // perform the conversion. 

  cout << "Number to string" << endl; 

  string mystring = NumberToString(80525323); 

  cout << mystring << endl; 

  return 0; 

}

 The comments in Listing 2-1 give you a complete dialogue of
how the code works, so no discussion of it here is needed. Of
course, you do want to see the output, which appears in Figure 2-1.
The important thing to remember is that rounding is different from
truncating in the results that it produces, and each method is
appropriate at specific times depending on the rules you want to
use. For example, when calculating, in whole dollars, how much
someone owes you, you don’t want to rely on truncating or you’ll
end up with less money.



FIGURE 2-1: The formatted output shows the difference between truncating and rounding.

Considering other conversion issues
Another kind of conversion that’s useful is converting floating-point
numbers (that is, numbers with a decimal point) and integers and vice
versa. In C++, this conversion is easy: You just copy one to the other,
and C++ takes care of the rest.

The only catch is that when C++ converts from a float to an integer, it
always truncates. That is, it doesn’t round up: When it converts 5.99 to
an integer, it doesn’t go up to 6; it goes down to 5. But there’s an easy
trick around that: Add 0.5 to the number before you convert it. If the
number is in the upper half (that is, from 0.5 to 0.9999 and so on), then
adding 0.5 first takes the number above or equal to the upper whole
number. Then, when the function rounds the number, the number rounds
down to the upper whole number. For example, if you start with 4.6, just
converting it outputs 4. But if you add 0.5, the 4.6 becomes 5.1, and
then when you convert that, you get 5. It works!

Going in the other direction is even easier: To convert an integer to a
float, you just copy it. If i is an integer and f is a float, you just set it as
follows to convert it:

f = i;



 Whenever you convert from a float to an int or from an int to
float, you must tell the compiler that you know what you’re doing
by adding (int) or (float) in front of the variable. Adding these
keywords is called coercion or type conversion. The act of coercing
one type to another is called casting. For example, the following
line tells the compiler that you know you’re converting from a
float to an int:

ActualKids = (int)NumberOfKids;

If you leave out the (int) part, the compiler normally displays a
warning like this one:

warning: converting to 'int' from 'float'

Using the proper coercion code is important because it also tells other
developers that you really do intend to perform the type conversion.
Otherwise, other developers will point to that area of your code and
deem it the source of an error, when it might not be the true source.
Using proper coding techniques saves everyone time.

Reading from the Console
Throughout this book, you have used the console to see example output.
You can also use the console to get information from the user — a topic
briefly mentioned in the “Reading from the Console” section of Book 1,
Chapter 4. To use the console to get information from the user, instead of
using the usual << with cout to write to the console, you use the >>
operator along with cin (pronounced “see-in”).

In the old days of the C programming language, reading data from the
console and placing it in variables was somewhat nightmarish because it
required you to use pointers. In C++, that’s no longer the case. If you
want to read a set of characters into a string called MyName, you just type

cin >> MyName;



That’s it! The application pauses, and the user can type something at the
console. When the user presses Enter, the string the user typed goes into
the MyName string.

 Reading from the console has some catches. First, the console
uses spaces as delimiters. That means that if you put spaces in what
you type, only the letters up to the space are put into the string.
Anything after the space, the console saves for the next time your
application calls cin. That situation can be confusing. Second, if
you want to read into a number, the user can type any characters,
not just numbers. The computer then goes through a bizarre process
that converts any letters into a meaningless number. Not good.

The ReadConsoleData example, shown in Listing 2-2, shows you how to
read a string and then a number from the console. Next, it shows you
how you can force the user to type only numbers. And finally, it shows
how you can ask for a password with only asterisks appearing when the
user types.

To make these last two tasks work correctly you use the conio library.
This library gives you better access to the console, bypassing cin. This
example also uses the StringToNumber() function, described in the
“Seeing int and string conversions in action” section, earlier in this
chapter.

LISTING 2-2: Having the User Type Something
#include <iostream> 

#include <sstream> 

#include <conio.h> 

  

using namespace std; 

  

int StringToNumber(string MyString) { 

  // Holds the string. 

  istringstream converter(MyString); 

  // Holds the integer result. 



  int result; 

  

  // Perform the conversion. 

  converter >> result; 

  return result; 

} 

  

string EnterOnlyNumbers() { 

  string numAsString = ""; // Holds the numeric string. 

  char ch = getch();       // Obtains a single character. 

  

  // Keep requesting characters until the user presses 

  // Enter. 

  while (ch != '\r') {  // \r is the enter key 

    // Add characters only if they are numbers. 

    if (ch >= '0' && ch <= '9') { 

      cout << ch; 

      numAsString += ch; 

    } 

  

    // Get the next character from the user. 

    ch = getch(); 

  } 

  

  return numAsString; 

} 

  

string EnterPassword() { 

  // Holds the password string. 

  string numAsString = ""; 

  // Obtains a single character from the user. 

  char ch = getch(); 

  

  // Keep requesting characters until the user presses 

  // Enter. 

  while (ch != '\r') { // \r is the enter key 

    // Display an asterisk instead of the input character. 

    cout << '*'; 

    // Add the character to the password string. 

    numAsString += ch; 

    // Get the next character from the user. 

    ch = getch(); 

  } 

  

  return numAsString; 

} 

  

int main() { 



  // Just a basic name-entering 

  string name; 

  cout << "What is your name? "; 

  cin >> name; 

  cout << "Hello " << name << endl; 

  

  // Now you are asked to enter a number, 

  // but the computer allows you to enter anything! 

  int x; 

  cout << endl; 

  cout << "Enter a number, any number! "; 

  cin >> x; 

  cout << "You chose " << x << endl; 

  

  // This time you can only enter a number. 

  cout << endl; 

  cout << "This time enter a number!" << endl; 

  cout << "Enter a number, any number! "; 

  string entered = EnterOnlyNumbers(); 

  int num = StringToNumber(entered); 

  cout << endl << "You entered " << num << endl; 

  

  // Now enter a password! 

  cout << endl; 

  cout << "Enter your password! "; 

  string password = EnterPassword(); 

  cout << endl << "Shhhh, it's " << password << endl; 

  return 0; 

}

The first parts of main() are straightforward. It calls cin >> name; to
read a string, name, from the console; then main() prints Hello plus name
to the console. Next, main() calls cin >> x; to read and print an integer
from the console.

Calling EnterOnlyNumbers() ensures that the user can enter only digits.
The first thing EnterOnlyNumbers() does is declare a string called
numAsString. When the user types a letter or number, it comes in as a
character, so the code saves them one by one in a string variable
(because a string is really a character string). To find out what the user
types, EnterOnlyNumbers() calls getch(), which returns a single
character. (For example, if the user presses Shift+A to produce a capital
A, getch() returns the character A.)



 AVOIDING GETCH() FUNCTION
PROBLEMS

Some compilers complain if you use the getch() function. If you want to use it, try the
_getch() function instead. Both functions perform the same task. Some vendors claim
that _getch() is compliant with the International Standards Organization (ISO), but it
isn’t. The getch() and _getch() functions are useful, low-level library functions that you
can use without hesitation, but they don’t appear as part of any standard. The GNU
GCC compiler, provided with Code::Blocks, can use either form of the function.

After retrieving a single character, EnterOnlyNumbers() starts a loop,
watching for the ’\r’ character, which represents a carriage return. The
loop continues processing characters until the user presses the Enter key.
At that point, the character received by getch() is ’\r’, so the loop
exits and returns the number as a string.

Inside the loop, EnterOnlyNumbers() tests the value of the character,
seeing whether it’s in the range ’0’ through ’9’. Yes, characters are
associated with a sequence, and fortunately, the digits are all grouped
together. So it’s possible to determine whether the character is a digit
character by checking to see whether it’s in the range ’0’ through ’9’:

if (ch >= '0' && ch <= '9')

If the user presses a number key, the code enters the if statement.
Because the user pressed a number key, the code writes the value to the
console and adds the digit character to the end of the string. The code
has to write it to the console because, when it calls getch(), the
computer doesn’t automatically print anything. But that’s a good thing
here, because after leaving the if statement, the code calls getch()
again for another round. Thus, if the user pressed something other than
the Enter key or a number, the character the user pressed doesn’t even
appear on the console, and it doesn’t get added to the string, either.



 The EnterPassword() routine is similar to the
EnterOnlyNumbers() routine, except that it allows the user to enter
any character (including spaces). So no if statement is filtering out
certain letters. And further, instead of printing only the character
that the user types, it prints an asterisk: *. That gives the feeling of
a password entry, which is a good feeling.

When you run this application, you get output similar to the following:
What is your name? Hank 

Hello Hank 

  

Enter a number, any number! abc123 

You chose 0 

  

This time you'll only be able to enter a number! 

Enter a number, any number! 5001 

You entered 5001 

  

Enter your password! ***** 

Shhhh, it's hello

The first line went well; there aren’t any spaces so the name Hank made
it into the output. But then when asked to enter a number, the user types
abc123. The output of 0 indicates that cin can’t convert the input to an
int. If you type 123abc instead, you see 123 as the output. The next
section doesn’t allow the user to type anything but numbers because it
calls EnterOnlyNumbers(). In the final two lines, the user enters a
password, and you can see that the computer displays asterisks after each
key press. This is because EnterPassword() contains the line cout <<
’*’;. You see the actual password output as the last on the screen.

Understanding Preprocessor
Directives



When you compile an application, the first thing the compiler does is run
your code through something called a preprocessor. The preprocessor
simply looks for certain statements in your code that start with the #
symbol. You have already seen one such statement in every one of your
applications: #include. These preprocessor statements are known as
directives because they tell the preprocessor to do something; they direct
it. The following sections tell you more about the preprocessor and
describe how it works.

Understanding the basics of preprocessing
Think of the preprocessor as just a machine that transforms your code
into a temporary, fixed-up version that’s all ready to be compiled. For
example, look at this preprocessor directive:

#include <iostream>

If the preprocessor sees this line, it inserts the entire text from the file
called iostream (yes, that’s a filename; it has no extension) into the
fixed-up version of the source code. Suppose that the iostream file
looks like this:

int hello = 10; 

int goodbye = 20;

Just two lines are all that’s in it. (Of course, the real iostream file is
much more sophisticated.) And suppose that your own source file,
MyProgram.cpp, has this in it (as found in the Preprocessor example):

#include <iostream> 

  

int main() 

{ 

  std::cout << "Hello world!" << std::endl; 

  return 0; 

}

Then, after the preprocessor finishes its preprocessing, it creates a
temporary fixed-up file (which has the lines from the iostream file
inserted into the MyProgram.cpp file where the #include line had been)
to look like this:



int hello = 10; 

int goodbye = 20; 

  

int main() 

{ 

  std::cout << "Hello world!" << std::endl; 

  return 0; 

}

In other words, the preprocessor replaced the #include line with the
contents of that file. Now, the iostream file could have #include lines,
and those lines would be replaced by the contents of the files they refer
to. As you may imagine, what started out as a simple application with
just a few lines could actually have hundreds of lines after the
preprocessor gets through with it.

Creating constants and macros with #define
The preprocessor also provides you with a lot of other directives besides
#include. One of the more useful ones is the #define directive. Here’s a
sample #define line:

#define MYSPECIALNUMBER 42

After the preprocessor sees this line, every time it encounters the word
MYSPECIALNUMBER, it replaces it with the word 42 (that is, whatever
sequence of letters, numbers, and other characters follow the definition).
In this case, #define creates a kind of constant where the word is easier
to understand than the value associated with it. But #define also lets you
create what are called macros, which are a sort of script. This line
defines the oldmax() macro:

#define oldmax(x, y) ((x)>(y)?(x):(y))

SEEING THE PREPROCESSOR IN ACTION
You may want to see how the preprocessor actually works. To see it in action, you must
open a Windows command prompt or a terminal window to the location of your source
code, such as C:\CPP_AIO4\BookII\Chapter02\Preprocessor. The next thing you need to
know is where Code::Blocks is located on your system, such as
C:\CodeBlocks\MinGW\bin. At this point, you can type a special GCC compiler command



with the name of the .CPP file you want to check out, such as Main.cpp, and a special
command-line switch, -E. For a Windows system, you can probably type
\CodeBlocks\MinGW\bin\GCC -E main.cpp >> Preprocessed.cpp and press Enter.

The -E command-line switch tells the GCC compiler you normally use with
Code::Blocks to output only preprocessed code. The >> operator tells Windows to place
the output in Preprocessed.cpp rather than display it onscreen. When you run the
default Code::Blocks code through the preprocessor it contains somewhere around
16,497 lines! You can see the output in Preprocessed.cpp, which is included in the
Preprocessor folder of the downloadable source code. Many of those are blank lines, for
various reasons, but nevertheless, it’s a very big file!

You actually have access to a second preprocessor. To access the second
preprocessor, type \CodeBlocks\MinGW\bin\CPP main.cpp >> Preprocessed2.cpp
and press Enter in the same folder as your source code (as in the previous example
using GCC). CPP stands for C preprocessor and it’s interesting to look at its output,
which is precisely the same as using GCC with the -E command-line switch.

In looking at the preprocessor output, you see a combination of actual code and what
are called line markers. A line marker is a kind of preprocessor comment that tells you
where something comes from. Here is a small sample of what you see when you
preprocess the main.cpp file of the Preprocessor example. Some lines have been
purposely shortened, with the missing content replaced by an ellipsis (…):

# 1 "main.cpp" 

# 1 "<built-in>" 

# 1 "<command-line>" 

# 1 "main.cpp" 

# 1 "C:/CodeBlocks/MinGW/lib/…/include/c++/iostream" 1 3 

# 36 "C:/CodeBlocks/MinGW/lib/…/include/c++/iostream" 3

The comments all take the same form: the line number within the target file; the name
of the target file; and processing flags used with the target file. So, the example starts in
main.cpp line 1, looks for the built-in and command-line entries but doesn’t find them,
and then starts again with main.cpp line 1. None of these entries has flags. The next line
does. It appears on main.cpp line 1 with the #include <iostream> directive. The
preprocessor opens iostream and starts processing it on line 36. Both these lines have
flags with these meanings:

1. Start a new file (iostream in the example code).

2. Return to the previous file.

3. The following text comes from a system header file, so the compiler should
ignore certain warnings.

4. The following text should be treated as if it is wrapped in an extern "C" block.



This is enough information to get you started in understanding how preprocessed
output works. You can learn more at https://gcc.gnu.org/onlinedocs/gcc-
3.4.6/cpp/Preprocessor-Output.html.

After the preprocessor sees this line, it replaces every occurrence of
oldmax() followed by two arguments with ((x)>(y)?(x):(y)), using
the appropriate substitutes for x and y. For example, if you then have this
line

q = oldmax(abc, 123);

the preprocessor replaces the line with
q = ((abc)>(123)?(abc):(123));

and does nothing more with the line. Book 1, Chapter 4, refers to the
output code as a conditional operator. The variable q is set to the value in
abc if the abc value is greater than 123; otherwise, the q gets set to 123.

 However, the preprocessor doesn’t have an understanding of the
conditional operator, and q doesn’t get set to anything during
preprocessing. All the preprocessor knows is how to replace text in
your source code file. The preprocessor replaced the earlier line of
code that contained oldmax() with the next line containing the
conditional operator. That’s it. The preprocessor doesn’t run any
code, it doesn’t make the comparison, and it doesn’t put anything in
q. The preprocessor just changes the code.

Notice that #define oldmax(x, y) places x and y in parentheses. This
is because oldmax() takes two arguments, x and y, and the parentheses
serve to tell the compiler that they are arguments. Consequently, q =
oldmax(abc, 123); is oldmax() with the required arguments, abc and
123.

https://gcc.gnu.org/onlinedocs/gcc-3.4.6/cpp/Preprocessor-Output.html


 Although you can still use #define statements in C++, in
general you should simply create a function instead of a macro or
use a constant instead of a symbol. Symbols and macros are used in
older and outdated styles of programming. However, you still see
them used for some purposes, such as conditional compilation,
which appears in the next section of the chapter.

Performing conditional compilation
At times, you may want to compile one version of your application for
one situation and compile another for a different situation. For example,
you may want to have a debug version of your application that has in it
some extra goodies that spit out special information for you that you can
use during the development of your application. Then, after your
application is ready to ship to the masses so that millions of people can
use it, you no longer want that extra debug information. To accomplish
this transition between debug and production versions, you can use a
conditional compilation like this:

#ifdef DEBUG 

    cout << "The value of j is " << j << endl; 

#else 

    cout << j << endl; 

#endif

The lines that begin with # are preprocessor directives. The preprocessor
has its own version of if statements. In your code, you can have a line
like the following, with nothing after it:

#define DEBUG

This line defines a symbol (rather than a constant with a value). It works
just like the symbols described earlier, except that it’s not set to be
replaced by anything. You can also define such symbols in the
command-line options to GCC or whichever compiler you use.

In Code::Blocks, you choose Project ⇒ Build Options. In the Project
Build Options dialog box that opens, click the Compiler Settings tab,



followed by the #defines subtab, as shown in Figure 2-2. You type your
define symbols as shown in the figure. Be sure to place each symbol on
a separate line.

FIGURE 2-2: Provide the compiler options you want to use to change the application
output.

 Code::Blocks provides a special method for setting Debug or
Release builds. You choose Build ⇒ Select Target and then choose
the build you want from the menu. Notice that there are three
entries in the left pane of Figure 2-2. Selecting Preprocessor2 lets
you add defines, such as HAL2000, that affect both Debug and
Release builds. Selecting Debug lets you add defines that affect
only the Debug build, such as DEBUG. Note that selecting a
particular build target doesn’t automatically create a symbol, such
as DEBUG, for you.

Now, when the preprocessor starts going through your application and
gets to the #ifdef DEBUG line, it checks to see whether the DEBUG symbol
is defined. If the symbol is defined, it spits out to its fixed-up file the
lines that follow, up until the #else line. Then it skips any lines that



follow that, up until the #endif line. For the earlier example in this
section, if DEBUG is defined, the block of code starting with #ifdef
DEBUG through the line #endif is replaced by the code in the first half of
the block:

cout << "The value of j is " << j << endl;

But if the DEBUG symbol is not defined, the preprocessor skips over the
lines up until the #else, and spits out the lines that follow, up until the
#endif. In this case, it’s replaced by the code following the #else line:

cout << j << endl;

 When the preprocessor goes through your file, it’s only creating
a new source code file the compiler uses to create an executable.
That means that these #ifdef lines affect your application only
when the compiler runs the preprocessor. When you compile the
application and run it, these #ifdef lines are gone. So remember
that #ifdef lines don’t affect how your application runs — only
how it compiles.

Exercising the basic preprocessor directives
It’s time to see the various preprocessor directives in action. The
Preprocessor2 example, shown in Listing 2-3, demonstrates all the
preprocessor directives discussed in this chapter so far. In addition, you
see predefined macros demonstrated, such as __FILE__. The C++
standard and your compiler provide predefined macros to allow you to
output information such as the current filename without having to
develop these macros yourself. You can see a list of predefined macros
at https://riptutorial.com/cplusplus/example/4867/predefined-
macros.

LISTING 2-3: Using Many Different Preprocessor
Directives

https://riptutorial.com/cplusplus/example/4867/predefined-macros


#include <iostream> 

  

using namespace std; 

  

#ifdef UNIVAC 

const int total = 200; 

const string compname = "UNIVAC"; 

#elif defined(HAL2000) 

const int total = 300; 

const string compname = "HAL2000"; 

#else 

const int total = 400; 

const string compname = "My Computer"; 

#endif 

  

// This is outdated, but you might see it on 

// occasion. Don't write code that does this! 

#define oldmax(x, y) ((x)>(y)?(x):(y)) 

#define MYSPECIALNUMBER 42 

  

int main() { 

  cout << "Welcome to " << compname << endl; 

  cout << "Total is:" << endl; 

  cout << total << endl << endl; 

  

  // Try out the outdated things. 

  cout << "*** max ***" << endl; 

  cout << oldmax(5,10) << endl; 

  cout << oldmax(20,15) << endl; 

  cout << MYSPECIALNUMBER << endl << endl; 

  

  // Here are some standard redefined macros. 

  cout << "*** Predefined Macros ***" << endl; 

  cout << "This is file " << __FILE__ << endl; 

  cout << "This is line " << __LINE__ << endl; 

  cout << "Compiled on " << __DATE__ << endl; 

  cout << "Compiled at " << __TIME__ << endl << endl; 

  

  // Here's how some people use #define, to 

  // specify a "debug" version or "release" version. 

  cout << "*** total ***" << endl; 

  int i; 

  int j = 0; 

  for (i = 0; i<total; i++) 

  { 

      j = j + i; 

  } 



  

#ifdef DEBUG 

  cout << "The value of j is " << j << endl; 

#else 

  cout << j << endl; 

#endif 

  

  return 0; 

}

When you run Listing 2-3 without any symbols using the Release target
(choose Build ⇒ Select Target ⇒ Release), you see this output:

Welcome to My Computer 

Total is: 

400 

  

*** max *** 

10 

20 

42 

  

*** Predefined Macros *** 

This is file C:\CPP_AIO\BookI\Chapter09 

   \Preprocessor2\main.cpp 

This is line 35 

Compiled on Apr 23 2020 

Compiled at 15:19:38 

  

*** total *** 

79800

Note, at the beginning, that the code tests for the symbol UNIVAC. But
that if block is a bit more complex because it also has an #elif (else if)
construct. The language of the preprocessor has no elseifdef or
anything like it. Instead, you have to write it like so:

#elif defined(HAL2000)

With this block, the preprocessor checks for the symbol UNIVAC; if the
preprocessor finds UNIVAC, it spits out these lines:

const int total = 200; 

const string compname = "UNIVAC";



Otherwise, the preprocessor looks for HAL2000; if the preprocessor finds
it, it adds these lines to the fixed-up code:

const int total = 300; 

const string compname = "HAL2000";

And finally, if neither UNIVAC nor HAL2000 is set, the preprocessor adds
these lines:

const int total = 400; 

const string compname = "My Computer";

Remember that in each case, these two lines are sent out to the fixed-up
version in place of the entire block starting with #ifdef UNIVAC and
ending with #endif. If you add UNIVAC to the #defines tab of the Project
Build Options dialog box shown previously in Figure 2-2, you change
how the preprocessor configures its output. To see the following output,
you must choose Build ⇒ Rebuild, and then Build ⇒ Run, rather than use
the Build ⇒ Build and Run command as normal.

Welcome to UNIVAC 

Total is: 

200 

  

*** max *** 

10 

20 

42 

  

*** Predefined Macros *** 

This is file C:\CPP_AIO\BookI\Chapter09 

   \Preprocessor2\main.cpp 

This is line 35 

Compiled on Apr 23 2020 

Compiled at 15:26:56 

  

*** total *** 

19900

To see a different output version, replace UNIVAC with HAL2000 in the
#defines tab of the Project Build Options dialog box shown previously in
Figure 2-2. Choose Build ⇒ Select Target ⇒ Debug to change the
executable type. Finally, rebuild your application by choosing Build ⇒ 
Rebuild. Here is what you see when you choose Build ⇒ Run.



Welcome to HAL2000 

Total is: 

300 

  

*** max *** 

10 

20 

42 

  

*** Predefined Macros *** 

This is file C:\CPP_AIO\BookI\Chapter09\ 

  Preprocessor2\main.cpp 

This is line 37 

Compiled on Dec 18 2013 

Compiled at 10:30:23 

  

*** total *** 

The value of j is 44850

 The downloadable source includes a project file that has all the
required defines included with it. If you type this source yourself,
you must create the appropriate defines as well or the output won’t
match what you see in the book. Simply selecting a debug build, for
example, won’t provide the DEBUG define for you.

Using Constants
When you’re programming, you may sometimes want a certain fixed
value that you plan to use throughout the application. For example, you
might want a string containing the name of your company, such as
"Bob’s Fixit Anywhere Anyhoo". And you don’t want someone else
working on your application to pass this string into a function as a
reference and modify it by mistake, turning it into the name of your
global competitor, "Jims Fixum Anyhoo Anytime". That could be bad.
Or, if you’re writing a scientific application, you might want a fixed
number, such as pi = 3.1415926 or root2 = 1.4142135.



You can create such constants in C++ by using the const keyword.
When you create a constant, it works just like a variable, except that you
can’t change it later in the application. For example, to declare your
company name, you might use

const string CompanyName = "Bobs Fixit Anywhere Anyhoo";

Of course, you can always modify this particular string in your code, but
later in your code, you can’t do something like this:

CompanyName = CompanyName + ", Inc.";

The compiler issues an error for that line, complaining that it’s a
constant and you can’t change it.

After you declare the CompanyName constant, you can use it to refer to
your company throughout your code. The Constants example in Listing
2-4 shows you how to do this. Note the three constants toward the top
called ParkingSpaces, StoreName, and pi. In the rest of the application,
you use these just like any other variables — except that you don’t try to
change them.

LISTING 2-4: Using Constants for Permanent Values
That Do Not Change
#include <iostream> 

  

using namespace std; 

  

const int ParkingSpaces = 80; 

const string StoreName = "Joe's Food Haven"; 

const float pi = 3.1415926; 

  

int main() { 

  cout << "Important Message" << endl; 

  cout << "Here at " << StoreName << endl; 

  cout << "we believe you should know" << endl; 

  cout << "that we have " << ParkingSpaces; 

  cout << " full-sized" << endl; 

  cout << "parking spaces for your parking" << endl; 

  cout << "pleasure." << endl; 

  cout << endl; 

  cout << "We do realize that parking" << endl; 



  cout << "is tight at " << StoreName << endl; 

  cout << "and so we are going to double our" << endl; 

  cout << "spaces from " << ParkingSpaces << " to "; 

  cout << ParkingSpaces * 2; 

  cout << ". Thank you again!" << endl << endl; 

  float radius = 5; 

  float area = radius * radius * pi; 

  cout << "And remember, we sell " << radius; 

  cout << " inch radius apple pies" << endl; 

  cout << "for a full " << area << " square" << endl; 

  cout << "inches of eating pleasure!" << endl; 

  return 0; 

}

When you run this application, you see the following:
Important Message 

Here at Joe's Food Haven 

we believe you should know 

that we have 80 full-sized 

parking spaces for your parking 

pleasure. 

  

We do realize that parking 

is tight at Joe's Food Haven 

and so we are going to double our 

spaces from 80 to 160. Thank you again! 

  

And remember, we sell 5 radius inch apple pies 

for a full 78.5398 square 

inches of eating pleasure!

 The biggest advantage to using constants is this: If you need to
make a change to a string or number throughout your application,
you make the change only once. For example, if you have the string
"Bob’s Fixit Anywhere Anyhoo" pasted a gazillion times
throughout your application, and suddenly you incorporate and
need to change your application so that the string says "Bob’s
Fixit Anywhere Anyhoo, LLC", you would need to do some
serious search-and-replace work. But if you have a single constant
in the header file for use by all your source code files, you need to



change it only once. You modify the header file with the new
constant definition and recompile your application, and you’re
ready to go.

 There’s a common saying in the programming world: “Don’t use
any magic numbers.” The idea is that if, somewhere in your code,
you need to calculate the number of cows that have crossed over the
bridge to see whether the bridge will hold up and you know that the
average weight of a cow is 632 pounds, don’t just put the number
632 in your code. Somebody else reading it may wonder where that
number came from. Instead, make an AverageCowWeight constant
and set it equal to 632. Then use AverageCowWeight anytime you
need that number. Plus, if cows evolve into a more advanced
species and their weight changes, all you need to do is make one
change in your code — you change the header file containing the
const declaration. Here’s a sample line that declares
AverageCowWeight:

const int AverageCowWeight = 632;

You don’t have to create most common mathematical constants in your
code. Instead, you add #include <math.h> to the top of your code and
then use the constants as defined at
@@@https://www.gnu.org/software/libc/manual/html_node/Math

ematical-Constants.html. For example, if you want to use the value of
pi in your code, you use the M_PI constant.

Unfortunately, the math header isn’t part of the ANSI standard, so
sometimes you have to jump through hoops to use it. Older compilers
may require that you add #define _USE_MATH_DEFINES at the top of the
source code file before any #include statements.

https://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html


 If you have the Code::Blocks compiler set to use the C++ 11 or
above standard, the __STRICT_ANSI__ define (added by default)
will keep you from using a constant, such as M_PI, in your code. To
overcome this issue, add the line #undef __STRICT_ANSI__ to the
beginning of your code. Here is a short example of what you need
to do:

#undef __STRICT_ANSI__ 

  

#include <iostream> 

#include <math.h> 

  

using namespace std; 

  

int main() 

{ 

    cout << M_PI << endl; 

    return 0; 

}

 C++ 20 and above developers have some relief from this
problem in the form of std::numbers::pi that you access with
#include <numbers> (see
https://en.cppreference.com/w/cpp/numeric).

Using Switch Statements
Many times in programming, you may want to compare a variable to one
thing, and if it doesn’t match, compare it to another and another and
another. To do this with an if statement, you need to use a whole bunch
of else if lines. Using if statements works out pretty well, but you can
do it in another way: Use the switch statement.

https://en.cppreference.com/w/cpp/numeric


 The approach shown in this section doesn’t work for all types of
variables. In fact, it works with only the various types of integers
and characters. It won’t even work with character strings. However,
when you need to make multiple comparisons for integers and
characters, using this approach is quite useful.

Here’s a complete switch statement that you can refer to as you read
about the individual parts in the paragraphs that follow. This switch
compares x to 1, and then 2, and, finally, includes a catchall section
called default if x is neither 1 nor 2:

int x; 

cin >> x; 

switch (x) 

{ 

    case 1: 

        cout << "It's 1!" << endl; 

        break; 

    case 2: 

        cout << "It's 2!" << endl; 

        break; 

    default: 

        cout << "It's something else!" << endl; 

        break; 

}

To use the switch statement, you type the word switch and then the
variable or expression that you want to test in parentheses. Suppose that
x is type int and you want to compare it to several different values. You
would first type

switch (x) {

The preceding item in parentheses isn’t a comparison; it’s a variable.
You can also put complex expressions inside the parentheses, but they
must evaluate to either an integer or a character. For example, if x is an
integer, you can test

switch (x + 5) {



 because x + 5 is still an integer. A switch statement compares
only a single variable or expression against several different items.
If you have complex comparisons, you instead use a compound if
statement.

After the header line for the switch statement, you list the values you
want to compare the expression to. Each entry starts with the word case
followed by the value to compare the expression against, and then a
colon, as in

case 1:

Next is the code to run in the event that the expression matches this case
(here, 1).

cout << "It's 1" << endl;

To complete a specific case, you add the word break. Every case in the
switch statement usually has a break line, which ends the case. If you
leave out the break statement (either purposely or accidentally), when
the computer runs this case, execution continues with the next case
statement code.

 Note the end of the example switch block has a final default
case. It applies to the situation when none of the preceding cases
applies. The default case isn’t required; you can leave it off if you
don’t need it. However, if you do include it, you put it at the end of
the switch block because it’s the catchall case.

The SwitchStatement example in Listing 2-5 is a complete application
that demonstrates a switch statement. It also shows you how you can
make a simple, antiquated-looking menu application on the console. You
don’t need to press Enter after you choose the menu item; you just press



the key for your menu selection. That’s thanks to the use of getch()
rather than cin.

LISTING 2-5: Making Multiple Comparisons in One
Big Block
#include <iostream> 

#include <conio.h> 

  

using namespace std; 

  

int main() { 

  // Display a list of options. 

  cout << "Choose your favorite:" << endl; 

  cout << "1. Apples " << endl; 

  cout << "2. Bananas " << endl; 

  cout << "3. Lobster " << endl; 

  

  // Obtain the user's selection. 

  char ch = getch(); 

  

  // Continue getting user selections until the user 

  // enters a valid number. 

  while (ch < '1' || ch > '3')  { 

    ch = getch(); 

  } 

  

  // Use a switch to display the user's selection. 

  cout << "You chose " << ch << endl; 

  switch (ch) { 

  case '1': 

    cout << "Apples are good for you!" << endl; 

    break; 

  case '2': 

    cout << "Bananas have plenty of potassium!" << endl; 

    break; 

  case '3': 

    cout << "Expensive, but you have good taste!" << endl; 

    break; 

  } 

  

  return 0; 

}



Supercharging enums with Classes
When you work with classes, you can use a technique called wrapping,
which helps you manage a resource. Book 2, Chapter 1 discusses the
enum keyword and shows how you can use it to create your own types.
However, when you print the enumeration, you don’t see the word, such
as red or blue; you see a number. The DisplayEnum example, shown in
Listing 2-6, is a simple class that wraps an enum type by converting the
number into a human readable form, which is a kind of resource
management. You can use this class with enum ColorEnum, as main()
demonstrates. When you run this application, you see the single word
red in the console.

LISTING 2-6: Creating a Class for enums
#include <iostream> 

  

using namespace std; 

  

class Colors { 

public: 

  enum ColorEnum {blue, red, green}; 

  Colors(Colors::ColorEnum value); 

  string AsString(); 

protected: 

 ColorEnum value; 

}; 

  

Colors::Colors(Colors::ColorEnum init) { 

  value = init; 

} 

  

string Colors::AsString() { 

  switch (value) { 

    case blue: 

      return "blue"; 

    case red: 

      return "red"; 

    case green: 

      return "green"; 

    default: 

      return "Not Found"; 



  } 

} 

  

int main() { 

  Colors InkColor = Colors::red; 

  cout << InkColor.AsString() << endl; 

  return 0; 

}

In this example, the switch statement doesn’t include any break
statements. Instead, it uses return statements. The return causes the
computer to exit the function entirely, so you have no reason to worry
about getting out of the switch statement. You may wonder why the
switch statement includes a default clause. After all, it will never get
called. In this case, if you don’t supply a default clause, the compiler
displays the following message:

warning: control reaches end of non-void function

Whenever possible, add the code required for your application to
compile without warnings. Adding the default clause simply ensures
that the AsString() function always returns a value, no matter what
happens. In addition, having the default clause will make it apparent
that a color has been added to the enum, but isn’t handled by the switch
statement.

The expression Colors::red may be unfamiliar to you. That means
you’re using the red value of the ColorEnum type. However, because
ColorEnum is declared inside the class Color, you can’t just say red. You
have to first say the class name, and then two colons, and then the value.
Thus, you type Colors::red.

The code in main() creates the InkColor instance and sets it not to a
Color object but to an enum. This works because C++ has a neat little
trick: You can create a constructor that takes a certain type. In this case,
Color has a constructor that takes a ColorEnum. Then when you create a
stack variable (not a pointer), you can just set it equal to a value of that
type. The computer will implicitly call the constructor, passing it that
value.



ADDING COUT CAPABILITIES
It would be nice if the Colors class allowed you to just call cout, as in cout << Ink Color
<< endl; without having to call Ink Color.AsString() to get a string version. C++ has a
capability called operator overloading, which is a technique for extending the
functionality of an operator. When you type something cout << followed by a variable,
you are calling a function: <<. Several versions of the << functions (they are overloaded)
are available; each has a different type. For example, int handles the cases when you
write out an integer, as in int x = 5;, and then cout << x;. Because the << function
doesn’t use parentheses, it is an operator.

To add cout capabilities to your class, just write another << function for your class.
Here’s the code. This is not a class method; it goes outside your class. Add it to Listing
2-6 anywhere after the class declaration but before main(). Here goes:

ostream& operator << (ostream& out, Colors& inst) 

{ 

  out << inst.AsString(); 

  return out; 

}

Because this function is an operator, you have to throw in the word operator. The type
of cout is ostream, incidentally; thus, you take an ostream as a parameter and you return
the same ostream. The other parameter is the type you are printing: in this case, it’s a
Colors instance, and once again, it’s passed by reference. After you add this code, you
can change the line cout << InkColor.As String() << endl; to simply

cout << InkColor << endl;

Working with Random Numbers
Sometimes, you need the computer to generate random numbers for you.
But computers aren’t good at doing tasks at random. Humans can toss
dice or flip a coin, but the computer must do things in a predetermined
fashion. The computer geniuses of the past century have come up with
algorithms that generate pseudorandom numbers. These numbers are
almost random or seemingly random. They’re sufficiently random for
many purposes.

The only catch with these random-number generators is that you need to
seed them, that is, provide them with an input value as a starting point



for the calculation. If you provide the same seed each time, the starting
output number is the same, as is the sequence of additional output
numbers. Consequently, pseudorandom-number generators need some
sort of seed that changes in an apparently random fashion. Fortunately,
the seconds component of the current time is a changeable input that
appears random when used correctly. When you run an application, most
likely you won’t start running it at precisely the same second in time.
The RandomNumber example shown in Listing 2-7 shows how to generate
a random number.

LISTING 2-7: Seeding the Random-Number
Generator
#include <iostream> 

#include <time.h> 

#include <stdlib.h> 

  

using namespace std; 

  

int main() 

{ 

  // Seed the random-number generator 

  time_t now; 

  time(&now); 

  srand(now); 

  

  // Print out a list of random numbers 

  for (int i=0; i<5; i++) 

  { 

      cout << rand() % 100 << endl; 

  } 

  

  return 0; 

}

The example follows a process that you often see when working with
random numbers. To obtain the time, you must include time.h.
Initializing and using the random-number generator requires that you
include stdlib.h.

1. Obtain the current time to start the random-number generator by
creating a variable called now of a special type called time_t (which



is just a number).
2. Call the time() function, passing the address of now, which obtains

the number of seconds since January 1, 1970.
3. Initialize the random number using the time seed by calling srand().

4. Create a random number based on the seed by calling rand().

Each time you call rand(), you receive a new random int. However, the
number may not be in the range you want. To limit the numbers in the
range from 0 through 99, the code uses the modulus 100 of the number.
(That’s the remainder when you divide the number by 100.) The first
time you run Listing 2-7, you may see the following output:

19 

69 

85 

83 

47

The second time, you may see this output. It’s different than before:
79 

67 

38 

72 

73

Storing Data in Arrays
Most programming languages support a data structure called an array.
An array is a list of variables, all stored side by side in a row. You access
them through a single name. Each variable in the array must be of the
same type. This section tells you how to work with arrays for data
storage purposes in a simple manner. A more detailed discussion of
creating and using arrays in an advanced way appears in the “Building
Up Arrays” section of Book 5, Chapter 1.

When you create an array, you specify how many items the array holds.
For example, you can have an array of 100 integers. Or you can have an



array of 35 strings or an array of 10 pointers to the class BrokenBottle.
If the code you’re working with represents a type, you can create an
array out of it.

When you create an array, you give it a name. You can access the array’s
elements (items) by using that name followed by an index number in
brackets. The first element is always 0. Thus, if you have an array of five
integers called AppendixAttacks, the first element is
AppendixAttacks[0]. The second is AppendixAttacks[1], and then
AppendixAttacks[2], AppendixAttacks[3], and finally
AppendixAttacks[4].

 Because an array starts with element number 0, the final element
in the array has an index that is 1 less than the size of the array.
Thus, an array of 89 elements has indexes ranging from 0 to 88.

Declaring and accessing an array
Here’s how you declare an array:

int GrilledShrimp[10];

This line declares an array of 10 integers called GrilledShrimp. You
first put the type (which is really the type of each element in the array),
and then the name for the array, and then the number of elements in
brackets. And because this declares 10 integers, their indexes range from
0 to 9.

To access the first element of the array, you put the number 0 in brackets
after the type name, as in

GrilledShrimp[0] = 10;

Often, people use a loop to fill in an array or access each member.
People usually call this looping through the array. The ArrayLoop
example, in Listing 2-8, shows how to create and use a basic array.



LISTING 2-8: Using a Loop to Loop Through the
Array
#include <iostream> 

  

using namespace std; 

  

int main() { 

    int Values[5]; 

    int VSize = sizeof(Values)/sizeof(*Values); 

    cout << "Array count: " << VSize << endl; 

  

    for (int i=0; i < VSize; i++) { 

        Values[i] = i * 2; 

        cout << Values[i] << endl; 

    } 

  

    return 0; 

}

 It’s never a good idea to hard-code the length of your array
anywhere in your code because the array length could change.
Rather, calculate the size of the array using the sizeof() function.
The example shows you how to perform this task by obtaining the
actual length of Values in bytes and dividing it by the size of the
individual array elements, which requires *Values. The result,
VSize, is the number of array elements. When you use a for loop to
loop through the array, you set the counter variable, i, to end the
loop when it equals or exceeds the value of VSize.

 When you use arrays, don’t go beyond the array bounds. Due to
some old rules of the early C language, the compiler doesn’t warn
you if you write a loop that goes beyond the upper boundary of an
array. You may not get an error when you run your application,
either.



Arrays of pointers
Arrays are particularly useful for storing pointers — a variable that
contains the address of an item in memory — to objects. If you have lots
of objects of the same type, you can store them in an array.

Although you can store the actual objects in the array, most people don’t
because they take up too much space. Most people fill the array with
pointers to the objects. To declare an array of pointers to objects,
remember the asterisk in the type declaration, like this:

CrackedMusicCD *missing[10];

The ArrayPointer example, shown in Listing 2-9, declares an array of
pointers. In this example, after declaring the array, you fill the elements
of the array with zeroes. Remember that each element is a pointer; that
way, you can immediately know whether the element points to
something by just comparing it to 0. If it’s 0, it’s not being used. If it has
something other than 0, it has a pointer in it.

LISTING 2-9: Using an Array to Store a List of
Pointers to Your Objects
#include <iostream> 

  

using namespace std; 

  

class CrackedMusicCD { 

public: 

  string FormerName; 

  int FormerLength; 

  int FormerProductionYear; 

}; 

  

int main() { 

  CrackedMusicCD *Missing[10]; 

  int SMissing = sizeof(Missing)/sizeof(*Missing); 

  

  for (int i=0; i < SMissing; i++) { 

    Missing[i] = 0; 

  } 

  return 0; 

}



If you want to create a whole group of objects and fill the array with
pointers to these objects, you can do this kind of thing:

for (int i=0; i < SMissing; i++) { 

    Missing[i] = new CrackedMusicCD; 

}

Because each element in the array is a pointer, if you want to access the
properties or methods of one of the objects pointed to by the array, you
need to dereference the pointer — obtain the value pointed to by the
pointer — by using the shortcut -> notation:

Missing[0]->FormerName = "Shadow Dancing by Andy Gibb";

This sample line accesses the FormerName property of the object whose
address is in the first position of the array. When you’re finished with the
object pointers in the array, you can delete the objects by calling delete
for each member of the array, as in this example:

for (int i=0; i < SMissing; i++) { 

    delete Missing[i]; 

    Missing[i] = 0; 

}

 The preceding code, clears each array element to 0. That way,
the pointer is reset to 0 and no longer points to anything after its
object is gone.

Passing arrays to functions
Sometimes you need to pass an entire array to a function. Though
passing entire objects to arrays can be unwieldy, passing an entire array
can be dangerous. Arrays can be enormous, with thousands of elements.
If each element is a pointer, each element could contain several bytes,
which works with smaller arrays, but could cause problems with arrays
containing thousands of elements. When you pass a huge array on the
stack, you may overflow the application’s stack — meaning the
application crashes. Fortunately, the compiler automatically treats arrays



as pointers for you, but you still need to understand what is happening
underneath the cover.

As with passing objects, your best bet is to pass an array’s address. You
pass the function a pointer to the array. But passing an array’s address to
a function is confusing to code. The ArrayPassing example, shown in
Listing 2-10, is a sample that passes an array, without directly coding
any pointers and addresses.

LISTING 2-10: Passing an Array to a Function by
Declaring the Array in the Function Header
#include <iostream> 

  

using namespace std; 

  

const int MyArraySize = 10; 

  

void Crunch(int myarray[], int size) { 

  for (int i=0; i<size; i++) { 

    cout << myarray[i] << endl; 

  } 

} 

  

int main() { 

  int BigArray[MyArraySize]; 

  

  for (int i=0; i<MyArraySize; i++) 

  { 

    BigArray[i] = i * 2; 

  } 

  

  Crunch(BigArray, MyArraySize); 

  return 0; 

}

When you run this application, it prints the nine members of the array.
The array appears in the function header without specifying a size. This
means that you can pass an array of any size to the function. The size
parameter defines the array size for the function. This example uses a
constant rather than calculating the array size; then if you decide later to
modify the application by changing the size of the array, you need to



change only the one constant at the top of the application. Otherwise,
you risk missing one of the 10s.

 The example doesn’t actually pass BigArray to Crunch. Instead,
it passes the array’s address. When you pass an array this way, the
compiler writes code to pass a pointer to the array. You don’t worry
about it. The name of an array is actually a pointer to the first
element in the array.

@@@Thus, BigArray (as an argument) is the same as &(BigArray[0]).
(You put parentheses around the BigArray[0] part so that the computer
knows that the & refers to the combination of BigArray[0], not just
BigArray.) So you could have used this in the call:

Crunch(&(BigArray[0]), MyArraySize);

Adding and subtracting pointers
You can do interesting things when you add numbers to and subtract
numbers from a pointer to an array element that is stored in a pointer
variable as an address. If you take the address of an element in an array
and store it in a variable, such as one called cur (for current), as in

cur = &(Numbers[5]);

where Numbers is an array of integers, you can access the element at
Numbers[5] by dereferencing the pointer, as in

cout << *cur << endl;

Then you can add and subtract numbers from the pointer, like these
lines:

cur++; 

cout << *cur << endl;

The compiler knows how much memory space each array element takes.
When you add 1 to cur, it advances to the next element in the array. And



so the cout that follows prints the next element — in this case,
Numbers[6].

The PointerArithmetic example, shown in Listing 2-11, shows how to
move about an array. The code declares a variable called cur, which is a
pointer to an integer. The array holds integers, so this pointer can point
to elements in the array.

LISTING 2-11: Moving by Using Pointer Arithmetic
#include <iostream> 

  

using namespace std; 

  

int main() { 

  int Numbers[10]; 

  int SNumbers = sizeof(Numbers) / sizeof(*Numbers); 

  

  for (int i=0; i<SNumbers; i++) 

  { 

      Numbers[i] = i * 10; 

  } 

  

  int *cur = Numbers; 

  cout << *cur << endl; 

  cur++; 

  cout << *cur << endl; 

  cur += 3; 

  cout << *cur << endl; 

  cur--; 

  cout << *cur << endl; 

  return 0; 

}

The code begins with cur pointing to the first element. The array name
is the address of the first element. The code then adds and subtracts from
the value of cur to point to other array elements. When you run the
application, here is the output you see:

0 

10 

40 

30



 You can’t do multiplication and division with pointers.
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Chapter 3

Planning and Building Objects
IN THIS CHAPTER

 Recognizing objects so that you can create classes
 Encapsulating classes into self-contained capsules
 Building hierarchies of classes through inheritance

Step outside for a moment and look down. What is the thing you are
standing on? (Hint: It’s giant, it’s made of rock and sand and stone and
molten lava, and it’s covered with oceans and land.) The answer? A
thing! (Even a planet is a thing.) Now go back inside. What’s the thing
that you opened — the thing with a doorknob? It’s a thing, too! It’s a
slightly different kind of thing, but a thing nevertheless. What are you
standing in inside? Okay, you get the idea. Everything you can imagine
is a thing — or, to use another term, an object.

Over the years, researchers in the world of computer programming have
figured out that one of the better ways to program computers is to divide
whatever it is you’re trying to model into a bunch of objects. These
objects have methods (capabilities) and properties (characteristics).
(Eventually they have relationships, but that comes later.)

In this chapter, you see how to make use of objects to create a software
application. In the process, you get to twist some of the nuts and bolts of
C++ that relate to objects and get tips on how to get the most out of
them.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookII\Chapter03



folder of the downloadable source. See the Introduction for details
on how to find these source files.

Recognizing Objects
Think of an object as anything that a computer can describe. Just as
physical things have characteristics, such as size, weight, and color,
objects in an application can have properties — say, a particular number
of accounts, an engine, or even other objects that it contains., A car, for
example, contains engines, doors, and other objects.

Further, just as you can use real-world objects in certain ways because
they have particular capabilities, an object in an application can use
methods. For example, it might be able to withdraw money or send a
message or connect to the Internet.

Here’s an example of modeling an object by thinking about how it’s put
together and how you use it. Outside, in front of your house, you might
see a mailbox. That mailbox is an object. A mailbox is a useful device.
You can receive mail, and depending on the style (kind) of mail, you can
send mail. (The style of mail is important — you can send a letter
because you know how much postage to attach, but you can’t send a
package because the amount of postage is unknown.) Those are the
mailbox’s methods. And what about its characteristics? Different
mailboxes come in different shapes, sizes, colors, and styles. So those
are four properties. Now, some mailboxes, such as the kind often found
at apartment buildings, are great big metal boxes with several little boxes
inside, one for each apartment. The front has doors for each individual
box, and the back has a large door for the mail carrier to fill the boxes
with all those wonderful ads addressed to your alternative name:
Resident.

In this case, you could think of the apartment mailbox as one big
mailbox with lots of little boxes, or you could think of it as a big
container for smaller mailboxes. In a sense, each of the little boxes has a
front door that a resident uses, and the back of each one has an entry that
the mail carrier uses. The back opens when the big container door opens.



So think about this: The mail carrier interacts with the container, which
holds mailboxes. The container has a big door, and when that door
opens, it exposes the insides of the small mailboxes inside, which open,
too. Meanwhile, when a resident interacts with the system, he or she
interacts with only his or her own particular box.

Take a look at Figures 3-1 and 3-2. Figure 3-1 shows the general look of
the back of the mailbox container, where the mail carrier can open the
container and put mail in all the different boxes. Figure 3-2 shows the
front of the container, with the boxes open so that residents can take out
the mail.

FIGURE 3-1: The outer object in this picture is a mailbox container.



FIGURE 3-2: The smaller inner objects in this picture are the mailboxes.

So far, there are two kinds of objects here: the container box and the
mailboxes. But wait! There are multiple mailboxes. So, really, you have
one container box and multiple mailboxes. But each mailbox is pretty
much the same, except for a different lock and a different apartment
number, right? In Figure 3-2, each box that’s open is an example of a
single mailbox. The others are also examples of the type of object called
mailbox. In Figure 3-2, you can see 16 examples of the objects classified
as mailbox. In other words, Figure 3-2 shows 16 instances of the class
called Mailbox. All those mailboxes are inside an instance of the class
that you would probably call Mailboxes.



 There is no hard-and-fast rule about naming your classes.
However, most developers use a singular name for objects and a
plural name for collections. A single Mailbox object would appear
as part of a Mailboxes collection. Using this naming convention
makes it easier for other developers to understand how your code
works. Of course, the most important issue is consistency. After
you decide on a naming convention, use the same convention all the
time.

OTHER MODELING METHODS
Computer scientists use a variety of modeling methods to create programs that reflect
what the code is supposed to do. Object-oriented programming (OOP) techniques work
best when modeling real-world objects. The object need not be something you would
necessarily touch, such as a bank account, but it does exist in the real world, and using
objects makes modeling the item easier. That’s why this chapter focuses so much on
real-world objects.

However, other sorts of modeling exist, and you experience one of these other models
in Book 3 in the form of functional programming. Unlike OOP, functional programming
excels at modeling abstractions. Trying to model an abstraction, such as statistical
analysis, using OOP can prove difficult. Functional programming also has other
advantages when performing certain kinds of tasks that require a lot of memory and
high-speed processors.

You have also experienced procedural programming in the early examples of this book
in which the code follows a set of steps to accomplish a task. In fact, most of the
examples in Book 1 fall into this category.

Even though this book doesn’t cover them, C++ can also adapt to several other models.
Event-driven programming allows you to react to user interactions with the application,
and you can perform whatever task the user needs no matter how the user makes the
request (see the article at
http://www.husseinsspace.com/teaching/udw/1996/cnotes/chapsix.htm). Reactive
programming is especially adept at processing data streams (see the library at
http://reactivex.io/RxCpp/). Automata programming is used for various kinds of
automation, including robots and factory automation (see the article at
https://www.tutorialspoint.com/cplusplus-program-to-perform-finite-state-

automaton-based-search). The point is that you may find developers who use just one
modeling method, but it’s often better to know multiple techniques so that you can use
an approach that works best for your particular need.

http://www.husseinsspace.com/teaching/udw/1996/cnotes/chapsix.htm
http://reactivex.io/RxCpp/
https://www.tutorialspoint.com/cplusplus-program-to-perform-finite-state-automaton-based-search


Observing the Mailboxes class
What can you say about the Mailboxes collection object?

The Mailboxes collection contains 16 mailbox instances.

The Mailboxes collection object is 24 inches by 24 inches in front
and back, and it is 18 inches deep.
When the carrier unlocks the mailboxes and pulls, its big door opens.
When the mailboxes’ big door opens, it exposes the insides of each
contained mailbox.
When the mail carrier pushes on the door, the door shuts and relocks.

By using this list, you can discover some of the properties and methods
of the Mailboxes collection. The following list shows its properties:

Width: 24 inches
Height: 24 inches
Depth: 18 inches
Mailboxes: 16 Mailbox objects inside

And here’s a list of some of the Mailboxes collection methods:

Open its door.
Give the mail carrier access to the mailboxes.
Close its door.

Think about the process of the carrier opening or closing the door. Here
we seem to have a bizarre thing: The mail carrier asks the Mailboxes
collection to close its door, and the door closes. That’s the way you need
to look at modeling objects: Nobody does anything to an object. Rather,
someone asks the object to do something, and the object does it itself.



For example, when you reach up to shove a slice of pizza into your
mouth, your brain sends signals to the muscles in your arm. Your brain
sends out the signals, and your arms move up, and so does the pizza. The
point is that you make the command; then the arms carry it out, even
though you feel like you’re causing your arms to do it.

Objects are the same way: They have their methods, and you tell them to
do their job. You don’t do it for them. At least, that’s the way computer
scientists view it. The more you think in this manner, the better you
understand object-oriented programming.

 The Mailboxes collection contains 16 Mailbox objects. In C++,
that means the Mailboxes collection has as properties 16 different
Mailbox instances. These Mailbox instances could contain an array
or some other collection, and most likely the array holds pointers to
Mail instances within the Mailbox object.

Observing the Mailbox class
Consider the characteristics and capabilities of the Mailbox class. Each
Mailbox has these properties:

Width: 6 inches
Height: 6 inches
Depth: 18 inches
Address: A unique integer

And each Mailbox has these methods:

Open its door.
Close its door.

Notice that the methods are from the perspective of the Mailbox, not the
person opening the Mailbox.



Now think about the question regarding the address printed on the
Mailbox. There are 16 different Mailbox objects, and each one gets a
different number. So it’s possible to say this: The Mailbox class includes
an address, which is an integer. Each instance of the Mailbox class gets
its own number. The first may get 1, the second may get 2, and so on. So
you have two concepts here for representing the mailboxes in code:

Mailbox class: This is the general description of a mailbox. It
includes no specifics, such as the actual address. It simply states that
each mailbox has an address.
Mailbox instance: This is the actual object. The Mailbox instance
belongs to the class Mailbox. There can be any number of instances
of the Mailbox class.

Think of the Mailbox class as a cookie cutter — or, in C++ terminology,
the type. The Mailbox instance is an actual example of the class. In C++,
you can create a variable of class Mailbox and set its Address integer to
1. Then you can create another variable of class Mailbox and set its
Address integer to 2. Thus, you’ve created two distinct Mailbox objects,
each of class Mailbox.

But all these Mailbox instances have a width of 6, a height of 6, and a
depth of 18 inches. These properties are the same throughout the
Mailboxes collection. Thus, you would probably not set those manually;
instead, you would probably set them in the constructor for the class
Mailbox. Nevertheless, the values of width, height, and depth go with
each instance, not with the class; and the instances could, conceivably,
each have their own width, height, and depth. However, when you
design the class, you would put a stipulation in the class that these
properties can’t be changed.

Finding other objects
If you are dealing with a Mailboxes instance and an instance of Mailbox,
you can probably come up with some other classes. When you start
considering the parts involved, you can think of the following objects:



Lock: Each Mailbox instance would have a Lock, and so would the
Mailboxes instance.

Key: Each Lock instance would require one or more Key instances.

Mail: Each Mailbox instance can hold several Mail instances. The
carrier puts these in the Mailbox instances, and the residents take
them out.
LetterOpener: Some residents would use these to open the Mail.

So you now have four more types of objects (Lock, Key, Mail, and
LetterOpener). But are these classes necessary? Their need depends on
the application you’re building. In this case, you’re modeling the
mailbox system simply as an exercise. Therefore, it’s possible to choose
the desired classes. But if this were an actual application for a post
office, for example, you would have to determine whether the classes are
necessary for the people using the software. If the application is a
training exercise for people learning to be mail carriers, the application
may need more detail, such as the Key objects. If the application were a
video game, it may need all the classes mentioned and even more.

 In deciding whether you need certain classes, you can follow
some general rules. First, some classes are so trivial or simple that it
doesn’t make sense to include them. For example, a letter opener
serves little purpose beyond opening mail. If you’re designing a
Mail class, you would probably have the method OpenEnvelope.
Because some people would use a letter opener and others
wouldn’t, you have little reason to pass into that method a
LetterOpener instance. Therefore, you would probably not include
a class as trivial as LetterOpener. But then again, when writing a
game that involves a Mail instance, you may allow use of a
LetterOpener instance, but not a Scissors instance, to open the
letter.



Encapsulating Objects
People have come up with various definitions for what exactly object-
oriented means. The phrase various definitions in the preceding sentence
means that there aren’t simple discussions around a table at a
coffeehouse about what the term means. Rather, there are outright
arguments! One of the central points of contention is whether C++ is
object-oriented. In such discussions, one of the words that usually pops
up is encapsulation, which hides data values within the class and
prevents unauthorized access to them. People who defend C++ as being
object-oriented point out that it supports encapsulation.

Considering the Application Programming
Interface
Encapsulation is an important concept because it helps you create easier-
to-use, safer, and more reliable applications. In the world of computer
programming, encapsulation refers to the process of creating a stand-
alone object that can take care of itself and do what it must do while
holding on to information. For example, to model a cash register, an
application would encapsulate the cash register by putting everything
about the register (its methods and properties) into a single class.

 To keep data within the class safe, you would make some
methods and properties public (accessible through an Application
Programming Interface, API) and others private (accessible only
through the class). Some methods and properties can be protected,
so derived classes could access them, but they still wouldn’t be
public. The combination of public methods and properties used by
other developers to access the class is the class’s API.

Understanding properties
In Chapter 1 of this minibook, you see how to build classes and
instantiate objects from them. The examples in that chapter are



straightforward, and all you really deal with are properties and methods.
A property in Chapter 1 is essentially a variable, such as Color
InkColor;. However, real-world classes work a little differently. You
create a class member, which is actually the property from Chapter 1,
and access it through methods that consist of the following:

Setter: A special method used to set (modify) the value of a
property.
Getter: A special method used to get (read) the value of a property.

When viewed in this way, a property can consist of a setter (write-only),
getter (read-only), or both (read/write). The property is never actually
touched as part of the API. Here are the reasons you want to use this
approach:

Using a getter, it’s possible to ensure that the value supplied by the
caller is the right type, the correct length, and is in a specific range.
You can also verify that the data doesn’t contain viruses and other
nasty stuff.
Using a getter or a setter (depending on access), you can change the
format of data from its internal representation to its external
representation. For example, you could represent money as strings
externally and floating-point values internally.
Employing properties can allow you to perform security checks and
other measures to keep data safe.
Using getters and setters also makes it easier to set a breakpoint for
debugging (discussed in Book 4 Chapter 2).
Increasing property functionality can make it possible to manage
resources in various ways, such as allowing access only at given
times (configurable by an administrator).

Methods also access properties, but in a different manner than properties
do. When designing a cash register class, you’d probably have a
property representing the total dollar amount that the register contains—



the methods that use the class wouldn’t directly modify that value.
Instead, they’d call various methods to perform transactions. One
transaction might be Sale(). Another transaction might be Refund();
another might be Void(). These would be the capabilities of the register
in the form of public methods, and they would modify the cash value
inside the register, making sure that it balances with the sales and
returns. If a method could just modify the cash value directly, the
balance would get out of whack. Encapsulation, then, is this:

You combine the use of methods and properties to access class
members, hiding some of them and making some accessible.
Some methods perform specific tasks that may access more than one
property.
The accessible methods and properties together make up the API of
the object.
When you create an object, you create one that can perform on its
own. In other words, the users of the class tell it what to do (such as
perform a sales transaction) by calling its methods or properties and
supplying parameters, and the object does the work.

Choosing between private and protected
The cash amount would be a private or protected property. It would be
hidden from the caller. As for which it would be, private or protected,
that depends on whether you expect to derive new classes from the cash
register class and whether you want these new classes to have access to
the members.

In the situation of a cash register, you probably wouldn’t want other
parts of the application to access the cash register total if you’re worried
about security, so you might choose private. On the other hand, if you
think that you’ll create derived classes that have added features
involving the cash (such as automatically sending the money to a bank
via an electronic transaction), you’d want the members to be protected.
In general, developers often choose protected, rather than private,
because they’ve been bitten too many times by using classes that have



too many private members. In those cases, you’re unable to derive useful
classes because everything is private!

Defining a process
The encapsulation process matters more than simply enclosing code in
an easily accessed form. When you design objects and classes, you
encapsulate your information into individual objects. If you keep the
process in mind, you’ll be better off. Here are the things you need to do
every time you design a class:

Encapsulate the information. Combine the information into a
single entity that becomes the class. This single entity has properties
representing its characteristics and methods representing its
capabilities.
Clearly define the public interface of the class. Provide a set of
properties and methods that are public, and make the class members
either protected or private.
Write the class so that it knows how to do its own work. The
class’s users should need only to call the methods in the public
interface, and these public methods should be simple to use.
Think of your class as a black box. The object has an interface that
provides a means so that others can use it. The class includes details
of how it does its thing; users only care that it does it. In other words,
the users don’t see into the class.
Never change the class interface after you publish the class.
Many application errors occur when a developer changes how
methods, properties, events, or access methods in the class work
after publishing the class. If application developers rely on one
behavior and the class developer introduces a new behavior, all
applications that rely on the original behavior will break. You can
always add to a class interface but never subtract from it or modify
it. If you find that you must introduce a new behavior to Sale(), add
the new behavior to a new method, Sale2().



Implementing properties
A common saying in object-oriented programming is that you should
never make your properties public. The idea is that if users of the object
can easily make changes to the object’s properties, a big mess could
result. Previous sections mention properties and then talk about special
methods as well. There are two methods of accessing property values in
C++, and most developers today implement both when possible:

Getter/setter as a method: You can use separate getter and setter
methods, such as setValue() and getValue(). This is the approach
that you can easily use with all versions of C++ and is the only
officially supported technique.
Property approach: Developers who have a background in other
languages, such as C#, prefer the property approach, in which you
have the object name, a dot, and then the property you want to
change, such as MyObject.Value. The selection of getter or setter is
automatic, based on context. To implement this approach, you must
either use the correct C++ language product, such as Microsoft C++,
or create a specialized class.

 The article at
https://www.codeproject.com/Articles/118921/C-Properties

tells you about the Microsoft approach to creating properties, which
involves creating a standard getter, setter, or both and then relying on
__declspec() to define the property. The discussion at
https://stackoverflow.com/questions/8368512/does-c11-

have-c-style-properties describes a number of methods you can
use with standards-based C++, including the creation of a template.
The point is that you can use the property approach with C++, but it
requires some additional work.

The ImplementProperties example, shown in Listing 3-1, demonstrates
the process for working with read-only, read/write, and write-only

https://www.codeproject.com/Articles/118921/C-Properties
https://stackoverflow.com/questions/8368512/does-c11-have-c-style-properties


properties for a class.

LISTING 3-1: Working with Properties
#include <iostream> 

  

using namespace std; 

  

class MyDog { 

protected: 

  string _Name; 

  int _Weight = 300; 

  bool _IsHealthy = false; 

  

public: 

  // Properties 

  string getName() { 

    return _Name; 

  } 

  

  int getWeight() { 

    return _Weight; 

  } 

  void setWeight(int Weight) { 

    if (Weight > 0) 

      _Weight = Weight; 

  } 

  

  void setIsHealthy(bool IsHealthy) { 

    if (_Weight > 200) 

      _IsHealthy = false; 

    else 

      _IsHealthy = IsHealthy; 

  } 

  

  // Methods 

  MyDog(string Name); 

  void DoDogRun(); 

}; 

  

MyDog::MyDog(string Name) { 

  if (Name.length() == 0) 

    throw "Error: Couldn't create MyDog!"; 

  

  MyDog::_Name = Name; 

} 

  



void MyDog::DoDogRun() { 

  if (MyDog::_IsHealthy) 

    cout << MyDog::_Name << " is running!" << endl; 

  else if (MyDog::_Weight > 200) 

    cout << MyDog::_Name << " is too fat to run!" << endl; 

  else 

    cout << MyDog::_Name 

      << " is unhealthy; see vet first!" << endl; 

} 

  

int main() { 

  MyDog *ThisDog; 

  

  try { 

    // Uncomment to generate an error. 

    //ThisDog = new MyDog(""); 

  

    ThisDog = new MyDog("Fred"); 

  } catch (const char *msg) { 

    cerr << msg << endl; 

    return -1; 

  } 

  

  cout << ThisDog->getName() << " needs exercise." 

    << endl; 

  ThisDog->DoDogRun(); 

  

  ThisDog->setWeight(100); 

  ThisDog->DoDogRun(); 

  

  ThisDog->setIsHealthy(true); 

  ThisDog->DoDogRun(); 

  

  delete ThisDog; 

  ThisDog = 0; 

  

  return 0; 

}

The code begins by creating protected properties. The default dog
doesn’t have a name, but it does weigh 300 pounds and is definitely
unhealthy. The properties provide setter and getter code as needed. For
example, you don’t want to change the dog’s name after you create it,
but you do want to change its weight as needed. Keeping the dog’s
health state a secret provides personal protections for the dog, so you can
set it, but you can’t get it. Notice how you use the getters and setters to



interact with the data. For example, you can’t set the dog’s weight to a
negative amount.

 Because you can’t change the dog’s name after you create the
dog, the constructor has to accept a name. Notice how this
constructor code includes exception handling. If someone tries to
create the object without supplying a name, the constructor will
throw an exception and not create a new MyDog object.
Consequently, when you create ThisDog, you must enclose it within
a try…catch block, as shown in Listing 3-1. The error message
shows the problem onscreen:

Error: Couldn't create MyDog!

At this point, you can interact with ThisDog in the same way that you
interact with any other object. The example discovers that the poor dog
needs exercise, but you can’t exercise the dog at first because he’s too
fat. Even after losing weight, Fred needs to become healthy before going
out for a good run. However, look at the setIsHealthy() code. If Fred
weighs more than 200 pounds, the code ignores that the input value
indicates that Fred still isn’t healthy. Here is the output from this
example:

Fred needs exercise. 

Fred is too fat to run! 

Fred is unhealthy; see vet first! 

Fred is running!

Building Hierarchies
One of the great powers in C++ is the capability to take a class and build
new classes from it. When you use any of the available C++ libraries,
such as the Standard C++ Library, you will probably encounter many
classes — sometimes dozens of classes — that are all related to each
other. Some classes are derived from other classes, although some
classes are stand-alone. This gives programmers great flexibility. It’s



good for a class library to be flexible because when you’re using a
flexible library, you have many choices in the different classes you want
to use.

Establishing a hierarchy
When you design a class, you have the option of deriving the class
you’re creating from an original base class — creating a child/parent
relationship. The new class inherits the capabilities and characteristics of
the base class. Normally, the members that are public in the base class
will remain public in the derived class. The members that are protected
in the base class will remain protected in the derived class; thus, if you
derive even further, those final classes will also inherit the protected
members. Private members, however, live only in the base class.

Suppose you have a base class called FrozenFood, and from there you
derive a class called FrozenPizza. From FrozenPizza, you then derive a
class called DeepDishPizza. FrozenFood is at the top of the hierarchy. It
includes various members common to all classes. Now suppose that the
FrozenFood class has the following properties:

int Price (private): This is a private variable that represents the
price of the product.
int Weight (protected): This is a protected variable that represents
the weight of the product.

The FrozenFood class also has these methods:

constructor: The constructor is public and takes a price and a weight
as parameters. It saves them in the Price and Weight properties,
respectively.
GetPrice(): This is a public access method that returns the value in
the private Price property.

GetWeight(): This is a public access method that returns the value in
the protected Weight property.



To make this concept clearer, it helps to list these items in a box, putting
the name of the class (FrozenFood) at the top of the box. Then the box
has a horizontal line through it, and under that you list the properties.
Under the properties, you have another line, and then a list of methods,
as shown in Figure 3-3.

FIGURE 3-3: You can draw a class by using a box divided into three horizontal sections.

Note that in this figure, you can describe the visibility of each property
and method:

+: Public

–: Private
#: Protected

 Even though Figure 3-3 is helpful in assisting anyone in
visualizing a class and ultimately class relationships, it’s part of a
technique called the Unified Modeling Language (UML) — a topic
associated with software engineering and not discussed further in
this book. If you’re interesting in learning more about UML, you
can find tutorials at



https://www.tutorialspoint.com/uml/index.htm and
https://www.visual-paradigm.com/guide/uml-unified-

modeling-language/uml-class-diagram-tutorial/. You can
write great code without using UML and, today, most developers
rely on it only when working on large projects that would be hard to
manage otherwise.

Protecting members when inheriting
In C++, you have options for how you derive a class. To understand this,
remember that when you derive a class, the derived class inherits the
members from the base class. With the different ways to derive a class,
you can specify whether those inherited members will be public,
protected, or private in the derived class. Here are the options:

Public: When you derive a new class as public, all members that
were public in the base class will remain public in this derived class.
Protected: When you derive a new class as protected, all members
that were public in the base class will now be protected in this new
class. This means the members that were public in the base class will
not be accessible by users of this new class.
Private: When you derive a new class as private, all members in the
base class that this new class can access will be private. This means
that these members will not be accessible by any classes that you
later derive from this new class or by users of the class.

Think of it as an order of diminishing accessibility: The highest access is
public. When a member is public, users can access the member. The
middle access is protected. Users cannot access protected members, but
derived classes will have access to the protected members. The lowest
access is private. Users cannot access private members, and derived
classes can’t, either.

https://www.tutorialspoint.com/uml/index.htm
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/


 To put protection during inheritance in perspective, consider the
FrozenFood class and its children. When working with the
FrozenPizza derived class, you see a combination of the members
in FrozenFood and additional FrozenPizza members. However,
only the methods in the FrozenFood portion of FrozenPizza can
access the private members of the FrozenFood portion.
Nevertheless, the methods in the FrozenFood portion of
FrozenPizza and the private members of FrozenFood are part of
the derived class.

When you derive a class as public, the base class portion of the derived
class remains unchanged: Those items that were private remain in the
base class portion; therefore, the derived class does not have access to
them. Those that were protected are still protected, and those that were
public are still public.

But when you derive a class as protected, the base class portion is
different from the original base class: Its public members are now
protected members of this derived class. The actual base class itself did
not change; only the base class portion of the derived class becomes
protected. Thus, the members that were public in the base class but are
now protected in the derived class are not accessible to other methods
and classes.

And finally, if you derive a class as private, the base class portion is
again different from the original base class: All its members are now
private. Because its members are private, any classes you derive from
this newly derived class can’t access these members: They’re private.
However, as before, the original base class itself didn’t change.

In C++, you specify the type of inheritance you want in the header line
for the derived class. Look at the InheritedMembers example, shown in
Listing 3-2. Notice the three classes at the top of the listing: FrozenFood,
FrozenPizza, and DeepDishPizza. FrozenFood is the base class of



FrozenPizza, and FrozenPizza is the base class of DeepDishPizza.
Figure 3-4 shows this relationship using arrows to point toward the base
class.



FIGURE 3-4: The arrows in this UML diagram point toward the base class.

LISTING 3-2: Specifying the Access Levels of the
Inherited Members
#include <iostream> 

  

using namespace std; 

  

class FrozenFood { 

private: 

  int Price; 

protected: 

  int Weight; 

public: 

  FrozenFood(int APrice, int AWeight); 

  int GetPrice(); 

  int GetWeight(); 

}; 

  

class FrozenPizza : public FrozenFood { 

protected: 

  int Diameter; 

public: 

  FrozenPizza(int APrice, int AWeight, int ADiameter); 

  void DumpInfo(); 

}; 

  

class DeepDishPizza : public FrozenPizza { 

private: 

  int Height; 

public: 

  DeepDishPizza(int APrice, int AWeight, int ADiameter, 

                int AHeight); 

  void DumpDensity(); 

}; 

  

FrozenFood::FrozenFood(int APrice, int AWeight) { 

  Price = APrice; 

  Weight = AWeight; 

} 

  

int FrozenFood::GetPrice() { 

  return Price; 

} 

  

int FrozenFood::GetWeight() { 



  return Weight; 

} 

  

FrozenPizza::FrozenPizza(int APrice, int AWeight, 

                         int ADiameter) : 

                           FrozenFood(APrice, AWeight) { 

  Diameter = ADiameter; 

} 

  

void FrozenPizza::DumpInfo() { 

  cout << "\tFrozen pizza info:" << endl; 

  cout << "\t\tWeight: " << Weight << " ounces" << endl; 

  cout << "\t\tDiameter: " << Diameter << " inches" 

    << endl; 

} 

  

DeepDishPizza::DeepDishPizza(int APrice, int AWeight, 

                             int ADiameter, int AHeight) : 

                              FrozenPizza(APrice, AWeight, 

                                          ADiameter) { 

  Height = AHeight; 

} 

  

void DeepDishPizza::DumpDensity() { 

    // Calculate pounds per cubic foot of deep-dish pizza 

  cout << "\tDensity: "; 

  cout << Weight * 12 * 12 * 12 * 14 / 

          (Height * Diameter * 22 * 16); 

  cout << " pounds per cubic foot" << endl; 

} 

  

int main() { 

  cout << "Thin crust pepperoni" << endl; 

  FrozenPizza pepperoni(450, 12, 14); 

  pepperoni.DumpInfo(); 

  cout << "\tPrice: " << pepperoni.GetPrice() 

    << " cents" << endl; 

  

  cout << "Deep dish extra-cheese" << endl; 

  DeepDishPizza extracheese(650, 21592, 14, 3); 

  extracheese.DumpInfo(); 

  extracheese.DumpDensity(); 

  cout << "\tPrice: " << extracheese.GetPrice() 

    << " cents" << endl; 

  return 0; 

}

When you run Listing 3-2, you see the following output:



Thin crust pepperoni 

        Frozen pizza info: 

                Weight: 12 ounces 

                Diameter: 14 inches 

        Price: 450 cents 

Deep dish extra-cheese 

        Frozen pizza info: 

                Weight: 21592 ounces 

                Diameter: 14 inches 

        Density: 35332 pounds per cubic foot 

        Price: 650 cents

The first five lines show information about the object of class
FrozenPizza. The remaining lines show information about the object of
class DeepDishPizza, including the fact that it weighs 21,592 ounces
(which happens to be 1349.5 pounds), It has a density of 35,332 pounds
per cubic foot.

The derivations are all public. Thus, the items that were public in
FrozenFood are still public in FrozenPizza and DeepDishPizza. Note
where the different information in the output comes from. The line
Frozen pizza info: and the two lines that follow (Weight: and
Diameter:) come from the public method DumpInfo(), which is a
member of FrozenPizza. DumpInfo() is public in the FrozenPizza
class. Since DeepDishPizza derives from FrozenPizza as public,
DumpInfo() is also a public member of DeepDishPizza.

Try changing the header for DeepDishPizza from

class DeepDishPizza : public FrozenPizza

to
class DeepDishPizza : protected FrozenPizza

You’re changing the word public to protected. Make sure that you
change the correct line. Compile and run the application. You see an
error that looks similar to this one:

In function 'int main()': 

error: 'void FrozenPizza::DumpInfo()' is inaccessible 

error: within this context 

error: 'FrozenPizza' is not an accessible base of 'DeepDishPizza' 



error: 'int FrozenFood::GetPrice()' is inaccessible 

error: within this context 

error: 'FrozenFood' is not an accessible base of 'DeepDishPizza'

This message refers to the extracheese.DumpInfo(); line in main().
DumpInfo() is now a protected member of DeepDishPizza, thanks to
the word protected in the class header. By putting the word protected
in the class definition, you’re saying the inherited members that are
currently public will instead be protected. Because the DumpInfo()
member is protected, you can’t call it from main(). However,
DumpInfo() is still public in the FrozenPizza class, so this call is fine:

pepperoni.DumpInfo();

 Note that you can double-click the error: within this
context line to jump directly to the code that is trying to access the
hidden member, rather than look at the initial error. Using this
technique saves you time looking for the errant code.

Change the line back to a public inheritance, as it was in Listing 3-2:
class DeepDishPizza : public FrozenPizza.

And now change the header of FrozenPizza so that it looks like this:

class FrozenPizza : private FrozenFood

Again, make sure to change the correct lines. Compile and run the
application to see the following error:

In function 'int main()':| 

error: 'void FrozenPizza::DumpInfo()' is inaccessible| 

error: within this context| 

error: 'FrozenPizza' is not an accessible base of 'DeepDishPizza'| 

error: 'int FrozenFood::GetPrice()' is inaccessible| 

error: within this context| 

error: 'FrozenFood' is not an accessible base of 'DeepDishPizza'|

This error refers to the line inside DeepDishPizza::DumpDensity()
where the code is trying to access the Weight member. The compiler
doesn’t allow access now because the member, which was public in the



original FrozenFood class, became private when it became a part of
FrozenPizza. And because it’s private in FrozenPizza, the derived class
DeepDishPizza can’t access it from within its own methods. Make sure
to change back the header of FrozenPizza so that it looks like this:
class FrozenPizza : public FrozenFood.

Overriding methods
One of the cool things about classes is that you can declare a method in
one class, and then when you derive a new class, you can give that class
a different version of the same method. This is called overriding the
method. For example, if you have a class FrozenFood and a derived
class FrozenPizza, you may want to include a method in FrozenFood
called BakeChemistry(), which modifies the food when it’s baked.
Because all foods are different, the BakeChemistry() method would be
different for each class derived from FrozenFood.

In C++, you can provide a different version of the method for the
different derived classes by adding the word virtual before the method
name in the base class declaration, as in this line of code:

virtual void BakeChemistry();

This line is the prototype inside the class definition. Later, you would
provide the code for this method. In the class for your derived class, you
would then just put the method prototype, without the word virtual:

void BakeChemistry();

And as before, you would include the code for the method later on. For
example, you might have something like the following example. First,
here are the classes:

class FrozenFood { 

private: 

  int Price; 

protected: 

  int Weight; 

public: 

  FrozenFood(int APrice, int AWeight); 

  int GetPrice(); 



  int GetWeight(); 

  virtual void BakeChemistry(); 

}; 

  

class FrozenPizza : public FrozenFood { 

protected: 

  int Diameter; 

public: 

  FrozenPizza(int APrice, int AWeight, int ADiameter); 

  void DumpInfo(); 

  void BakeChemistry(); 

};

You can see the word virtual in the FrozenFood class, and then you see
the method declaration again in the FrozenPizza class. Now, here are
the BakeChemistry() methods:

void FrozenFood::BakeChemistry() { 

  cout << "Baking, baking, baking!" << endl; 

} 

  

void FrozenPizza::BakeChemistry() { 

  cout << "I'm getting crispy!" << endl; 

}

Note that the word virtual doesn’t appear in front of the methods; it
appears only in the class declaration. Now, whenever you make an
instance of each class and call BakeChemistry() for each instance, you
call the one for the given class. Consider the following two lines of code:

FrozenPizza pepperoni(450, 12, 14); 

pepperoni.BakeChemistry();

Because pepperoni is an instance of FrozenPizza, this code calls the
BakeChemistry() for the FrozenPizza class, not for the FrozenFood
class. You may not want any code in your base class for the
BakeChemistry() method. If so, you can do this:

virtual void BakeChemistry() {}



 The reason to take this approach is that you don’t need code in
the base class, but you do want code in the derived classes, and you
want them to be different versions of the same code. The idea, then,
is to provide a basic, default set of code that the classes inherit if
they don’t override the method. And sometimes, that basic, default
set of code is simply nothing. So you would put only an open brace
and a closing brace, and you can do that inside the class itself:

class FrozenFood 

{ 

private: 

  int Price; 

protected: 

  int Weight; 

public: 

  FrozenFood(int APrice, int AWeight); 

  int GetPrice(); 

  int GetWeight(); 

  virtual void BakeChemistry() {} 

};

Specializing with polymorphism
Suppose you have a method called Bake() and you want it to take as a
parameter a FrozenFood instance. If you derive FrozenPizza from
FrozenFood and then derive DeepDishPizza from FrozenPizza, by the
“is a” rule, objects of the class FrozenPizza and DeepDishPizza are
both examples of FrozenFood objects. This is true in general: If you
have a class called Base and you derive from that a class called Derived,
instances of class Derived are also instances of class Base. Therefore, if
you have a method called Bake() and you declare it as follows, you are
free to pass to this method a FrozenFood instance or to pass an instance
of any class derived from FrozenFood, such as FrozenPizza or
DeepDishPizza:

void Bake(FrozenFood *) 

{ 



  cout << "Baking" << endl; 

}

Suppose that in this Bake() method, you set the oven temperature to a
fixed amount, turn on the oven, and then cook the food. Every food
behaves differently in the oven. For example, a deep-dish frozen pizza
might rise and become thicker, but a regular frozen pizza will become
crispier but not get any thicker.

You don’t really want to put all the different food types inside the
Bake() method, with if statements for each food type. Instead, you can
put the actual baking chemistry in the class for the food itself. The
FrozenPizza would have its own BakeChemistry() method, and the
DeepDishPizza would also have its own BakeChemistry() method.
Then the Bake() method would call BakeChemistry() for whatever
object it receives as a parameter. C++ knows how to do this because of
the virtual methods. The Bake() method doesn’t even know or care what
type of FrozenFood it receives. It just calls BakeChemistry() for
whatever object it receives. And when you modify the application by
writing a new class derived from FrozenFood and give it its own
BakeChemistry() method, you can pass an instance of this class to
Bake(), without even having to modify Bake(). This whole process is
called polymorphism.

 Polymorphism is one of the most powerful aspects of object-
oriented programming. The idea is that you can expand and
enhance your application by adding new classes derived from a
common base class. Then you have to make very few (if any)
modifications to the rest of your application. Because you used
virtual methods and polymorphism, the rest of your application
automatically understands the new class you created. In essence,
you are able to snap in the new class, and the application will run
just fine.



Getting abstract about things
When you create a base class with a virtual method and then derive other
classes, you may want to override the virtual method in all the derived
classes. Furthermore, you may want to make sure that nobody ever
creates an instance of the base class. You do this because the base class
might contain basic things that are common to all the other classes, but
the class itself doesn’t make much sense as an instance. For example, no
one would want you to go to the store and pick up a frozen food without
specifying the sort of frozen food to get. Consequently, it doesn’t make
much sense to have an instance of a class called FrozenFood.

 Philosophers have a word to describe such things: abstract. The
class FrozenFood is abstract; it doesn’t make sense to create an
instance of it. In C++, you can make a class abstract, but when you
do, the compiler won’t allow you to make any instances of the
class.

In C++, you don’t actually specify that the class is abstract. The word
abstract doesn’t appear in the language. To specify that the class is
abstract, you add at least one virtual method that has no code. But
instead of just putting an empty code block, as in {}, you follow the
method prototype in the class definition with = 0 (called the pure
specifier, which makes the method a pure virtual method or an abstract
virtual method, depending on which you prefer), as in

class FrozenFood 

{ 

private: 

  int Price; 

protected: 

  int Weight; 

public: 

  FrozenFood(int APrice, int AWeight); 

  int GetPrice(); 

  int GetWeight(); 

  virtual void BakeChemistry() = 0; 

};



In this class definition, the method BakeChemistry() has = 0 after it
(but before the semicolon). The = 0 transforms the virtual method into
an abstract virtual method, which transforms the class into an abstract
class.

After you create an abstract class, you must also modify the derived
classes by overriding the abstract virtual method. Otherwise, the derived
classes will also be abstract. When your class is abstract, you can’t
create instances of it. To override the abstract virtual method, you
override as you would with any virtual method. This class includes a
method that overrides the BakeChemistry() method:

class FrozenPizza : public FrozenFood 

{ 

protected: 

  int Diameter; 

public: 

  FrozenPizza(int APrice, int AWeight, int ADiameter); 

  void DumpInfo(); 

  void BakeChemistry(); 

};

Then you provide the code for the BakeChemistry() method, as in

void FrozenPizza::BakeChemistry() 

{ 

  cout << "I'm getting crispy under this heat!" << endl; 

}

There’s nothing magical about defining the override method, but you are
required to override it if you want to create an instance of this class.
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Chapter 4

Building with Design Patterns
IN THIS CHAPTER

 Understanding what design patterns are and how you can use
them

 Implementing an observer pattern
 Building a mediator pattern

When you work as a developer, eventually you start to notice that you do
certain things repeatedly. For example, when you need to keep track of
how many instances of a certain class you create, you define a static
property called something like int InstanceCount;, include a line that
increments InstanceCount in the constructor, and include a line that
decrements InstanceCount in the destructor. You make InstanceCount
private and include a static method that retrieves the value, such as
getInstanceCount().

Because you use it so often, it becomes a pattern. The first time you used
it, you had to think about it — how to design and implement it. Now,
you barely have to think about it; you just do it. Thus, it’s a design
pattern that you use.

This chapter takes a practical look at design patterns that you use when
creating applications. It helps you understand why using design patterns
reduces development time, makes code less error prone, and improves
application efficiency. The chapter delves just a bit into history and
usage, with the usage considerations relying on the singleton pattern as a
starting point.

You also see how to create and use two common design patterns:
observer and mediator. You may or may not actually use these patterns
in your applications, but by seeing how they’re put together, you can



find or create other patterns that will make your development process
easier.

Delving Into Pattern History
Way back in 1995, a book became an instant bestseller in the computer
programming world: Design Patterns: Elements of Reusable Object-
Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. The four authors of this groundbreaking book would
become known in the field of programming as The Gang of Four.

The Gang of Four drew on a body of knowledge in the field of
architecture — not software architecture, but rather the field of those
people who build tall buildings, brick-and-mortar style. That kind of
architecture has been around for at least two-and-a-half centuries, so the
field is more mature than the field of software development. And, in the
field of building design, people have come up with common ways to
design and build buildings and towns, without having to start over from
scratch every time with a new set of designs. Christopher Alexander
wrote a book in 1977 called A Pattern Language (see
http://www.patternlanguage.com/ca/ca.html for details), which
teaches the major concepts of building architecture by using patterns.
The Gang of Four drew on this knowledge and applied it to software
development principles.

In their book, The Gang of Four point out something that seems obvious
in hindsight (but then again, great discoveries are often deceptively
simple): The best software developers reuse techniques in the sense of
patterns. The description of the class that keeps an instance count is an
example of a technique that can be used over and over.

Now, if you heavily explore the field of object-oriented programming
(and computer science in general, really), you often see the term
reusable. One of the goals of object-oriented programming is to make
code reusable by putting it in classes. You then derive your own classes
from these classes, thereby reusing the code in the base classes.

http://www.patternlanguage.com/ca/ca.html


You could probably put an instance-counting class in a base class and
always derive from it. But for some other designs, using a base class
doesn’t always work. Instead, software developers apply the same design
to a new set of classes. The design is reused, but not the code. That’s the
idea behind design patterns. You don’t just write up your design patterns
and stuff them into a bunch of base classes. Instead, you know the
patterns. Or you keep a list or catalog of them. You can find a list of the
seven most important design patterns at
https://medium.com/educative/the-7-most-important-software-

design-patterns-d60e546afb0e.

Introducing a Simple Pattern: the
Singleton

In this section, you discover how to create a design pattern so that you
can see what it is and, more important, how you can use it. You look at a
situation in which you need a class that allows only one instance to exist
at any given time. You’ve come across this need many times. For
example, you may have a class that represents the computer itself. You
want only one instance of it. You also may have a class that represents
the planet Earth. Again, you need only one instance. If people try to
create a second instance of the class in their code, they will receive a
compiler error. The following sections discuss how to perform this task
in C++ using the singleton pattern (which ensures that only one instance
exists at a time).

Using an existing pattern
You could spend a couple hours coming up with an approach to the
problem of creating only a single instance. Or you could look at a pattern
that already exists somewhere, such as what this section shows you.

To understand how to create the singleton pattern, you need to first
understand an unusual concept that many C++ programmers don’t
usually consider: You can make a constructor of a class private or
protected, which prevents someone from directly creating an instance of

https://medium.com/educative/the-7-most-important-software-design-patterns-d60e546afb0e


a class. To make this process work, you include a static method that
creates the instance for you. Static methods don’t have an instance
associated with them. You call them directly by giving the class name,
two colons, and the method name. Fortunately, the static method is a
member of the class, so it can call the constructor and create an instance
for you.

Here’s how you make a singleton class: First, make the constructor
private. Next, add a public static method that does the following:

1. Checks to see whether a single instance of the class already exists. If
so, it returns the instance’s pointer.

2. Creates a new instance and returns its pointer if an instance doesn’t
already exist.

Finally, where do you store this single instance? You store its pointer in a
static property of the class. Because it’s static, only one property is
shared throughout the class, rather than a separate variable for each class
instance. Also, make the variable private so that users can’t just modify
it at will.

And, voilà — you have a singleton class! Here’s how it works:
Whenever you need the single instance of the class, you don’t try to
create it. (You’ll get a compile error! Yes, the compiler itself won’t let
you do it.) Instead, you call the static method.

 The singleton pattern won’t prevent different programs on the
same machine from creating multiple instances of the class (one for
each application). This pattern works only within a single
application. Consequently, if you need to ensure that a class isn’t
instantiated more than once on a machine as a whole, you need to
use some form of globally unique identifier at the operating system
level, a topic that’s outside the scope of this book.

Creating a singleton pattern class



It’s time to see the singleton pattern at work. Listing 4-1 from the
Singleton example shows how to create such a class:

LISTING 4-1: Creating a Singleton Class
class Planet { 

private: 

  static Planet *inst; 

  Planet() {} 

  ~Planet() {} 

public: 

  static Planet *GetInstance(); 

}; 

  

Planet *Planet::inst = 0; 

  

Planet *Planet::GetInstance() { 

  if (inst == 0)     { 

    inst = new Planet(); 

  } 

  return inst; 

} 

  

int main() { 

  Planet *MyPlanet = Planet::GetInstance(); 

  cout << "MyPlanet address: " << MyPlanet << endl; 

   

  Planet *MyPlanet2 = Planet::GetInstance(); 

  cout << "MyPlanet2 address: " << MyPlanet2 << endl; 

  return 0; 

}

To use this class, you can’t create an instance directly. Instead, you call
the GetInstance() method:

Planet *MyPlanet = Planet::GetInstance();

 You call this any time you want to get a copy of the single
instance, which may include creating an instance when one doesn’t
exist. Every time you call GetInstance(), you always get a pointer
to the same instance. When you run this code, you see output like



this, which confirms that MyPlanet and MyPlanet2 both point to the
same instance:

MyPlanet address: 0x3faf08 

MyPlanet2 address: 0x3faf08

Look at the constructor: It’s private. Therefore, if you attempt something
like this somewhere outside the class (such as in main()):

Planet MyPlanet;

you get a compiler error. In Code::Blocks, you get this error:
error: 'Planet::Planet()' is private 

error: within this context

Or if you try to create a pointer, you get the same error when you call
new:

Planet *MyPlanet = new Planet();

The singleton pattern is about creating and destroying a single instance
as needed, so you don’t want anything deleting the instance that the
application creates. Just as you would make the constructor private, you
would also make the destructor private, as shown in Listing 4-1. If you
try to delete an instance after you obtain it, as in

Planet *MyPlanet = Planet::GetInstance(); 

delete MyPlanet;

then once again you receive an error message — this time, for the
destructor:

error: 'Planet::~Planet()' is private 

error: within this context

 You may be tempted to make a constructor that takes a
parameter. You could pass parameters into the GetInstance()
method, which would in turn pass them to the constructor. This
would work the first time, but there’s a catch: Remember that after
the GetInstance() method creates the instance, it never does so



again. That means it won’t call the constructor again. Therefore, if
you have a class that looks like this:

class Planet 

{ 

private: 

  static Planet *inst; 

  Planet(string name) 

  { 

    cout << "Welcome to " << name << endl; 

  } 

  ~Planet() {} 

public: 

  static Planet *GetInstance(string name); 

};

and your GetInstance() method has this code in it:

Planet *Planet::GetInstance(string name) 

{ 

  if (inst == 0) 

  { 

    inst = new Planet(name); 

  } 

  return inst; 

}

and you make two calls like this:
Planet *MyPlanet = Planet::GetInstance("Earth"); 

Planet *MyPlanet2 = Planet::GetInstance("Venus");

the results may not be as you expect. You end up with only one instance,
which gets created with the first line — the one with "Earth" passed in.
In your second call to the GetInstance() method, GetInstance() sees
that an instance already exists and does not even use the "Venus"
parameter. So be careful if you’re using parameters in constructors.

Watching an Instance with an
Observer

A common task in computer programming is when one or more
instances of a class (or different classes) need to keep an eye on a certain



object and perform various actions when that object changes. In other
words, the class that keeps an eye on the others is an observer, hence the
name of the pattern. The following sections tell you about the observer
pattern and describe its use.

Understanding the observer pattern
You may write an application that monitors various activities around
your house when you’re away. Your application could be configurable;
you could set it up so that the user can choose various actions to take if
something goes awry. You might have the following options:

The application saves a note in a file so that you can later review it.
The application sends an email (or text for that matter) to you.
If the computer is linked to a telephone security system, it can notify
the police.
The robotic dog can receive a signal to go on high alert.

Each of these actions can exist in a different class, each with its own
code for handling the situation. The one about saving a note to a file is
easy: You would open a file, write to it, and close the file. The email
example might involve obtaining a Simple Mail Transfer Protocol
(SMTP) library, using it to create a message object, and then sending the
message. To notify the police, your computer would have to be hooked
up to an online security system that’s accessible via the phone lines or
perhaps via the Internet, and the police would need a similar system at
their end. The class for this would send a signal over the lines to the
police, much like the way a secret button that notifies the police of a
robbery at a gas station works. Finally, you might have a similar
contraption hooked up to the brain of your little robotic watchdog, Fido;
after receiving a high-voltage jolt, Fido can go on high alert and ward off
the intruders. These situations use Observer classes (each class derives
from a base class called Observer).

Now, you would also have a class whose object detects the problem in
the house. This object might be hooked up to an elaborate security



system, and when the change takes place, the computer calls a method
inside this object. We call this class the Subject class. So think about
what is happening here:

1. When a security issue happens, the computer calls a method inside
the single Subject instance.

2. The Observer classes have objects that watch the Subject instance.
The method in the Subject class then calls methods in each of the
Observer objects. These methods take the appropriate action,
whether it’s write to a file, notify the police, zap the robotic dog, or
whatever.

Here’s the catch: The people using your computer application can
determine which Observer classes they want to respond to the event
(possibly, via an Options dialog box). The ability of the user to
determine which Observer classes to use means that the design must be
flexible. In order to obtain this flexibility, you need to add the following
requirement: You might add new Observer classes as they come up, so
the Subject class must accommodate them all. One Observer might
signal a helicopter to fly in and chase a robber who’s making a getaway.
But you can’t be sure what you’ll come up with next. All you know is
that you may add Observer subclasses and instances of these subclasses.
Here are the issues that come up when designing such a set of classes:

You could keep a long list of instances inside the Subject class, and
whenever an event takes place, the event handler calls a routine in all
the Observer instances. The Observer instances then decide whether
they want to use the information. The problem with this situation is
that you have to call a method within the Observer classes (call into
the class), even if the individual instances don’t want the
information.
You could have each Observer instance constantly check the
Subject instance, looking for an event. (This process is called
polling.) The problem here is that this process can push the computer



to its limits, believe it or not: If every single Observer instance is
constantly calling into the Subject class, you’ll have a lot of activity
going on for possibly hours on end, keeping the CPU nice and toasty.
That’s not a good idea, either.
You can perform polling using the observer pattern, which won’t
overextend the CPU. In this pattern, the Observer class contains a
method called Respond(). Meanwhile, the Subject class includes a
list of Observer instances. Further, the Subject class includes a
method called Event, which the computer calls whenever something
happens, such as a break-in. The application adds and removes
Observer instances to and from the Subject’s list of Observer
instances, based on the options the people choose when using your
application.

As you can imagine, this is a recurring pattern that a lot of applications
use. Although zapping a robotic dog might not be commonplace, other
applications use this general model. For example, in some C++ editors,
you can open the same document in multiple windows, all under one
instance of the editor application. When you change the code in one
window, you immediately see the change in the other windows. Each
class probably has a window, and these windows are the Observer
classes. The Subject represents the underlying document.

Defining an observer pattern class
This section discusses how to create an Observer class. The Observer
class contains a method called Respond(), which is a purely abstract
function in the class declaration — meaning that the derived classes
must create their own version of the Respond() function. It’s up to the
derived classes to respond to the event in their own ways. The following
lines from the AddRemoveItems example (see Listing 4-2, later in the
chapter) show how to create the Observer class:

class Observer { 

public: 

  virtual void Respond() = 0; 

};



As you can see, there’s not much here, so the example adds some
derived classes. Here are a couple:

class Dog : public Observer { 

public: 

  void Respond(); 

}; 

  

class Police : public Observer { 

protected: 

  string name; 

public: 

  Police(string myname) { name = myname; } 

  void Respond(); 

};

And here are the Respond() methods for these two classes. For now, to
keep it simple, they just write something to the console:

void Dog::Respond() { 

  cout << "Bark bark" << endl; 

} 

  

void Police::Respond() { 

  cout << name << ": 'Drop the weapon! Now!'" << endl; 

}

Again, so far, there’s nothing particularly interesting about this. These
lines of code represent just a couple methods that do their thing, really.
When the next step rolls around, though, things get exciting. Here’s the
Subject class:

class Subject { 

protected: 

  int Count; 

  Observer *List[100]; 

public: 

  Subject() { Count = 0; } 

  void AddObserver(Observer *Item); 

  void RemoveObserver(Observer *Item); 

  void Event(); 

};

This class has a list of Observer instances in its List member. The
Count member is the number of items in the list. Two methods for



adding and removing Observer instances are available: AddObserver()
and RemoveObserver(). A constructor initializes the list by just setting
its count to 0, and there’s the Event() method. Here’s the code for the
AddObserver() and RemoveObserver() methods. These functions
simply manipulate the arrays:

void Subject::AddObserver(Observer *Item) { 

  List[Count] = Item; 

  Count++; 

} 

  

void Subject::RemoveObserver(Observer *Item) { 

  int i; 

  bool found = false; 

  for (i=0; i < Count; i++) { 

    if (!found && List[i] == Item) { 

      found = true; 

      List[i] = List[i+1]; 

    } 

  } 

  if (found) { 

      Count--; 

  } 

}

The RemoveObserver() function uses some little tricks (again, a
pattern!) to remove the item. It searches through the list until it finds the
item; after that, it continues through the list, pulling items back one slot
in the array. And finally, if it finds the item, it decreases Count by 1. The
Event() method looks like this:

void Subject::Event() { 

  int i; 

  for (i=0; i < Count; i++) { 

    List[i]->Respond(); 

  } 

}

This code climbs through the list, calling Respond() for each item in the
list. When you put this all together, you can have a main() that sets up
these items. Here’s one possibility:

Dog Fido; 

Police TJHooker("TJ"); 



Police JoeFriday("Joe"); 

Subject Alarm; 

Alarm.AddObserver(&Fido); 

Alarm.AddObserver(&TJHooker); 

Alarm.AddObserver(&JoeFriday); 

Alarm.RemoveObserver(&TJHooker); 

Alarm.Event();

The code creates three Observer instances (one dog and two cops) and a
Subject instance called Alarm. It then adds all three instances to the list;
but then TJ Hooker backs out, so the code removes him from the list.

To test the additions, the code calls Event(). (Normally you call
Event() when an actual break-in event occurs.) And when you run this
code, you get the responses of each of the registered observers:

Bark bark 

Joe: 'Drop the weapon! Now!'

Notice that the TJHooker Observer didn’t respond, because it isn’t in the
list and didn’t receive a notification. It’s still an instance.

 In this example, the three observers (Fido, TJ Hooker, and Joe
Friday) are watching the alarm, ready to respond to it. They are
observers, ready for action. The alarm is their subject of
observation. That’s why the code uses the Observer and Subject
pattern.

Observers and the Standard C++ Library

 If you’re interested in using templates and the Standard C++
Library, you can make the Subject class a bit more sophisticated
by using a list rather than an array. (A list allows you to easily add
and remove items without constantly rebuilding the list, as you
would need to do with an array.) You can do this by using the
standard list class. The only catch is that the list class doesn’t



seem to do well with abstract classes. So you need to “de-
abstractify” your Observer class, which you do by setting it up like
this:

class Observer { 

public: 

  virtual void Respond() {} 

};

Then you can modify the Subject class and its methods, like so:

class Subject { 

protected: 

  list<Observer *> OList; 

public: 

  void AddObserver(Observer *Item); 

  void RemoveObserver(Observer *Item); 

  void Event(); 

}; 

  

void Subject::AddObserver(Observer *Item) { 

  OList.push_back(Item); 

} 

  

void Subject::RemoveObserver(Observer *Item) { 

  OList.remove(Item); 

} 

  

void Subject::Event() { 

  list<Observer *>::iterator iter; 

  for (iter=OList.begin(); iter!=OList.end(); iter++) { 

      Observer *item = (*iter); 

      item->Respond(); 

  } 

}

Note that the list saves pointers to Observer; not the Observer instances
themselves. That’s because, by default, the list class makes a copy of
whatever you put in the array. If you put in an actual instance, the list
class will make a copy (which creates problems with derived classes
because the list copies only the object being stored as an Observer
instance, not a class derived from Observer). With pointers, a copy of a
pointer still points to the original object, and therefore the items in the
list are the originals (at least their addresses are in the list). The list can



also add and remove items without needing the program to loop through
all the items, as occurs when using an array.

Automatically adding an observer
When you have an application that lets its users configure various
observers, you may want to create and delete observers based on the
configurations. In that case, it’s possible to add an Observer to a
Subject’s list automatically when you create the Observer, and to
remove the Observer from the list when you delete the Observer. To do
this, you can call the AddObserver() method from within the constructor
and call the RemoveObserver() method from within the destructor.

To make this technique work, you need to tell the object who the
Subject is by passing the name as a parameter to the constructor. The
following code does this. Note that you have to move the Subject class
above the Observer class because the Observer’s constructor and
destructor call into Subject. Also, note the AddObserver() and
RemoveObserver() functions are protected. However, to allow the
Observer class to use these functions, you need to add the word friend
followed by the word Observer in the Subject class. The code for the
complete AddRemoveItems application is in Listing 4-2.

LISTING 4-2: Adding and Removing Items in the
Constructor and Destructor
#include <iostream> 

  

using namespace std; 

  

class Observer; 

  

class Subject { 

  friend class Observer; 

protected: 

  int Count; 

  Observer *List[100]; 

  void AddObserver(Observer *Item); 

  void RemoveObserver(Observer *Item); 

public: 



  Subject() { Count = 0; } 

  void Event(); 

}; 

  

class Observer { 

protected: 

  Subject *subj; 

public: 

  virtual void Respond() = 0; 

  Observer(Subject *asubj) { 

    subj = asubj; 

    subj->AddObserver(this); 

  } 

  virtual ~Observer() { subj->RemoveObserver(this); } 

}; 

  

class Dog : public Observer { 

public: 

  void Respond(); 

  Dog(Subject *asubj) : Observer(asubj) {} 

}; 

  

class Police : public Observer { 

protected: 

  string name; 

public: 

  Police(Subject *asubj, string myname) : 

    Observer(asubj) { 

      name = myname; } 

  void Respond(); 

}; 

  

void Dog::Respond() { 

  cout << "Bark bark" << endl; 

} 

  

void Police::Respond() { 

  cout << name << ": 'Drop the weapon! Now!'" << endl; 

} 

void Subject::AddObserver(Observer *Item) { 

  List[Count] = Item; 

  Count++; 

} 

void Subject::RemoveObserver(Observer *Item) { 

  int i; 

  bool found = false; 

  for (i=0; i < Count; i++) { 

    if (!found && List[i] == Item) { 



      found = true; 

      List[i] = List[i+1]; 

    } 

  } 

  if (found)   { 

    Count--; 

  } 

} 

  

void Subject::Event() { 

    int i; 

    for (i=0; i < Count; i++) { 

      List[i]->Respond(); 

    } 

} 

  

int main() { 

  Subject Alarm; 

  Police *TJHooker = new Police(&Alarm, "TJ"); 

  cout << "TJ on the beat" << endl; 

  Alarm.Event(); 

  cout << endl; 

  cout << "TJ off for the day" << endl; 

  delete TJHooker; 

  Alarm.Event(); 

  return 0; 

}

Notice the Dog(Subject *asubj) : Observer(asubj) {} line of code
in the listing. This line tells the application to call the base class
constructor first with the subject. This action ensures that the base
object, Observer, is correctly instantiated before Dog is instantiated. If
you don’t do this, then the instantiation of Dog will fail because Dog
won’t have access to the resources in the base class that it needs.

Mediating with a Pattern
The idea behind the mediator pattern is that it performs the work of
organizing class communication when you have classes that interact in a
complex way. That way, only the underlying mediator class needs to
know about all the instances. The instances themselves communicate
only with the mediator. The following sections describe the basis for this
pattern and demonstrate how it works.



Defining the mediator pattern scenario
Suppose that you’re designing a sophisticated, complex model of a car.
You’re going to include the following parts, each of which will have its
own class:

The engine
The electrical supply (for technically minded folks, the battery and
alternator combined)
The radio
The wheels
The brakes
The headlights
The air conditioner
The road

Part of your task is to model the behaviors that these classes provide:

When the amount of electricity produced changes, the headlights get
brighter or dimmer.
When the amount of electricity produced increases or decreases, the
radio volume increases or decreases.
When the engine speed increases or decreases, the amount of
electricity produced increases or decreases.
When the engine speeds up, the wheels accelerate.
When the air conditioner turns on, the amount of electricity available
decreases.
When the air conditioner turns off, the amount of electricity available
increases.
When the road angle increases due to going uphill, the speed of the
wheels decreases.



When the road angle decreases because the car is going downhill, the
speed of the wheels increases.
When the brakes come on, the speed of the wheels decreases.

This list represents nine objects interacting with each other in different
ways. You could try to make all the objects communicate directly with
each other. In the code, making them communicate would mean that
most of the classes would have to contain references to objects of the
other classes. That technique could get pretty confusing.

Figure 4-1 shows a hierarchy of the interactions between classes that
demonstrates that you don’t have to have every class communication
directly with every other class.



FIGURE 4-1: A model of the hierarchy between classes.

Outlining the car example



In the example, when there’s a hill, the road angle either increases or
decreases, depending on the side of the hill you’re on (uphill or
downhill). The road does not need to know about all the other car parts.
Instead, it just informs the mediator of the change. The mediator then
informs the necessary car parts.

This may seem like overkill because the car parts should be able to talk
with each other directly. The idea is that if you enhance this application
later, you may want to add more car parts. Rather than connecting the
new car part to all the necessary existing car parts, you just make a
connection with the mediator object. Suppose that you add a new part
called an automatic transmission. When the car begins to climb a hill,
the automatic transmission might detect the change in grade and
automatically shift to a lower gear, resulting in an increase to the engine
speed. To add this class, you only need to define its behavior and specify
how it responds to various events, and then hook it up to the mediator.
You also modify the mediator so it knows something about the automatic
transmission’s behavior. Thus, you don’t need to hook it up to all the
other instances. Figure 4-2 shows how the application classes look with
the mediator in place.



FIGURE 4-2: A mediator certainly cleans things up!

One thing not shown in Figure 4-2 (for the purpose of avoiding clutter)
is that all the various car parts (including the road!) derive from a base
class called CarPart. This class will have a single member: a pointer to a
Mediator instance. Each of the car parts, then, will inherit a pointer to
the Mediator instance.

PUTTING UP A FAÇADE (PATTERN)
In the CarParts example, it would be cumbersome to have to manipulate the car system
by paying separate attention to all the different parts, such as the engine and the
wheels, simultaneously. Imagine what life would be like if you had to drive a car while
constantly worrying about every little thing. Instead, the example uses a CarControls
class through which you can interact with the system. The CarControls class is a
pattern itself, called a Façade pattern. (A façade is the front of something — it’s a
French word.) This pattern is also a front: It’s the interface into the system through



which you interact. That way, you don’t have to keep track of the individual classes.
When you add a class through which users can interact with the system, you are using
a Façade pattern.

The Mediator class has a PartChanged() method. This is the key
function: Anytime any of the car parts experiences a change, it calls
PartChanged(). Remember that a car part can experience a change in
only one of two ways: through an outside force unrelated to the existing
classes (such as the driver pushing the gas pedal or turning the steering
wheel) or through the Mediator instance. If the change comes from the
Mediator instance, it was triggered through one of the other objects.
Consider the following steps:

1. The driver pushes the gas pedal by calling a method in the Engine
instance.

2. The Engine instance changes its speed and then tells the Mediator of
the change.

3. The Mediator instance knows which objects to notify of the change.
For this change, it notifies the wheels to spin faster and the amount
of electricity produced to increase.

Here’s another possible sequence:

1. The road has a hill. To tell the car about the hill, the main routine
calls a method in the Road instance. The hill has a 10 degree incline.

2. The Road instance notifies Mediator of the change.

3. The Mediator instance handles this by figuring out how much to
decelerate; it then notifies the wheels to slow down.

So you can see that most of the application smarts are in the Mediator
class.



 Using the mediator pattern may seem to break the rules for using
OOP techniques. The example puts the smarts in the Mediator
class. Elsewhere, you may hear that objects must be able to do their
own work. But that’s not really a contradiction. In fact, the
Mediator class is handling all the smarts dealing with
collaborations between objects. After the Mediator instance figures
out, for example, that the wheels must spin faster, it notifies the
wheels and tells them to spin faster. That’s when the wheels take
over and do their thing. At that point, they know how to spin faster
without outside help from other classes and objects. So it’s not a
contradiction, after all.

Creating the car example
It’s time to put everything you’ve discovered into coded form. The
following sections break the car example into manageable pieces, but
you need all the pieces before running the example.

Working with the car parts header
The CarParts example begins in Listing 4-3. This is a header file that
contains the class declarations for the car parts. Each class provides
behaviors appropriate for that part, such as starting and stopping the
engine.

LISTING 4-3: Using the carparts.h File
#ifndef CARPARTS_H_INCLUDED 

#define CARPARTS_H_INCLUDED 

  

#include "mediator.h" 

  

class CarControls; // forward reference 

  

class CarPart { 

protected: 

  Mediator *mediator; 

  CarPart(Mediator *med) : mediator(med) {} 

  void Changed(); 



}; 

  

class Engine : public CarPart { 

protected: 

  friend class Mediator; friend class CarControls; 

  int RPM; 

  int Revamount; 

public: 

  Engine(Mediator *med) : CarPart(med), 

      RPM(0), Revamount(0) {} 

  void Start(); 

  void PushGasPedal(int amount); 

  void ReleaseGasPedal(int amount); 

  void Stop(); 

}; 

  

class Electric : public CarPart { 

protected: 

  friend class Mediator; friend class CarControls; 

  int Output; 

  int ChangedBy; 

public: 

  Electric(Mediator *med) : CarPart(med), 

      Output(0), ChangedBy(0) {} 

  void ChangeOutputBy(int amount); 

}; 

  

class Radio : public CarPart { 

protected: 

  friend class Mediator; friend class CarControls; 

  int Volume; 

public: 

  Radio(Mediator *med) : CarPart(med), Volume(0) {} 

  void AdjustVolume(int amount) { Volume += amount; } 

  void SetVolume(int amount) { Volume = amount; } 

  int GetVolume() { return Volume; } 

}; 

  

class Wheels : public CarPart { 

protected: 

  friend class Mediator; friend class CarControls; 

  int Speed; 

public: 

  Wheels(Mediator *med) : CarPart(med), Speed(0) {} 

  int GetSpeed() { return Speed; } 

  void Accelerate(int amount); 

  void Decelerate(int amount); 

}; 



  

class Brakes : public CarPart { 

protected: 

  friend class Mediator; friend class CarControls; 

  int Pressure; 

public: 

  Brakes(Mediator *med) : CarPart(med), Pressure(0) {} 

  void Apply(int amount); 

}; 

  

class Headlights : public CarPart { 

protected: 

  friend class Mediator; friend class CarControls; 

  int Brightness; 

public: 

  Headlights(Mediator *med):CarPart(med), Brightness(0) {} 

  void TurnOn() { Brightness = 100; } 

  void TurnOff() { Brightness = 0; } 

  void Adjust(int Amount); 

  int GetBrightness() { return Brightness; } 

}; 

  

class AirConditioner : public CarPart { 

protected: 

  friend class Mediator; friend class CarControls; 

  int Level; 

  int ChangedBy; 

public: 

  AirConditioner(Mediator *med) : CarPart(med), 

      Level(0), ChangedBy(0) {} 

  void TurnOn(); 

  void TurnOff(); 

  bool GetLevel() { return Level; } 

  void SetLevel(int level); 

}; 

  

class Road : public CarPart { 

protected: 

  friend class Mediator; friend class CarControls; 

  int ClimbAngle; 

  int BumpHeight; 

  int BumpWhichTire; 

public: 

  Road(Mediator *med) : CarPart(med) {} 

  void ClimbDescend(int angle); 

  void Bump(int height, int which); 

}; 



  

#endif // CARPARTS_H_INCLUDED

These classes know little of each other. That’s a good thing. However,
they do know all about the mediator, which is fine. This example uses an
important small feature of the American National Standards Institute
(ANSI) version of C++. Notice the constructor line in the Engine class
definition:

Engine(Mediator *med) : CarPart(med), 

    RPM(0), Revamount(0) {}

After the constructor definition, you see a colon and the name of the
base class, CarPart. This calls the base class constructor. Then there’s a
comma and the name of a property (RPM) and a value in parentheses,
which together form an initializer. When you create an instance of
Engine, the RPM variable will get set to 0. Further, the Revamount
variable will also get set to 0. Using the constructor with an initializer
causes the constructor to behave just like this code:

Engine(Mediator *med) { 

    RPM = 0; 

    Revamount = 0; 

}

Working with the mediator and car controls header
In Listing 4-4 you see the header file for the mediator along with a
special class called CarControls, which provides a central place through
which you can control the car. You may have noticed the CarControls
friend class accesses the car parts in carparts.h. This file includes
several forward declarations and it knows about the various CarParts
classes. This file also includes a Mediator derived class that provides a
general interface to the whole system.

LISTING 4-4: Using the mediator.h File
#ifndef MEDIATOR_H_INCLUDED 

#define MEDIATOR_H_INCLUDED 

  

// Define all of the required forward references. 

class CarPart; 



class Engine; 

class Electric; 

class Radio; 

class SteeringWheel; 

class Wheels; 

class Brakes; 

class Headlights; 

class AirConditioner; 

class Road; 

  

class Mediator { 

public: 

  Engine *MyEngine; 

  Electric *MyElectric; 

  Radio *MyRadio; 

  SteeringWheel *MySteeringWheel; 

  Wheels *MyWheels; 

  Brakes *MyBrakes; 

  Headlights *MyHeadlights; 

  AirConditioner *MyAirConditioner; 

  Road *MyRoad; 

  Mediator(); 

  void PartChanged(CarPart *part); 

}; 

  

class CarControls : public Mediator { 

public: 

  void StartCar(); 

  void StopCar(); 

  void PushGasPedal(int amount); 

  void ReleaseGasPedal(int amount); 

  void PressBrake(int amount); 

  void Turn(int amount); 

  void TurnOnRadio(); 

  void TurnOffRadio(); 

  void AdjustRadioVolume(int amount); 

  void TurnOnHeadlights(); 

  void TurnOffHeadlights(); 

  void ClimbHill(int angle); 

  void DescendHill(int angle); 

  void TurnOnAC(); 

  void TurnOffAC(); 

  void AdjustAC(int amount); 

  int GetSpeed(); 

  CarControls() : Mediator() {} 

}; 

  

#endif // MEDIATOR_H_INCLUDED



Creating the car parts methods
The methods for all the car parts appear in Listing 4-5. Note that these
functions never call the functions in other car parts.

LISTING 4-5: Presenting the carparts.cpp File
#include <iostream> 

#include "carparts.h" 

  

using namespace std; 

  

void CarPart::Changed() { 

  mediator->PartChanged(this); 

} 

  

void Engine::Start() { 

  RPM = 1000; 

  Changed(); 

} 

  

void Engine::PushGasPedal(int amount) { 

  Revamount = amount; 

  RPM += Revamount; 

  Changed(); 

} 

  

void Engine::ReleaseGasPedal(int amount) { 

  Revamount = amount; 

  RPM -= Revamount; 

  Changed(); 

} 

  

void Engine::Stop() { 

  RPM = 0; 

  Revamount = 0; 

  Changed(); 

} 

  

void Electric::ChangeOutputBy(int amount) { 

  Output += amount; 

  ChangedBy = amount; 

  Changed(); 

} 

  

void Wheels::Accelerate(int amount) { 



  Speed += amount; 

  Changed(); 

} 

  

void Wheels::Decelerate(int amount) { 

  Speed -= amount; 

  Changed(); 

} 

  

void Brakes::Apply(int amount) { 

  Pressure = amount; 

  Changed(); 

} 

  

void Headlights::Adjust(int Amount) { 

  Brightness += Amount; 

} 

  

void AirConditioner::TurnOn() { 

  ChangedBy = 100 - Level; 

  Level = 100; 

  Changed(); 

} 

  

void AirConditioner::TurnOff() { 

  ChangedBy = 0 - Level; 

  Level = 0; 

  Changed(); 

} 

  

void AirConditioner::SetLevel(int newlevel) { 

  Level = newlevel; 

  ChangedBy = newlevel - Level; 

  Changed(); 

} 

  

void Road::ClimbDescend(int angle) { 

  ClimbAngle = angle; 

  Changed(); 

} 

  

void Road::Bump(int height, int which) { 

  BumpHeight = height; 

  BumpWhichTire = which; 

  Changed(); 

}



 You can see that each method calls Changed() after each change.
This function is in the base class, and it calls into the Mediator’s
PartChanged() method, which does all the hard work. Also note
that in some of the car parts classes, the Mediator doesn’t respond
to their changes (such as the Wheel class), but the methods still call
Change(). The reason is that you may add features whereby the
Mediator would respond to these changes. Then you won’t have to
check to see whether you included a Change() call; it’s already
there. This approach helps avoid the problem of wondering why
Mediator isn’t doing what it’s supposed to do when the code
forgets to call Change().

Creating the mediator and car control methods
Listing 4-6 contains the mediator source code and the source code for
the CarControls class. This code appears in mediator.cpp.

LISTING 4-6: Presenting the mediator.cpp File
#include <iostream> 

#include "carparts.h" 

#include "mediator.h" 

  

using namespace std; 

  

Mediator::Mediator() { 

  MyEngine = new Engine(this); 

  MyElectric = new Electric(this); 

  MyRadio = new Radio(this); 

  MyWheels = new Wheels(this); 

  MyBrakes = new Brakes(this); 

  MyHeadlights = new Headlights(this); 

  MyAirConditioner = new AirConditioner(this); 

  MyRoad = new Road(this); 

} 

  

void Mediator::PartChanged(CarPart *part) { 

  if (part == MyEngine) { 

    if (MyEngine->RPM == 0) { 



      MyWheels->Speed = 0; 

      return; 

    } 

    if (MyEngine->Revamount == 0) { 

      return; 

    } 

    // If engine increases, increase the electric output 

    MyElectric->ChangeOutputBy(MyEngine->Revamount / 10); 

    if (MyEngine->Revamount > 0) 

      MyWheels->Accelerate(MyEngine->Revamount / 50); 

  } 

  else if (part == MyElectric) { 

    // Dim or brighten the headlights 

    if (MyHeadlights->Brightness > 0) 

      MyHeadlights->Adjust(MyElectric->ChangedBy / 20); 

    if (MyRadio->Volume > 0) 

      MyRadio->AdjustVolume(MyElectric->ChangedBy / 30); 

  } 

  else if (part == MyBrakes) 

    MyWheels->Decelerate(MyBrakes->Pressure / 5); 

  else if (part == MyAirConditioner) 

    MyElectric->ChangeOutputBy( 

      0 - MyAirConditioner->ChangedBy * 2); 

  else if (part == MyRoad) { 

    if (MyRoad->ClimbAngle > 0) { 

      MyWheels->Decelerate(MyRoad->ClimbAngle * 2); 

      MyRoad->ClimbAngle = 0; 

    } 

    else if (MyRoad->ClimbAngle < 0) { 

      MyWheels->Accelerate(MyRoad->ClimbAngle * -4); 

      MyRoad->ClimbAngle = 0; 

    } 

  } 

} 

  

void CarControls::StartCar() { 

  MyEngine->Start(); 

} 

  

void CarControls::StopCar() { 

  MyEngine->Stop(); 

} 

  

void CarControls::PushGasPedal(int amount) { 

  MyEngine->PushGasPedal(amount); 

} 

  

void CarControls::ReleaseGasPedal(int amount) { 



  MyEngine->ReleaseGasPedal(amount); 

} 

  

void CarControls::PressBrake(int amount) { 

  MyBrakes->Apply(amount); 

} 

  

void CarControls::TurnOnRadio() { 

  MyRadio->SetVolume(100); 

} 

  

void CarControls::TurnOffRadio() { 

  MyRadio->SetVolume(0); 

} 

  

void CarControls::AdjustRadioVolume(int amount) { 

  MyRadio->AdjustVolume(amount); 

} 

  

void CarControls::TurnOnHeadlights() { 

  MyHeadlights->TurnOn(); 

} 

  

void CarControls::TurnOffHeadlights() { 

  MyHeadlights->TurnOff(); 

} 

  

void CarControls::ClimbHill(int angle) { 

  MyRoad->ClimbDescend(angle); 

} 

  

void CarControls::DescendHill(int angle) { 

  MyRoad->ClimbDescend( 0 - angle ); 

} 

  

int CarControls::GetSpeed() { 

  return MyWheels->Speed; 

} 

  

void CarControls::TurnOnAC() { 

  MyAirConditioner->TurnOn(); 

} 

  

void CarControls::TurnOffAC() { 

  MyAirConditioner->TurnOff(); 

} 

  

void CarControls::AdjustAC(int amount) { 



  MyAirConditioner->SetLevel(amount); 

}

The CarControls part runs a bit long, but it’s handy because it provides
a central interface through which you can operate the car.

 The workhorse of the pattern, however, is in the Mediator class.
This code consists of a bunch of if statements that look at the
change that took place and then call into other classes to modify the
objects of the other classes. That’s the whole goal with the mediator
pattern: It has a Mediator class containing a general function that
looks for changes and then changes other classes.

Driving the car
Now it’s finally time to try the mediator pattern by running the car
through its paces. Listing 4-7 shows the various classes in action.

LISTING 4-7: Running the Car through Its Paces
#include <iostream> 

#include "mediator.h" 

#include "carparts.h" 

  

using namespace std; 

  

int main() { 

  // Create a new car. 

  Mediator *MyCar = new Mediator(); 

  

  // Start the engine. 

  MyCar->MyEngine->Start(); 

  cout << "Engine Started!" << endl; 

  

  // Accelerate. 

  MyCar->MyWheels->Accelerate(20); 

  cout << "The car is going: " << 

    MyCar->MyWheels->GetSpeed() << endl; 

  

  // Apply the brakes. 

  MyCar->MyBrakes->Apply(20); 

  cout << "Applying the brakes." << endl; 



  cout << "The car is going: " << 

    MyCar->MyWheels->GetSpeed() << endl; 

  

  // Stop the car. 

  MyCar->MyBrakes->Apply(80); 

  cout << "Applying the brakes." << endl; 

  cout << "The car is going: " << 

    MyCar->MyWheels->GetSpeed() << endl; 

  

  // Shut off the engine. 

  MyCar->MyEngine->Stop(); 

  cout << "Engine Stopped" << endl; 

  return 0; 

}

The example code performs a few simple tasks using the various classes.
You could always add more to your test code. The thing to notice is that
everything goes through the Mediator class, MyCar. Here’s the output
from this example:

Engine Started! 

The car is going: 20 

Applying the brakes. 

The car is going: 16 

Applying the brakes. 

The car is going: 0 

Engine Stopped
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Chapter 1

Considering Functional
Programming

IN THIS CHAPTER
 Understanding how functional programming works
 Defining how functional programming differs
 Implementing functional programming using lambda

expressions

This minibook describes a different sort of C++ programming in the
form of the functional programming paradigm. A paradigm is a
framework that expresses a particular set of assumptions, relies on
particular ways of thinking through problems, and uses particular
methodologies to solve those problems. You’ll still use C++, but you use
it in a manner that differs from the object-oriented programming (OOP)
paradigms used in the previous minibook. Because many people are only
now becoming aware of functional programming techniques, this
chapter discusses how the functional and OOP paradigms differ.

The chapter also looks at some of the ways in which you change your
programming style to use the functional programming paradigm. These
style changes have some significant benefits when applied to certain
kinds of development that rely heavily on math, perform various kinds
of analysis, or work with technologies such as machine learning. You
may not know it, but C++ is recommended as a language for both
machine learning and deep learning in articles like the one at
https://towardsdatascience.com/top-10-in-demand-programming-

languages-to-learn-in-2020-4462eb7d8d3e. However, making it
work in these environments requires use of functional programming
techniques.

https://towardsdatascience.com/top-10-in-demand-programming-languages-to-learn-in-2020-4462eb7d8d3e


And finally in this chapter, you discover how to implement functional
programming strategies using lambda expressions. This is one of the
simplest ways to achieve what you want with a minimum of disruption
to your standard programming practices if you’re heavily involved in
OOP. Later chapters delve more deeply into lambda expressions. This
chapter just helps you get your feet wet.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookIII\Chapter01
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Understanding How Functional
Programming Differs

Functional programming has somewhat different goals and approaches
than other paradigms use. Goals define what the functional programming
paradigm is trying to do in forging the approaches used by languages
that support it. However, the goals don’t specify a particular
implementation; doing that is within the purview of the individual
languages.

 The main difference between the functional programming
paradigm and other paradigms is that functional programs use math
functions rather than statements to express ideas. This difference
means that rather than write a precise set of steps to solve a
problem, you use math functions, and you don’t worry about how
the language performs the task. In some respects, this makes
languages that support the functional programming paradigm
similar to applications such as MATLAB. Of course, with



MATLAB, you get a user interface, which reduces the learning
curve. However, you pay for the convenience of the user interface
with a loss of power and flexibility, which functional languages do
offer. Using this approach to defining a problem relies on the
declarative programming style, which you see used with other
paradigms and languages, such as Structured Query Language
(SQL) for database management.

In contrast to other paradigms, the functional programming paradigm
doesn’t maintain state. The use of state enables you to track values
between function calls. Other paradigms use state to produce variant
results based on environment, such as determining the number of
existing objects and doing something different when the number of
objects is zero. As a result, calling a functional program function always
produces the same result given a particular set of inputs, thereby making
functional programs more predictable than those that support state.

Because functional programs don’t maintain state, the data they work
with is also immutable, which means that you can’t change it. To change
a variable’s value, you must create a new variable. Again, this makes
functional programs more predictable than other approaches and makes
functional programs easier to run on multiple processors.

 The capability to work on multiple processors is one area in
which C++ excels. Most, possibly all, machines today have more
than one core in their CPU, which allows for multiprocessing. Each
core is essentially a single processor. Unlike many languages, C++
is uniquely positioned to make full use of the hardware, whether
that hardware exists as a Graphics Processing Unit (GPU), Tensor
Processing Unit (TPU), container, cloud, mobile device, or
microcontroller. It’s this low-level affinity for the hardware and
significant speed advantage that makes C++ the top choice for the
Java Virtual Machine (JVM) and the Chrome V8 Engine.



Imperative programming, the kind of programming that most developers
have done until now, is akin to an assembly line, where data moves
through a series of steps in a specific order to produce a particular result.
The process is fixed and rigid, and the person implementing the process
must build a new assembly line every time an application requires a new
result. Object-oriented programming (OOP) simply modularizes and
hides the steps, but the underlying paradigm is the same. Even with
modularization, OOP often doesn’t allow rearrangement of the object
code in unanticipated ways because of the underlying interdependencies
of the code.

 Functional programming gets rid of the interdependencies by
replacing procedures with pure functions, which requires the use of
immutable state. Consequently, the assembly line no longer exists;
an application can manipulate data using the same methodologies
used in pure math. The seeming restriction of immutable state
provides the means to allow anyone who understands the math of a
situation to also create an application to perform the math.

Using pure functions creates a flexible environment in which code order
depends on the underlying math. That math models a real-world
environment, and as our understanding of that environment changes and
evolves, the math model and functional code can change with it —
without the usual problems of brittleness that cause imperative code to
fail. Modifying functional code is faster and less error prone than other
programming paradigms because the person implementing the change
must understand only the math and doesn’t need to know how the
underlying code works. In addition, learning how to create functional
code can be faster as long as the person understands the math model and
its relationship to the real world.

Functional programming also embraces a number of unique coding
approaches, such as the capability to pass a function to another function
as input. This capability enables you to change application behavior in a



predictable manner that isn’t possible using other programming
paradigms.

CONSIDERING OTHER PROGRAMMING
PARADIGMS

You might think that only a few programming paradigms exist besides the functional
programming paradigm explored in this minibook, but the world of development is
literally packed with them. That’s because no two people truly think completely alike.

The reason for so many paradigms is that each one represents a different approach to
the puzzle of conveying a solution to problems by using a particular methodology, all
while making assumptions about things like developer expertise and execution
environment. In fact, you can find entire sites that discuss the issue, such as the one at
https://cs.lmu.edu/~ray/notes/paradigms/. Oddly enough, some languages (such as
C++) mix and match compatible paradigms to create an entirely new way to perform
tasks based on what has happened in the past. Here are just four of these other
paradigms. Many languages in the world today use just these four paradigms, so your
chances of encountering them are quite high.

Imperative: Imperative programming takes a step-by-step approach to
performing a task. The developer provides commands that describe precisely
how to perform the task from beginning to end. During the process of executing
the commands, the code also modifies application state, which includes the
application data. The code runs from beginning to end. An imperative
application closely mimics the computer hardware, which executes machine
code. Machine code is the lowest set of instructions that you can create and is
mimicked in early languages, such as assembler.

Procedural: Procedural programming implements imperative programming,
but adds functionality such as code blocks and procedures for breaking up the
code. The compiler or interpreter still ends up producing machine code that
runs step by step, but the use of procedures makes it easier for a developer to
follow the code and understand how it works. Many procedural languages
provide a disassembly mode in which you can see the correspondence
between the higher-level language and the underlying assembler. Examples of
languages that implement the procedural paradigm are C and Pascal.

Object-oriented: The procedural paradigm does make reading code easier.
However, the relationship between the code and the underlying hardware still
makes it hard to relate what the code is doing to the real world. The object-
oriented paradigm uses the concept of objects to hide the code, but more
important, to make modeling the real world easier. A developer creates code
objects that mimic the real-world objects they emulate. These objects include
properties, methods, and events to allow the object to behave in a particular

https://cs.lmu.edu/~ray/notes/paradigms/


manner. Examples of languages that implement the object-oriented paradigm
are C++ and Java. (The OOP paradigm is discussed in Book 2.)

Declarative: Functional programming actually implements the declarative
programming paradigm, but the two paradigms are separate. Other paradigms,
such as logic programming, implemented by the Prolog language, also support
the declarative programming paradigm. The short view of declarative
programming is that it does the following: describes what the code should do,
rather than how to do it; defines functions that are referentially transparent
(without side effects); and provides a clear correspondence to mathematical
logic.

Defining an Impure Language
Many developers have come to see the benefits of functional
programming. However, they also don’t want to give up the benefits of
their existing language, so they use a language that mixes functional
features with one of the other programming paradigms (as described in
the “Considering Other Programming Paradigms” sidebar). For example,
you can find functional programming features in languages such as C++,
C#, and Java. When working with an impure language, you need to
exercise care because your code won’t work in a purely functional
manner, and the features that you might think will work in one way
actually work in another. For example, you can’t pass a function to
another function in some languages. The following sections help you
understand why C++ is an impure functional language.

Considering the requirements
The basis of functional programming is lambda calculus
(https://brilliant.org/wiki/lambda-calculus/), which is actually a
math abstraction. Every time you create and use a lambda function,
you’re likely using functional programming techniques (in an impure
way, at least). C++ supports lambda functions through the lambda
expressions that later sections of this chapter explore.

In addition to using lambda functions, languages that implement the
functional programming paradigm have some other features in common.
Here is a quick overview of these features:

https://brilliant.org/wiki/lambda-calculus/


First-class and higher-order functions: First-class and higher-order
functions both allow you to provide a function as an input, as you
would when using a higher-order function in calculus.
Pure functions: A pure function has no side effects. When working
with a pure function, you can

Remove the function if no other functions rely on its output
Obtain the same results every time you call the function with
a given set of inputs
Reverse the order of calls to different functions without any
change to application functionality
Process the function calls in parallel without any consequence
Evaluate the function calls in any order, assuming that the
entire language doesn’t allow side effects

Recursion: Functional language implementations rely on recursion
to implement looping. In general, recursion works differently in
functional languages because no change in application state occurs.
Referential transparency: The value of a variable (a bit of a
misnomer because you can’t change the value) never changes in a
functional language implementation because functional languages
lack an assignment operator.

Understanding the C++ functional limitations
C++ is actually an extension of C. The original name of C++ was C with
classes. So, theoretically, pure C++ is an OOP language. However, with
the introduction of the Standard Library (see Book 5, Chapter 6 as well
as Book 7 for more on the Standard Library), it becomes possible to add
functionality to the language and make it more generic. The use of
Standard Library enables you to use the functional programming
paradigm in C++. However, even with Standard Library, you can’t turn
what started out as a procedural language and became an OOP language
into a functional programming language. The best you can hope to
achieve is a language that supports a number of paradigms — some of
them in a general way.



What occurs in C++ for the most part is that you rely on the Standard
Library to hide the nonfunctional programming components. For
example, you can use constants in your C++ code to create an immutable
environment. You use templates to create functions that don’t rely on
variables and therefore have no state. Using constants with methods can
also help eliminate the problems with side effects. You see all these
principles demonstrated as the chapter progresses. However, unlike a
pure language, such as Haskell, these conventions aren’t enforced in
C++, and humans will routinely find ways around them when
programming needs dictate.

Passing a function to a C++ function can also prove difficult unless you
rely on the Standard Library. For example, you can use a transform to
interact with a range of values by passing the transform a function. As
part of the strategy of passing functions to other functions, you can rely
on lambda expressions for simple needs. However, passing complex
functions is possible as well. When working with complex functions,
however, many developers encase them in a typedef to make the code
easier to read.

To create a pure function in C++, you must eliminate both state and side
effects, which can be quite difficult. The process becomes especially
difficult when working with external data, such as a file or a data stream.
Obviously, a function that works with external data won’t produce the
same output every time you call it, but you can still reduce the problems
of both state and side effects.

Even the use of recursion in place of the usual for or other looping
mechanism can prove difficult in C++. In many cases, recursion relies
on the use of mutable variables to track when the recursion should end.
Careful use of various recursion strategies can make the use of mutable
variables unnecessary, but doing so can be error prone and difficult
(sometimes making the code hard to read).



 The takeaway from this section is that you can use C++ in a
functional manner, but it requires additional work to do so. The
benefits of this approach are that multiprocessing applications are
easier to create, the code is more concise, and the code is often
easier to understand as well. In some cases, you can’t use a
functional programming style, especially when interacting with
third-party libraries. However, if you work through coding issues
using the Standard Library and some built-in C++ features, you can
find yourself creating mostly functional code and obtaining the
desired benefits from doing so.

Seeing Data as Immutable
Being able to change the content of a variable is problematic in C++.
The memory location used by the variable is important. If the data in a
particular memory location changes, the value of the variable pointing to
that memory location changes as well. The concept of immutable data
requires that specific memory locations remain untainted. To create
immutable data in C++, you must use constant variables, as in

const double pi = 3.1415926;

The reason you need an immutable variable is that in a multiprocessing
scenario, the value of the variable must be the same no matter which
processor works with it. If x = 5 for one processor, it must equal 5 for
all processors, and that value can never change. More important, the
ability to change the value of a variable infers order, and functional
programming techniques can’t rely on a specific order to accomplish
their goals. Finally, immutable variables are reliable. You don’t have to
worry about some bit of code, especially that from a hacker, modifying
the values in your code because it seems like it might be a good idea.
The following sections describe various forms of immutability in C++.

Working with immutable variables



The Immutable example, shown in Listing 1-1, demonstrates three
techniques for creating immutable variables. In all three cases, you can
rely on the variable’s value to remain consistent and also rely on the
compiler to complain about any changes.

LISTING 1-1: Working with Constant Data
#include <iostream> 

  

using namespace std; 

  

struct Immutable{ 

  int val{7}; 

}; 

  

int main() { 

  const int *test1 = new int(5); 

  *test1 = 10; 

  

  const int test2{6}; 

  test2 = 11; 

  

  const Immutable test3; 

  test3.val = 12; 

  

  cout << *test1 << test2 << test3.val << endl; 

  return 0; 

}

When you run this example, you see the following output in the Build
Messages tab of the Code::Blocks compiler:

error: assignment of read-only location '* test1' 

error: assignment of read-only variable 'test2' 

error: assignment of member 'Immutable::val' in read-only 

  object

You can extend what you see here in other ways to make variables and
their associated data immutable. Of course, now you have another
problem — that of performing basic tasks, such as adding two numbers.
To perform these tasks, you must begin using additional variables as
containers like this:

const int sum = *test1 + test2;



Working with immutability in classes and
structures
It’s essential to understand that immutability comes in several levels
when working with C++ classes and structures. The Immutable2
example, shown in Listing 1-2, shows two levels of immutability. The
first occurs in the Immutable structure, while the second occurs in
main() when attempting to make a change.

LISTING 1-2: Creating Immutable Structure
Members
#include <iostream> 

  

using namespace std; 

  

struct Immutable { 

  int val{1}; 

  

  void SayHi(string Name) const { 

    Name = "Smith"; 

    val = 2; 

    cout << Name << val << endl; 

  } 

  

  void ChangeVal() { 

    val = 3; 

    cout << val << endl; 

  } 

}; 

  

int main() { 

  const Immutable Test; 

  Test.ChangeVal(); 

  Test.SayHi("Sam"); 

  return 0; 

}

Figure 1-1 shows the error messages you receive when you attempt to
compile this application. The first error occurs because the SayHi()
method attempts to change val internally. Notice that ChangeVal()
makes a similar change without error because it’s not a const method (as



created by adding const after the method name and arguments to
SayHi()). The second error occurs because the ChangeVal() call in
main() attempts to change val through an external call.

FIGURE 1-1: Seeing errors generated as the result of immutability in a structure.

However, say that you want to allow internal changes to val, yet
continue to deny external changes to enforce functional programming.
Adding mutable to the val declaration: mutable int val{1}; allows
internal changes. Consequently, a new build will generate only the
ChangeVal() call error in main(). If you comment out this call, you can
see that the example will build and generate the following output:
Smith2. (The downloadable source provides these commented changes.)

Now the question is why it’s possible to change the Name value in
SayHi(), if there aren’t supposed to be any changes. To make Name
unchangeable, you must declare it as const, like this: void
SayHi(const string Name) const. So, now you know how to add
immutability at various levels within structures and classes (which work
the same as structures, in this case).

Creating constant expressions
A constant expression, or constexpr, is a special kind of function that
you can compute at compile time rather than runtime. You create the
code, just as you would any code, but the compiler converts the code
into an output before the application even runs, which means that this is
one form of immutability that also lacks state. Listing 1-3 shows the
ConstantExpression example that demonstrates how to create this kind



of code. (This example won’t run with any version of C++ less than 11;
the “Configuring Code::Blocks for smart pointers” sidebar in Book 1,
Chapter 8 tells you how to perform this setup.)

LISTING 1-3: Creating Constant Expression
Functions
#include <iostream> 

  

using namespace std; 

  

constexpr int factorial(int n) { 

  return n <= 1 ? 1 : (n * factorial(n - 1)); 

} 

  

template<int n> 

struct FactOut { 

  FactOut() { 

    cout << n << endl; 

  } 

}; 

  

int main() { 

  // You can use a number if desired. 

  FactOut<15> Nothing1; 

  

  // Computed at compile time. 

  FactOut<factorial(4)> Nothing2; 

  

  // Computed at runtime. 

  cout << factorial(5) << endl; 

  return 0; 

}

 This example adds some new features to the functional
programming toolbox. For example, the factorial() function
relies on recursion (where a function calls itself to perform a task)
to perform its task. When n is something greater than 1, the
function calls itself with a value of n – 1. Otherwise, it returns a



value of 1 and the recursion unrolls itself by popping previous
iterations from the stack.

 The FactOut structure uses a template parameter of
template<int n> (the first place you see a template used in the
book is the “Observers and the Standard C++ Library” section of
Book 2 Chapter 4, but they’re explained in more detail in Book 5
Chapter 5). So, whatever you provide for n, it must evaluate to an
int. Fortunately, the factorial() function does evaluate to an int,
so you can use it as input to the template. Of course, the compiler
wouldn’t know whether factorial() did provide an int output
unless it computed it at compile time. This is one of the secrets of
creating functional programs in C++: You need to think about
templates. The FactOut structure contains nothing more than a
constructor, and the constructor outputs the value provided as input
to the template.

Here’s how all this works; main() begins by providing an int value of
15 to FactOut. The next line supplies factorial(4) as input to FactOut,
but FactOut needs an int value, so the compiler computes the value
during compile time. At runtime, FactOut still sees an int value, but this
time it’s a computed int value. You can also use factorial() as a
standard function, but in this case, the application computes the value at
runtime.

 The variables Nothing1 and Nothing2 really do contain nothing.
They satisfy the requirements of the compiler and nothing more.
The compiler will raise an exception if you try to use them in your
code. This isn’t to say that you can’t create other coded template
forms that do offer some other level of functionality, but this form



doesn’t allow that functionality. Here is another form of FactOut in
which you can use the resulting variables:

template<int n> 

struct FactOut { 

  int val; 

  FactOut() { 

    cout << n << endl; 

    val = n; 

  } 

};

In this case, val contains the computed value of n. Consequently, you
could use the variables you create like this: cout << Nothing1.val <<
endl;. However, now you’re introducing a mutable variable again. To
avoid problems, you’d need to declare Nothing1 as const FactOut<15>
Nothing1;.

Considering the Effects of State
Application state is a condition that occurs when the application
performs tasks that modify global data. An application doesn’t have state
when using functional programming. The lack of state has the positive
effect of ensuring that any call to a function will produce the same
results for a given input every time, regardless of when the application
calls the function. However, the lack of state has a negative effect as
well: The application now has no memory. When you think about state,
think about the capability to remember what occurred in the past, which,
in the case of an application, is stored as global data.

Avoiding state in any C++ application is nearly impossible. A problem
area is any sort of file or stream data, which by nature changes. The
FileLineCount example, shown in Listing 1-4, demonstrates two
techniques for determining the number of lines in a file named
Temp.txt. The first method, LineCount1(), relies on state to track the
current number of lines and the current character. The second method,
LineCount2(), doesn’t directly contain any sort of tracking;
theoretically, it has no state.



LISTING 1-4: Avoiding the Use of State Directly
#include <iostream> 

#include <fstream> 

#include <algorithm> 

  

using namespace std; 

  

int LineCount1(string filename) { 

  int lineCount = 0; 

  char c = ' '; 

  

  ifstream thisFile(filename); 

  

  while (thisFile.get(c)) { 

    if (c == '\n') 

      lineCount++; 

  } 

  

  thisFile.close(); 

  

  return lineCount; 

} 

  

int LineCount2(string filename) { 

  ifstream thisFile(filename); 

  

  return count( 

    istreambuf_iterator<char>(thisFile), 

    istreambuf_iterator<char>(), '\n'); 

} 

  

int main() { 

  const string filename = "Temp.txt"; 

  

  cout << LineCount1(filename) << endl; 

  cout << LineCount2(filename) << endl; 

}

 When you call the two functions in main(), you get the same
output. LineCount2() actually does appear to have no state.
However, unlike the constant expression example in Listing 1-3,
count() doesn’t perform the calculation during compile time.



Doing so would be impossible because the number of times a
newline in Temp.txt could change before the application runs.
Consequently, the method shown in LineCount2() hides the use of
state, but state information still resides at lower levels in the
application. Unfortunately, this is about the best you’re going to get
from C++ in the way of state elimination.

 Note that istreambuf_iterator<char>() is an iterator, a kind
of function that moves through a series of entries in some sort of
data structure. In this case, you ask istreambuf_iterator<char>()
to look through the characters in thisFile one character at a time.
Every time count() sees a newline character, ’\n’, it adds one to
the count. Normally, you must supply a beginning point and an
ending point to count(). The second call to
istreambuf_iterator<char>() says to continue checking
characters until count() reaches the end of the file.

Eliminating Side Effects
The term declaration has a number of meanings in computer science,
and different people use the term in different ways at different times. For
example, in the context of a language such as C++, a declaration is a
language construct that defines the properties associated with an
identifier. You see declarations used for defining all sorts of language
constructs, such as types and enumerations. However, that’s not how you
use the term declaration in a functional programming sense. The
following sections describe side effects in terms of declarations and
functions in the functional programming sense of the term declaration.

Contrasting declarations and functions
When making a declaration in functional programming, you’re telling
the underlying language to do something. For example, consider the



following statement:

1. Make me a cup of tea!

The statement tells simply what to do, not how to do it. The declaration
leaves the execution of the task to the party receiving it and infers that
the party knows how to complete the task without additional aid. Most
important, a declaration enables someone to perform the required task in
multiple ways without ever changing the declaration. However, when
using a function (or method) named MakeMeTea (the identifier associated
with the function), you might use the following sequence instead:

1. Go to the kitchen.
2. Get out the teapot.
3. Add water to the teapot.
4. Bring the pot to a boil.
5. Get out a teacup.
6. Place a teabag in the teacup.
7. Pour hot water over the teabag and let steep for five minutes.
8. Remove the teabag from the cup.
9. Bring me the tea.

 A function details what to do, when to do it, and how to do it.
Nothing is left to chance and no knowledge is assumed on the part
of the recipient. The steps appear in a specific order, and
performing a step out of order will cause problems. For example,
imagine pouring the hot water over the teabag before placing the
teabag in the cup. Functions are often error prone and inflexible,
but they do allow for precise control over the execution of a task,
and you use them far more often in C++ than you use declarations.



Declarations do suffer from another sort of inflexibility, however, in that
they don’t allow for interpretation. When making a declarative statement
(“Make me a cup of tea!”), you can be sure that the recipient will bring a
cup of tea and not a cup of coffee instead. However, when creating a
function, you can add conditions that rely on state to affect output. For
example, you might add a step to the function that checks the time of
day. If it’s evening, the recipient might return coffee instead of tea,
knowing that the requestor always drinks coffee in the evening based on
the steps in the function. A function therefore offers flexibility in its
capability to interpret conditions based on state and provide an
alternative output.

Declarations are quite strict with regard to input. The example
declaration says that a cup of tea is needed, not a pot or a mug of tea.
The MakeMeTea function, however, can adapt to allow variable inputs,
which further changes its behavior. You can allow two inputs, one called
size and the other beverage. The size input can default to cup and the
beverage input can default to tea, but you can still change the
procedure’s behavior by providing either or both inputs. The identifier,
MakeMeTea, doesn’t indicate anything other than the procedure’s name.
You can just as easily call it MyBeverageMaker.

 One of the hardest issues in moving from imperative languages
to functional languages is the concept of declaration. For a given
input, a functional language will produce the same output and won’t
modify or use application state in any way. A declaration always
serves a specific purpose and only that purpose.

The second hardest issue is the loss of control. The language, not the
developer, decides how to perform tasks. Yet, you sometimes see
functional code where the developer tries to write it as a function,
usually producing a less-than-desirable result (when the code runs at all).

Associating functions with side effects



An essential difference between functions and declarations is that
functions don’t return a value in the same manner as declarations do.
The previous paragraphs present a function that seems to provide the
same result as the associated declaration, but the two aren’t the same.
The declaration “Make me a cup of tea!” has only one output: the cup of
tea. The function has a side effect instead of a value. After making a cup
of tea, the function indicates that the recipient of the request should take
the cup of tea to the requestor. However, the function must successfully
conclude for this event to occur. The function isn’t returning the tea; the
recipient of the request is performing that task. Consequently, the
function isn’t returning a value.

Side effects also occur in data. When you pass a variable to a function,
the expectation in functional programming is that the variable’s data will
remain untouched — immutable. A side effect occurs when the function
modifies the variable data so that upon return from the function call, the
variable changes in some manner.

Removing side effects
Because of the nature of the language, you have no magic bullet to use
to kill side effects in C++. However, through disciplined coding, you can
remove the side effects by observing some basic rules:

Never modify the incoming data.
Never rely on external data or modify any data outside the function.
Ensure that the function produces precisely the same result every
time you provide a specific input.
Target the function so that it does one thing well, rather than multiple
things adequately.
Make the function small.
Never repeat code or use boilerplate code.
Use the switch statement rather than if…then statements.

Use only immutable data.



The NoSideEffects example, shown in Listing 1-5, demonstrates these
principles. No matter what you do outside the function, nothing changes
the result given a particular input.

LISTING 1-5: Producing Code without Side Effects
#include <iostream> 

#include <vector> 

#include <algorithm> 

  

using namespace std; 

  

int AddIt(const vector<int> Input, 

          const int Start, const int End) { 

  

  int Accumulate = 0; 

  

  // Copy the full vector to a vector of the 

  // correct size. 

  vector<int> Process(End - Start); 

  copy(&Input[Start], &Input[End], Process.begin()); 

  

  // Create a sum using a foreach loop. 

  for (int Element : Process) 

    Accumulate += Element; 

  return Accumulate; 

} 

  

int main() { 

  const vector<int> ThisVector = {12, 2, 4, 18, 7, 2}; 

  

  cout << "Sum of All Elements: " << 

    AddIt(ThisVector, 0, ThisVector.size()) << endl; 

  cout << "Sum of Elements 1 through 4: " << 

    AddIt(ThisVector, 1, 5) << endl; 

  return 0; 

}

Everything in this example is handled as a constant except the
Accumulate and Process variables inside the AddIt() function.
Consequently, there are no side effects. Any changes occur only within
AddIt(), and AddIt() will always produce the same output for a given
input.



To process just the ThisVector elements that are needed for the
summation, AddIt() creates a copy of the Input vector using the copy()
function. (Don’t worry about the use of a vector right now; you see
them explained in detail in Book 5, Chapter 6.) Notice that by using
Standard Library functionality, you can avoid the appearance of state for
the most part in this function. Even the foreach loop (implemented as a
special case of the for loop):

  for (int Element : Process) 

    Accumulate += Element;

avoids the usual state information needed to power the loop.
Theoretically, you could create a recursive solution to this problem that
wouldn’t use state at all. Here’s the output from the example:

Sum of All Elements: 45 

Sum of Elements 1 through 4: 31

 You might wonder why this example doesn’t use an array
instead of a vector. The problem with std::array is that you must
provide an array size, such as array<int, 6> ThisVector = {12,
2, 4, 18, 7, 2}; so that the array size is known at compile time.
However, you don’t know the size of the Process array at compile
time because the call to AddIt() provides for a variable starting and
ending point. One way around this issue would be to use a
constexpr setup, as shown earlier in Listing 1-3.

Creating a declarative C++ example
Even though Listing 1-5 goes a long way toward making the C++ code
easy to understand and considerably more bulletproof than you might
otherwise expect, you can go one step further in that effort without
resorting to anything odd in the way of coding. The Declarative
example shown in Listing 1-6 relies on the Standard Library even further
to eliminate the need for a separate function.



LISTING 1-6: Using Declarative Programming
Techniques
#include <iostream> 

#include <array> 

#include <numeric> 

  

using namespace std; 

  

int main() { 

  array<int, 6> ThisArray = {12, 2, 4, 18, 7, 2}; 

  cout << "Sum of All Elements: " << 

    accumulate(ThisArray.begin(), ThisArray.end(), 0) 

    << endl; 

  cout << "Sum of Elements 1 through 4: " << 

    accumulate(&ThisArray[1], &ThisArray[5], 0) << endl; 

  return 0; 

}

This example uses the std::accumulate() function to perform the
required work. There are a number of interesting functions of this sort in
the numeric header, which you can see at
https://en.cppreference.com/w/cpp/header/numeric. Notice that
the majority of these functions require C++ 11, C++ 17, or even C++ 20
to use, so they’re more appropriate for new development. The output
from this example is precisely the same as the output from Listing 1-5;
only the technique changes.

 One of the more interesting aspects of this example is that you
work with an array and allow the underlying code to handle the
how of creating the sum. This code doesn’t worry about any sort of
procedure at all; it simply tells the Standard Library to accumulate
(sum) the values together.

Notice also the two methods used to provide the starting and ending
points for the calculation. What you need is an address. The first call
uses the begin() and end() functions to supply the address, and the
second call relies on the address provided by the [] operator.

https://en.cppreference.com/w/cpp/header/numeric


Understanding the Role of auto
Starting with C++ 11, you can use the auto keyword in place of a
specific type declaration. The use of the auto keyword comes in handy
when you don’t know what data type to expect in advance. When you
run the application, the runtime deduces the type of the variable so that
you can work with it correctly. Using this technique helps you create
flexible code, even if it does reduce the clarity of your code a little. The
Auto example, shown in Listing 1-7, shows how to use this keyword to
perform various tasks.

LISTING 1-7: Using the auto Keyword
#include <iostream> 

#include <typeinfo> 

  

using namespace std; 

  

  

void DisplayIt(auto Value) { 

  cout << Value << " is of the " << 

    typeid(Value).name() << " type." << endl; 

} 

  

int main() { 

  auto Hello1 = "Hello There!"; 

  string Hello2 = "Hello Again!"; 

  auto Number1 = 1234; 

  int Number2 = 5678; 

  auto Float1 = 12.34; 

  float Float2 = 56.78; 

  auto Boolean1 = true; 

  bool Boolean2 = false; 

  

  DisplayIt(Hello1); 

  DisplayIt(Hello2); 

  DisplayIt(Number1); 

  DisplayIt(Number2); 

  DisplayIt(Float1); 

  DisplayIt(Float2); 

  DisplayIt(Boolean1); 

  DisplayIt(Boolean2); 

  



  return 0; 

}

The code begins by creating a number of variables — with half using
standard declarations and half using the auto keyword. It then calls
DisplayIt() to display the variable value and type. By using the auto
keyword, DisplayIt() can accept all these inputs and interact with them
appropriately.

 Even though this code works, it has a problem. The typeid()
function often returns a mangled result depending on the compiler
you use. Here’s an example:

Hello There! is of the PKc type. 

Hello Again! is of the NSt7__cxx1112basic_stringIcSt11char 

  _traitsIcESaIcEEE type. 

1234 is of the i type. 

5678 is of the i type. 

12.34 is of the d type. 

56.78 is of the f type. 

1 is of the b type. 

0 is of the b type.

Although you can probably figure the i, d, f, and b entries out, the PKc
entry is a mystery, and forget trying to determine the type of the next line
that begins with NSt7. You’ll likely want the output in human-readable
form, which requires a few additional steps, starting with the addition of
two new #include entries.

#include <memory> 

#include <cxxabi.h>

The DemangleIt() function takes the mangled input from DisplayIt()
and forms it into a human-readable string, as shown here:

string DemangleIt(const char* Mangled) { 

  int Status; 

  unique_ptr<char[], void(*)(void*)> Result( 

    abi::__cxa_demangle(Mangled, 0, 0, &Status), free); 

  return Result.get() ? string(Result.get()) : "Error"; 

}



The call to abi::__cxa_demangle() performs the actual result. What
you receive is a unique_ptr, Result, that contains a pointer to the
human-readable form of the type. If the abi::__cxa_demangle() call
isn’t successful, Result will contain a null pointer, and you can return a
result of "Error" in place of the actual type string. To make this code
functional, you need to modify DisplayIt(), as shown here:

void DisplayIt(auto Value) { 

  cout << Value << " is of the " << 

    DemangleIt(typeid(Value).name()) << " type." << endl; 

}

Now when you run the example, you see the output in human-readable
form, which makes working with it a lot easier.

Hello There! is of the char const* type. 

Hello Again! is of the std::__cxx11::basic_string<char, 

  std::char_traits<char>, std::allocator<char> > type. 

1234 is of the int type. 

5678 is of the int type. 

12.34 is of the double type. 

56.78 is of the float type. 

1 is of the bool type. 

0 is of the bool type.

 At this point, you should notice something about using auto:
You may not always get the expected type. In this case, the string
declared using auto is of a different type than the string declared
using string. The deduction process often relies on default types as
well. For example, if you mean to use a float, but declare the
variable as auto, the result will be a double instead because that’s
the default type.

Passing Functions to Functions
Sometimes you need to apply a process to a group of numbers, or you
need to apply more than one process to a single number. In fact,



sometimes you need to do both. When you encounter situations like this,
the easiest method of dealing with them is to pass a function, the process
you want to perform, to another function that handles the situation. In
the sections that follow, you begin by seeing a simple example of
performing this task on a single number using multiple processes. You
also see how to apply a single process to a group of numbers in a
technique called a transform, because you’re transforming one series of
numbers into another series of numbers.

Seeing a simple example of function input
At times, a single number represents a base value, but you must
manipulate it in various ways to achieve a result. For example, you
might need to find the correct process to use to optimize a particular set
of values using a base value as a starting point. The FunctionFunction
example, shown in Listing 1-8, demonstrates how to use this technique.

LISTING 1-8: Passing a Function to a Function
#include <iostream> 

#include <vector> 

  

using namespace std; 

  

int AddSome(int Value) { 

  return Value + 10; 

} 

  

int DelSome(int Value) { 

  return Value - 10; 

} 

  

int MulSome(int Value) { 

  return Value * 10; 

} 

  

int DivSome(int Value) { 

  return Value / 10; 

} 

  

typedef int(*FuncPtr)(int); 

  

void ModIt(int Value, vector<FuncPtr> FuncArray) { 



  int NumFunc = FuncArray.size(); 

  cout << "Processing " << NumFunc << " functions." 

    << endl; 

  

  for(int i = 0; i < NumFunc; i++) 

    cout << FuncArray[i](Value) << endl; 

} 

  

int main() { 

  vector<FuncPtr> FuncArray = 

    {*AddSome, *DelSome, *MulSome, *DivSome}; 

  ModIt(10, FuncArray); 

  return 0; 

}

In most cases when you use this technique, you create an array or vector
of function pointers. Using a vector is more flexible because you don’t
have to predetermine the number of functions to pass — it can be any
number up to the maximum size of the vector. To make this technique
work, however, you must begin by creating a typedef that defines the
form of each function pointer entry consisting of the

Return value, which is int

Pointer to the function in parentheses, which is (*FuncPtr)

Input parameters in parentheses, which is (int)

 The typedef, the creation of a new name for a type of object,
appears in quite a few places in the book. For example, in Book 4,
Chapter 1 you see it used to work with a vector to process strings.
Book 5, Chapter 1 demonstrates how to use a typedef with a
multidimensional array. In fact, Book 5 is the place to go if you
want to gain a full appreciation of all the uses for a typedef.

You define the vector as vector<FuncPtr> with a vector name, such as
FuncArray. Creating the vector then becomes a matter of providing
pointers to the four functions used for testing in this case: AddSome(),



DelSome(), MulSome(), and DivSome(). These four functions don’t do
much, but they do help in testing.

The code calls ModIt() with the value you want to work with, which is
10, and the vector of function pointers, FuncArray. Inside ModIt(), the
code calls each of the functions in turn with the supplied value and
outputs the result onscreen. Here is the output from this example:

Processing 4 functions. 

20 

0 

100 

1

Using transforms
A transform allows you to process a series of values using a single
function. Combining a series of transforms enables you to process a
series of values using a series of functions in a particular order. You see
transforms used in all sorts of ways, including to condition data and
process video. The Transform example, shown in Listing 1-9, gives you
an overview of how this technique works using the C++ range
functionality.

LISTING 1-9: Using a Transform on a Series of Data
Points
#include <iostream> 

#include <vector> 

#include <algorithm> 

  

using namespace std; 

  

struct EvenPair { 

  int Value; 

  bool Even; 

}; 

  

EvenPair IsEven(int Value){ 

  if (Value % 2 == 0) 

    return EvenPair{Value, true}; 

  

  return EvenPair{Value, false}; 



} 

  

int main(){ 

  vector<int> Values{1, 2, 3, 4}; 

  vector<EvenPair> Evens(Values.size()); 

  

  transform(Values.begin(), Values.end(), 

            Evens.begin(), IsEven); 

  

  for(auto isEven : Evens) 

    if (isEven.Even) 

      cout << isEven.Value << " is even." << endl; 

    else 

      cout << isEven.Value << " is odd." << endl; 

  

  return 0; 

}

This example uses the EvenPair structure to hold two variables that
contain the original value you want to check and show whether that
value is even. In main(), you begin by creating two vectors: one input,
Values, and one output, Evens. The Evens vector will contain a list of
the original values and a Boolean showing whether each value is even.

 The call to Transform() takes pointers to the beginning and
ending of Values, the beginning of Evens, and the name of a
function to use for the transformation. In this case, IsEven()
receives an individual Value, determines whether it’s even using the
mod operator Value % 2, and then outputs a Value and Even pair.

After the transformation completes, a foreach loop checks each value in
Evens and outputs an appropriate string. Here are the results:

1 is odd. 

2 is even. 

3 is odd. 

4 is even.



Using Lambda Expressions for
Implementation

A lambda expression is an unnamed function that you can use in place of
a regular function reference. Using a lambda expression can make your
code more readable by placing the function inline. Chapters 2 and 3 of
this minibook cover lambda expressions in detail, but the Lambda
example, shown in Listing 1-10, shows an alternative way to create the
code displayed in Listing 1-9 in a shorter way.

LISTING 1-10: Performing a Transform Using a
Lambda Expression
#include <iostream> 

#include <vector> 

#include <algorithm> 

  

using namespace std; 

  

struct EvenPair { 

  int Value; 

  bool Even; 

}; 

  

int main(){ 

  vector<int> Values{1, 2, 3, 4}; 

  vector<EvenPair> Evens(Values.size()); 

  

  transform(Values.begin(), Values.end(), 

            Evens.begin(), [](int Value) { 

              return (Value % 2 == 0) 

                ? EvenPair{Value, true} 

                : EvenPair{Value, false};}); 

  

  for(auto isEven : Evens) 

    if (isEven.Even) 

      cout << isEven.Value << " is even." << endl; 

    else 

      cout << isEven.Value << " is odd." << endl; 

  

  return 0; 

}



The basic idea of this example is the same as the example in the “Using
transforms” section, earlier in this chapter, except that it uses a lambda
expression in place of the call to IsEven(). The lambda expression
begins with a capture clause, [], which defines how to capture any
required external variables. An empty capture clause says that the
lambda expression can work only with variables that are local to it,
which is Value in this case.

As with IsEven(), the lambda expression requires an int input, Value.
The compiler deduces the output type based on the lambda expression
code. However, you can specify the output type directly when needed
using -> output_type. In this case, you’d use [](int Value) ->
EvenPair in place of the code shown.

The output is one of two values, as determined by a ternary operator.
When (Value % 2 == 0) is true, the output is EvenPair{Value, true};
otherwise, the output is EvenPair{Value, false}. The point is that this
version is shorter than the version in Listing 1-9, so lambda expressions
can make your code shorter and easier to understand when the function
you want to use is small.
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Chapter 2

Working with Lambda
Expressions

IN THIS CHAPTER
 Defining why you need lambda expressions
 Understanding the parts of a lambda expression
 Performing practical tasks with lambda expressions

The “Using Lambda Expressions for Implementation” section of Chapter 1
of this minibook offers a brief overview of lambda expressions as they apply
to transforms. However, lambda expressions can do considerably more than
you discover in that section’s example. Using lambda expressions isn’t
required to write good C++ code, but they can make your C++ code better
and allow for certain optimizations in some cases. This chapter discusses in
more detail how and when you use lambda expressions.

This chapter also describes the parts of a lambda expression. You may not
ever use everything that a lambda expression has to offer, but it’s good to
know what’s available. You might find that you can make your code even
shorter and easier to understand by creating just the right type of lambda
expression.

Finally, the chapter shows some examples of how to use lambda expressions
for practical purposes such as sorting data. It also helps you understand
some development nuances, such as throwing an exception when necessary.
Even though this section isn’t comprehensive, it provides enough basics for
you to know how to use lambda expressions effectively. Chapter 3 of this
minibook addresses some additional advanced examples.

 You don’t have to type the source code for this chapter manually. In
fact, using the downloadable source is a lot easier. You can find the



source for this chapter in the \CPP_AIO4\BookIII\Chapter02 folder of
the downloadable source. See the Introduction for details on how to
find this book’s source files.

Creating More Readable and Concise
C++ Code

The lambda expression begins with the anonymous function, which actually
existed before electronic computers. Alonzo Church (https://history-
computer.com/ModernComputer/thinkers/Church.html) created the idea
of an anonymous function in 1936, which is part of lambda calculus. One of
the first computer languages to use anonymous functions was LISP, in 1958.
Here are the kinds of anonymous functions you commonly run across in
computer science:

Function literal
Lambda abstraction
Lambda expression

Of course, the target of this chapter is the lambda expression, but it pays to
know about the other forms of anonymous function as well. All forms of
anonymous function share one trait: They aren’t associated with any sort of
identifier. In other words, you typically use them for short, concise
calculations that an application may need to perform only once. From a
human perspective, using a lambda expression makes code simpler to
understand by placing the function inline rather than in a separate block of
code. This technique could lead to spaghetti code of the worst sort when
used inappropriately, so some restraint is required on the part of the
developer.

https://history-computer.com/ModernComputer/thinkers/Church.html


 From a computer language perspective, anonymous functions often
enable you to clear the code of a plethora of one- or two-line function
declarations. Some languages even require the use of anonymous
functions for tasks such as binding events to callbacks or instantiating a
function for particular values. However, this isn’t the case in C++;
everything you can do with a lambda expression, you can also do with a
named function. When considering lambda expressions in C++, you
gain these advantages:

Greater efficiency: The compiler doesn’t have to create a stack frame
for lambda expressions, so less underlying machine code is generated.
Better readability: Locating a one- or two-line named function
consumes developer time and makes the code less readable because you
don’t see it in context.
Fewer errors: By making a function concise and targeted, it’s possible
to reduce coding errors because the function is also more
understandable.
Reducing frankenfunctions: Using lambda expressions can help rid
your code of those named functions that try to do too much using too
many different styles and not accomplishing a great deal except
confusing the developers who look at it. When thinking about
frankenfunctions, think about those named functions that are put together
from bits and pieces of one- or two-line functions and whose actions are
differentiated using if…then or switch statements.

 The most important concept to take away from this section is that
lambda expressions don’t replace named functions; they simply provide
an alternative style that you can use to make your code better. Given
that they represent a style and not a coding mandate, you need to work
with them for a while to define a comfort level that makes sense in the
applications you write.



Defining the Essential Lambda
Expression

Because lambda expressions rely on math, rather than on coding technique,
they have a form that is common across computer languages. You can’t
make a direct replacement of a lambda expression written in one language
into another, but understanding the lambda expressions in both languages is
easier because they have a similar form. The following sections discuss the
C++ specific form of a lambda expression.

Defining the parts of a lambda expression
A lambda expression can take a number of forms. You saw one of those
forms in the “Using Lambda Expressions for Implementation” section of
Chapter 1 of this minibook. However, it’s time to look at the full definition
of the lambda expression:

[ captures ] <tparams> ( params ) specifiers exception 

 attr -> ret requires { body }

Not all of these elements are needed in every case, and some are available
only in some versions of C++. With these limitations in mind, Table 2-1
provides a description of each of the elements (with a blank version column
indicating that the element is available in all current versions).

TABLE 2-1 Elements of a Lambda Expression

Element
Minimum
C++
Version

Description

captures Various

Specifies how external variables are captured for use by the lambda
expression. The default is to capture variables by reference.
However, you can also create a copy of the variable. You can define
a single policy for all variables or provide policies for individual
variables. Starting with C++ 14, you can also provide a variable
initializer in case the variable hasn’t been initialized. The reference at
https://en.cppreference.com/w/cpp/language/lambda#Lambda_capture

offers additional details.

https://en.cppreference.com/w/cpp/language/lambda#Lambda_capture


Element
Minimum
C++
Version

Description

tparams 20

Provides a templated method of defining variable types. You use it to
provide type names to the parameters of a generic lambda. This
entry works much like the templates described at
https://en.cppreference.com/w/cpp/language/templates. You may
supply an optional requires clause to place constraints on the
templated functionality.

params Various
Defines the parameters passed into the lambda expression for
processing. Starting with C++ 14, you can use default arguments and
the auto keyword.

specifiers Various

Modifies the manner in which the code interacts with captured
external variables. The following keywords are available:
mutable: Allows modification of the variables and objects, and the
calling of object non-const members.

constexpr (C++ 17 and above): Specifies that the function call
operator is a constexpr (see the “Creating constant expressions”
section of Chapter 1 of this minibook for details).
consteval (C++20 and above): Specifies that the function call
operator is an immediate function (see the “Defining an immediate
function” section of Chapter 3 of this minibook for details).

exception Various
Creates a dynamic exception specification (see the “Specifying that
the lambda expression throws exceptions” section, later in this
chapter) or defines a noexcept specifier (C++ 11 and above).

attr 11

Adds attributes to the function for implementation specifics, such as
working on the GNU or IBM platforms. The discussion at
https://en.cppreference.com/w/cpp/language/attributes provides
additional details on using attributes.

ret

Indicates the return type of the lambda expression. If you don’t
include this element, the compiler will deduce the return type based
on the code you provide.

requires 20

Defines requirements for template arguments that make it easier to
choose the correct function overloads and template arguments. You
use this element as an optional addition to tparams. The discussion at
https://en.cppreference.com/w/cpp/language/constraints provides
additional details.

body
Contains the function body — that is, the code that will actually
execute.

https://en.cppreference.com/w/cpp/language/templates
https://en.cppreference.com/w/cpp/language/attributes
https://en.cppreference.com/w/cpp/language/constraints


Some common patterns are used to create lambda expressions so that you
don’t have to rely on the full version shown earlier in this section. Here are
the most common forms:

[ captures ] ( params ) -> ret { body }: Defines a const lambda,
which is the most common form. All the captured variables are const in
this case, and you can’t modify them.
[ captures ] ( params ) { body }: Specifies a const lambda in
which the return type is deduced by the compiler. The compiler uses the
function’s return statement as a basis for making the deduction.

[ captures ] { body }: Creates a lambda expression that requires no
inputs. You can’t use this form if the lambda expression makes use of the
constexpr, mutable, exception specification, attributes, or trailing return
type features.

Relying on computer detection of return type
The automatic detection feature of lambda expressions works much like the
auto keyword for other types of declarations. In most cases, the automatic
detection feature works fine because it relies on the most common or default
type for the output.

 Unfortunately, as described in the “Understanding the Role of auto”
section of Chapter 1 of this minibook, the automatic detection
(deduction) on the part of the compiler doesn’t always work precisely
as planned. In addition, depending on how you define the function
input to a function, you can get some strange results. Consequently, you
always need to exercise care in the use of this feature. The
ReturnDeduction example, shown in Listing 2-1, demonstrates how
you can obtain different results based on whether you specify a return
type or allow the computer to deduce it for you. (This example uses the
same DemangleIt() function described in the “Understanding the Role
of auto” section of Chapter 1 of this minibook.)



LISTING 2-1: Deciding Between a Deduced or Specific
Return Type
#include <iostream> 

#include <typeinfo> 

#include <memory> 

#include <cxxabi.h> 

  

using namespace std; 

  

string DemangleIt(const char* Mangled) { 

  int Status; 

  unique_ptr<char[], void(*)(void*)> Result( 

    abi::__cxa_demangle(Mangled, 0, 0, &Status), free); 

  return Result.get() ? string(Result.get()) : "Error"; 

} 

  

void ShowType(function<float(double)> lambda) { 

  cout << "Input has a value of: " << lambda(2.6) << endl; 

  cout << "Input has type of: " << 

    DemangleIt(typeid(lambda(2.6)).name()) << endl; 

} 

  

void ShowChar(function<char(int)> lambda){ 

  cout << "Input has a value of: " << lambda(7) << endl; 

} 

  

int main() { 

  ShowType([](int x) -> int {return int(x * x);}); 

  ShowType([](double x) -> int {return int(x * x);}); 

  ShowType([](double x) -> double {return x * x;}); 

  ShowType([](double x) {return float(x * x);}); 

  ShowType([](double x) {return x > 2 ? true : false;}); 

  ShowType([](int x) -> char {return char(x * 10);}); 

  ShowChar([](int x) -> char {return char(x * 10);}); 

  return 0; 

}

 The input argument for the functions in this example is function<>.
When using function<>, you specify a return type, even if the return
type is void, and any input types, or empty parentheses, (), when the
function doesn’t need one. Part of the problem with both ShowType()
and ShowChar() is that the function<> declaration doesn’t allow use of



auto, so you get whatever type you define, as you see later in the
example.

The ShowType() and ShowChar() functions both show the value of lambda()
when you provide a specific input value to the lambda expression. The
ShowType() function also outputs the type of the value output by the
function, and you’ll see the importance of this output in a moment.

The lambda functions are of the two const types described in the “Defining
the parts of a lambda expression” section, earlier in this chapter. Some
specify a return type; others don’t. Note that the first two lambda
expressions both provide an int output, but one takes an int as input and
the other takes a double. Playing with input and output types like this can
help you understand the effects of decisions that you make when using
lambda expressions. Note that the last three lambda expressions don’t
actually return a numeric type. The first of these returns a bool and the last
two return char.

 You probably think that one or more of these lambda expressions
will fail, especially given the input values used in ShowType() and
ShowChar(). However, they all do work, as shown in the somewhat
surprising output here:

Input has a value of: 4 

Input has type of: float 

Input has a value of: 6 

Input has type of: float 

Input has a value of: 6.76 

Input has type of: float 

Input has a value of: 6.76 

Input has type of: float 

Input has a value of: 1 

Input has type of: float 

Input has a value of: 20 

Input has type of: float 

Input has a value of: F

The compiler seems adept at making the lambda expressions work even
when they really shouldn’t. For example, the first lambda expression accepts
an int as input and produces an int as output, so the input is truncated,



which results in an output of 4. The second lambda expression truncates the
output as an int, so now you see 6 from what should be the same
calculation, which should actually produce a value of 6.76, as shown in the
next two outputs. The bool output is a value of 1 and the char output is a
value 20, neither of which reflects their true types. However, the really odd
thing is that the type of all these outputs is float (the default as explained in
the next section); it doesn’t matter what the lambda expression actually
provided as output. The point is that you need to exercise care in the
construction of both the lambda expression and the function that receives it
to obtain the desired result.

Using the auto keyword with lambda expressions
The auto keyword can save you a great deal of pain when working with
lambda expressions, plus it can help you avoid some common problems with
getting the result you want. The UseAuto example, shown in Listing 2-2, is a
reworking of the example in Listing 2-1, shown earlier. However, even
though the example works in a similar manner, the output is different
because of the use of auto.

LISTING 2-2: Performing Tasks Using auto
#include <iostream> 

#include <typeinfo> 

#include <memory> 

#include <cxxabi.h> 

  

using namespace std; 

  

string DemangleIt(const char* Mangled) { 

  int Status; 

  unique_ptr<char[], void(*)(void*)> Result( 

    abi::__cxa_demangle(Mangled, 0, 0, &Status), free); 

  return Result.get() ? string(Result.get()) : "Error"; 

} 

  

void ShowData(auto lambda){ 

  cout << "Input has a value of: " << lambda(3.6) << endl; 

  cout << "Input has type of: " << 

    DemangleIt(typeid(lambda(3.6)).name()) << endl; 

} 

  

int main() { 

  ShowData([](int x) -> int {return int(x * x);}); 



  ShowData([](double x) -> int {return int(x * x);}); 

  ShowData([](double x) -> double {return x * x;}); 

  ShowData([](double x) {return float(x * x);}); 

  ShowData([](double x) {return x > 2 ? true : false;}); 

  ShowData([](double x) -> char {return char(x * 10);}); 

  

  return 0; 

}

When you run this example, you see that the auto keyword enables you to
obtain results specific to the input. Here is what you see in this case (which
you can compare to the output in the previous section):

Input has a value of: 9 

Input has type of: int 

Input has a value of: 12 

Input has type of: int 

Input has a value of: 12.96 

Input has type of: double 

Input has a value of: 12.96 

Input has type of: float 

Input has a value of: 1 

Input has type of: bool 

Input has a value of: $ 

Input has type of: char

 By giving up control over the form of the input to ShowData(), you
also preserve the types of the various inputs. Each of the outputs is now
of the correct type, and the char output (last) actually appears as a
character rather than a number. However, there isn’t a best solution —
only the solution that works to meet your specific requirements. You
therefore need to keep the function<> method described in the
previous section in mind.

Lest you think that someone could pass anything to ShowData(), you can try,
but you won’t be successful. If you were to pass something like
ShowData(14), the compiler would output an error message of ’lambda’
cannot be used as a function. Even though you’re using auto, the auto
is still expecting a function as input.

Using lambda expressions as macros



You can assign a lambda expression to a variable and then use the variable
as a kind of macro. This technique can make it a lot easier to perform some
repetitive tasks that seem to appear everywhere, but take little code. The
CreateMacro example, shown in Listing 2-3, demonstrates this approach.

LISTING 2-3: Creating a Macro
#include <iostream> 

  

using namespace std; 

  

int main(){ 

  auto f = [](auto Input) {cout << Input << endl;}; 

  

  f("Hello"); 

  f(221); 

  f(true); 

  f(99 / 3); 

  f(char(65)); 

  f(int(15/4)); 

  return 0; 

}

The code in this example creates a simple lambda expression that outputs the
input expression, whatever it might be, to the screen. To make the macro
work, you use auto in two contexts, both as the type of the variable holding
the macro and as the input. Here’s the output you see:

Hello 

221 

1 

33 

A 

3

Developing with Lambda Expressions
The previous sections of the chapter give you an idea of how lambda
expressions work. In the following sections of the chapter, you see how to
implement certain lambda expression techniques in a more advanced manner
that you might use within application code.



Using lambda expressions with classes and
structures
You can use lambda expressions for a wide variety of tasks with both classes
and structures. In most cases, the tasks have something to do with data
manipulation, such as finding data elements or sorting items, but lambda
expressions can also see use for various kinds of analysis. The
LambdaForClass example, shown in Listing 2-4, stores a list of AnimalEntry
entries in the Animals list found in the StoreAnimals class. The lambda
expression that defines FindAnimals() helps locate a particular animal type
and display the exhibits holding those animals in the zoo.

LISTING 2-4: Interacting with Classes and Structures
#include <iostream> 

#include <list> 

#include <algorithm> 

  

using namespace std; 

  

struct AnimalEntry { 

  string Name; 

  int CageLocation; 

}; 

  

class StoreAnimals { 

public: 

  void FindAnimals(string Name); 

  list<AnimalEntry> Animals; 

}; 

  

void StoreAnimals::FindAnimals(string FindName) { 

  for_each(Animals.begin(), Animals.end(), 

    [FindName](AnimalEntry ThisEntry) { 

      if (FindName == ThisEntry.Name) 

        cout << ThisEntry.CageLocation << endl; 

    } 

  ); 

} 

  

int main() { 

  StoreAnimals Zoo; 

  

  Zoo.Animals.push_back (AnimalEntry{"Hippo", 300}); 

  Zoo.Animals.push_back (AnimalEntry{"Tiger", 301}); 

  Zoo.Animals.push_back (AnimalEntry{"Tiger", 302}); 



  Zoo.Animals.push_back (AnimalEntry{"Zebra", 303}); 

  

  cout << "Finding hippo cages." << endl; 

  Zoo.FindAnimals("Hippo"); 

  

  cout << "Finding tiger cages." << endl; 

  Zoo.FindAnimals("Tiger"); 

  return 0; 

}

An interesting part of this example is the use of a for_each() to iterate the
entries in the Animals list. Even though this example iterates the entire list,
you can also limit the search scope to specific records by providing a
different beginning and ending point within the list.

This example also uses a simple capture, FindName, to obtain the name of
the animal to locate. The next section of the chapter provides additional
details on how captures work, but it uses a different approach than this
example does. The lambda expression must also accept an individual entry,
ThisEntry, of type AnimalEntry, from the for_each().

The main() code consists of creating a StoreAnimals object, Zoo, and
populating the Animals list it contains with AnimalEntry objects. The code
can then call Zoo.FindAnimals() to locate specific animals in the list.
Here’s the output from this example:

Finding hippo cages. 

300 

Finding tiger cages. 

301 

302

Working with the capture clause
You have many ways to use the capture clause, but one of the more
interesting is to make your lambda expression a little more flexible. You can
use the capture clause to help implement multiple behaviors by using a
single lambda expression, as shown in the MultiTask example in Listing 2-
5.

LISTING 2-5: Performing Multiple Tasks by Using a
Capture Clause



#include <iostream> 

#include <typeinfo> 

  

using namespace std; 

  

struct AddVal_t {}; 

typedef AddVal_t AddVal; 

  

struct SubVal_t {}; 

typedef SubVal_t SubVal; 

  

int main() { 

  int Total = 0; 

  

  auto ChangeNum = [Total](auto Type, int Value) mutable { 

    if (is_same<decltype(Type), AddVal>::value) { 

      Total += Value; 

      return Total; 

    } else if (is_same<decltype(Type), SubVal>::value) { 

      Total -= Value; 

      return Total; 

    } else { 

      throw -1; 

    } 

  }; 

  

  AddVal DoAdd; 

  SubVal DoSub; 

  

  cout << ChangeNum(DoAdd, 5) << endl; 

  cout << ChangeNum(DoAdd, 6) << endl; 

  cout << ChangeNum(DoSub, 4) << endl; 

  try { 

    cout << ChangeNum(5, 5) << endl; 

  } catch (int e) { 

    cout << "Error in Input!" << endl; 

  } 

  cout << Total << endl; 

  return 0; 

}

This example is actually capable of doing a number of things, and you
should experiment with it. For one thing, you begin with two structures,
AddVal_t and SubVal_t, that are now empty but could be expanded to
provide additional functionality. The code defines two types: AddVal and
SubVal, based on these structures.



The lambda expression depends on an external variable, Total, which is
initialized to 0. The ChangeNum() declaration uses Total as a capture, and
you’ll see later in this section why that’s important. The two input
arguments, Type (defines what operation to perform) and Value (defines the
amount of change), work just like any other set of arguments. The mutable
element specifies that the code can change Total.

You could use phrases, numbers, or other methods of determining an action
for this example, but the example uses types instead. If ChangeNum()
receives an input of the appropriate type, it will perform the appropriate
action. Because of the way that this code is structured, the action can be type
specific. The call to is_same() determines whether the input type, Type, is
the same as a base type, such as AddVal or SubVal. After the types are
verified, the code performs type-specific tasks. If the type isn’t present,
ChangeNum() throws an exception.

To use the lambda expression, the code must create variables of the correct
type. Normally, you’d initialize the variables, DoAdd and DoSub, but because
the example uses an empty structure, you don’t need to in this case. The
code then calls ChangeNum() using various operations and values, including
one incorrect call. Note that the code also checks the value of Total at the
end. Here’s the output you should see:

5 

11 

7 

Error in Input! 

0

Even though the lambda expression has tracked Total internally, it hasn’t
changed the external value at all. So, you see the expected outputs for each
call, but the actual value of Total doesn’t change. Of course, you also see
the error output for incorrect inputs.

The method of capture is important. For example, you can initialize the
capture should you want to do so. Change [Total] to read [Total = 5] and
then rerun the code. The outputs now look like this:

10 

16 

12 



Error in Input! 

0

 The internal values of Total have changed, but the external value of
Total remains 0. You can also change this behavior by changing
[Total = 5] to read [&Total]. Note that you can’t initialize Total if
you also plan to access it by reference, so [&Total = 5] won’t work.
Here’s the new output:

5 

11 

7 

Error in Input! 

7

Now the external value of Total reflects the manipulations of the lambda
expression. Although writing even more complex lambda expressions than
the one shown here is possible, you need to consider when you’ve reached
the point where you should be using a standard function, rather than a
lambda expression. Ideally, this example demonstrates the upper end of
lambda expression complexity.

Sorting data using a lambda expression
Although a computer can deal with data in any order, humans require order
to make sense of the data. The standard sorting functions provided with C++
work well with data in standard format, such as a single-column list.
However, after you start adding structures or classes, the data is much harder
to sort without help. The SortList example, shown in Listing 2-6, shows
how to perform a single-column and a two-column sort on data formatted
with a structure, Collect, into a Collectables list (a vector, in this case).

LISTING 2-6: Performing Sorting Tasks
#include <iostream> 

#include <vector> 

#include <algorithm> 

  

using namespace std; 

  

struct Collect { 



  string Name; 

  int Height; 

  string Location; 

}; 

  

int main() { 

  vector<Collect> Collectables; 

  Collectables.push_back ({"Statue", 40, "Basement"}); 

  Collectables.push_back ({"Statue", 30, "Basement"}); 

  Collectables.push_back ({"Mirror", 54, "1st Floor"}); 

  Collectables.push_back ({"Statue", 33, "1st Floor"}); 

  Collectables.push_back ({"Mirror", 33, "2nd Floor"}); 

  Collectables.push_back ({"Chair", 44, "1st Floor"}); 

  Collectables.push_back ({"Chair", 36, "2nd Floor"}); 

  

  auto SortRule1 = [](Collect S1, Collect S2) { 

    return S1.Location < S2.Location; 

  }; 

  

  auto SortRule2 = [](Collect S1, Collect S2) { 

    if (S1.Location != S2.Location) 

      return S1.Location < S2.Location; 

    return S1.Name < S2.Name; 

  }; 

  

  sort(Collectables.begin(), Collectables.end(), 

       SortRule1); 

  

  cout << "One Column Sort" << endl; 

  for (auto s: Collectables) 

    cout << s.Name << "\t" << s.Height << "\t" 

      << s.Location << endl; 

  

  sort(Collectables.begin(), Collectables.end(), 

       SortRule2); 

  

  cout << endl << "Two Column Sort" << endl; 

  for (auto s: Collectables) 

    cout << s.Name << "\t" << s.Height << "\t" 

      << s.Location << endl; 

  

  return 0; 

}

The example begins by creating a vector of items to sort. It then creates two
sort rules. Both SortRule1 and SortRule2 perform comparisons and return a
bool value as to whether the comparison (the first item is less than the
second item) is true. The difference is that SortRule2 performs the task on



two columns of the list, so two levels of comparison are required. The code
then calls sort() to perform the list sorting and relies on a foreach loop to
display the result, which appears here:

One Column Sort 

Mirror  54      1st Floor 

Statue  33      1st Floor 

Chair   44      1st Floor 

Mirror  33      2nd Floor 

Chair   36      2nd Floor 

Statue  40      Basement 

Statue  30      Basement 

  

Two Column Sort 

Chair   44      1st Floor 

Mirror  54      1st Floor 

Statue  33      1st Floor 

Chair   36      2nd Floor 

Mirror  33      2nd Floor 

Statue  40      Basement 

Statue  30      Basement

Specifying that the lambda expression throws
exceptions
Exceptions can be a difficult part of your code to implement properly
because an exception indicates that something unexpected has happened and
the caller needs to take action. Early versions of lambda expressions include
a throw() specification as part of the declaration, but the specification
proved difficult to implement, and many programmers saw it as an awkward
way to program. So, even though throw() is still an optional part of the
specification, you don’t generally see it used. In fact, you can’t use it in C++
20 because it has been deprecated and removed.

 The MultiTask example (refer to Listing 2-5) throws an exception
when the caller doesn’t provide an acceptable input of the correct type.
Throwing an exception is still perfectly acceptable, and when you call
outside functions from your lambda expression, these functions can
throw exceptions, too. However, sometimes you really don’t want the
exception to occur because the unexpected situation is expected. To get



past this problem, you can use noexcept() to disregard the exception,
like this:

cout << noexcept(ChangeNum(5,5)) << endl;

Instead of an exception, the code outputs the captured value of Total, which
is 0. This is the operator form of noexcept(). You also have access to a
specifier version of noexcept() that isn’t guaranteed to work with older
versions of C++. It looks like this:

auto ChangeNum = [Total](auto Type, int Value) mutable 

  noexcept {…}

In this case, the inability to throw an exception affects the lambda expression
as a whole, along with any functions that it calls. Of course, now you don’t
know when exceptional conditions really do happen — the code simply
outputs whatever answer it can, which is likely incorrect, when an
unforeseen condition occurs.
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Chapter 3

Advanced Lambda Expressions
IN THIS CHAPTER

 Understanding the C++ lambda expressions
 Placing lambda expressions in new places
 Creating lambda expressions that are assignable
 Expanding parameter packs

The previous chapter demonstrated tasks that you can perform using
lambda expressions with most versions of C++ 11 and above. This
chapter takes the next step by considering advanced tasks that you can
perform using newer versions of C++. In fact, the first section is C++ 20
specific. Some of the remaining sections also work with C++ 17. The
point is that if you’re working with an older version of C++, most of
what you see in this chapter won’t work. Remember that you can test the
examples in this chapter using Wandbox (https://wandbox.org/) if
your C++ compiler doesn’t provide the required C++ 20 functionality.

Also in this chapter, you look at new ways in which to use lambda
expressions in C++ 20. Before C++ 20, you couldn’t use a lambda
expression in a context requiring an unevaluated expression, including
the decltype() operator, which is the specific topic of this chapter.
However, the techniques you learn can apply to other unevaluated
contexts. Don’t worry if you don’t understand these terms just now;
they’re covered later in the chapter.

Older versions of C++ won’t allow you to assign a lambda expression or
make it constructible. Consequently, you can’t do something like make
two map objects (see the “Mapping your data” section of Book 5,
Chapter 6 for details about maps) equal when the source map object
contains a lambda expression. In addition, it’s difficult to make the

https://wandbox.org/


lambda expression a constructible part of the map declaration, so you
end up re-creating it every time. This chapter looks at how C++ 20 fixes
both of these issues.

The previous chapter explores captures of various types. However, you
can summarize them as being by copy, reference, or std::tuple. The
ability to send an arbitrary, packed list of data with a variable number of
arguments requires the use of a variadic template. The final section of
this chapter discusses the use of packs and demonstrates how C++
expands them to allow access. You use this sort of feature in places
where the number of arguments is unknown until runtime. For example,
you may have to deal with data that has a variable number of constraints
placed on it.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookIII\Chapter03
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Considering the C++ 20 Lambda
Extensions

C++ 20 adds a number of lambda extensions. Some of these extensions
appear as the chapter progresses. The remaining extensions appear in the
following sections.

Defining an immediate function
An immediate function is associated with consteval, which often
appears like this:

#include <iostream> 

  

using namespace std; 



  

consteval double sqr(float x) { 

  return x * x; 

} 

  

int main() 

{ 

  constexpr double MySquare = sqr(4.2); 

  cout << MySquare << endl; 

  return 0; 

}

The value of MySquare is computed at compile time rather than runtime.
MySquare occupies static memory space from the time the application
begins to when it ends, and its value never changes.

The consteval specifier for a lambda expression has the same effect,
but is often more flexible and concise. Here’s the lambda expression
version of the same code:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

  auto sqr = [](auto x) consteval {return x*x;}; 

  constexpr double MySquare = sqr(4.2); 

  constexpr auto MySquare2 = sqr(20); 

  

  cout << MySquare << endl; 

  cout << MySquare2 << endl; 

  return 0; 

}

 As with the function version, the value of MySquare and
MySquare2 are both computed at compile time. Consequently, if you
try to use a value that isn’t known at compile time, the compiler
generates an error message.

Using = and this in captures



The examples shown in the “Using lambda expressions with classes and
structures” and “Working with the capture clause” section of Chapter 2
of this minibook demonstrate how to work with captures. Some captures
aren’t currently very readable. For example, both of these two captures
imply this, which is a pointer to the current object, but this is explicitly
stated only in one:

[=] 

[=, *this]

The = operator says to capture all variables by copy. The this operator
also captures the current object by copy. You use *this to capture the
current object by reference, which means you can make changes to it. In
C++ 20, you can now use [=, this] to make it clear that you are
capturing both variables and the current object by copy, rather than by
reference. You can also use [&, this], which indicates that you are
capturing all variables by reference but capturing the object by copy.

Finding other changes
Sometimes, despite having the best understanding possible of lambda
expressions, things just don’t work when you code them and it appears
that they should. Often, you find subtle changes to the specification that
tell you why something is no longer working. For example, you can see
some of these changes in the paper “P1091R2 Extending structured
bindings to be more like variable declarations” at http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2018/p1091r2.html.

Working in Unevaluated Contexts
An unevaluated expression is a full expression; it doesn’t require
evaluation at runtime. For example, the typeid, sizeof, noexcept, and
decltype operators aren’t evaluated. In addition, the C++ 20 requires-
expressions (see
https://en.cppreference.com/w/cpp/language/constraints) aren’t
evaluated. An unevaluated context is one in which C++ is looking for an
unevaluated expression of some type. C++ 20 allows the use of lambda

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1091r2.html
https://en.cppreference.com/w/cpp/language/constraints


expressions in unevaluated expressions, template arguments, alias
declarations, and typedef declarations.

To see how an unevaluated context works, the PriorityQueue example,
shown in Listing 3-1, demonstrates how to add a lambda expression
comparator within a decltype() to automatically sort the priority queue.

LISTING 3-1: Defining a Priority Queue Comparator
#include <iostream> 

#include <queue> 

  

using namespace std; 

  

int main() { 

  priority_queue< 

    int, 

    vector<int>, 

    decltype( [](int a, int b)->bool{return a>b;})> PQ; 

  

  PQ.push(10); 

  PQ.push(5); 

  PQ.push(8); 

  PQ.push(1); 

  PQ.push(11); 

  

  while (!PQ.empty()) { 

    cout << PQ.top() << endl; 

    PQ.pop(); 

  } 

}

A priority_queue is a container adapter (something that modified the
behavior of a standard container, such as a vector) that makes
performing lookups in a consistent manner possible. It does so at the
expense of insertion and extraction times. However, if you perform
mostly lookups, using a priority_queue can substantially improve
application execution times.

This example creates a priority_queue that accepts int values as input,
modifies the behavior of a vector, and uses a lambda expression within
a decltype() as a comparator. The lambda expression is simple in this



case — it just compares two values and returns true when the first value
is greater than the second. The purpose of this priority_queue is to
create a vector where the entries remain in sorted order at all times,
making lookups faster.

After creating the priority_queue, the example pushes values in a
random order. However, the priority_queue automatically sorts them
for you. The code then uses a while loop to show the order in which the
values are stored, as shown here:

1 

5 

8 

10 

11

Using Assignable Stateless Lambda
Expressions

Until C++ 20, lambda expressions aren’t constructible or assignable. A
lambda expression is constructible if you use it to replace a structure
similar to this one:

struct { 

  template <typename X, typename Y> 

  auto operator()(X x, Y y) const { return x > y; } 

} greater;

A structure like this one would be used for performing tasks such as
acting as a comparator for a map. A lambda expression is assignable if
you can assign a source lambda to a target lambda, like this:

MyMap2 = MyMap1;

The idea is to make lambda expressions interchangeable with function
objects. Using a lambda expression would be more concise and
potentially easier to understand. The AssignLambda example, shown in
Listing 3-2, demonstrates how to perform this task using a map.



LISTING 3-2: Creating a Constructible Lambda and
Then Assigning It
#include <iostream> 

#include <map> 

  

using namespace std; 

  

int main() 

{ 

  auto greater = [](auto x, auto y) { return x > y; }; 

  map<string, int, decltype(greater)> MyMap1; 

   

  MyMap1.insert(pair<string, int>("D", 12)); 

  MyMap1.insert(pair<string, int>("B", 4)); 

  MyMap1.insert(pair<string, int>("C", 8)); 

  MyMap1.insert(pair<string, int>("A", 1)); 

   

  cout << "MyMap1 Content" << endl; 

  for (auto element : MyMap1) 

    cout << element.first << "\t" << element.second 

      << endl; 

   

  map<string, int, decltype(greater)> MyMap2; 

  MyMap2 = MyMap1; 

  MyMap1.insert(pair<string, int>("E", 23)); 

  MyMap2.insert(pair<string, int>("F", 35)); 

   

  cout << endl << "MyMap2 Content" << endl; 

  for (auto element : MyMap2) 

    cout << element.first << "\t" << element.second 

      << endl; 

}

Compare this example with the one in Listing 3-1 and you’ll note that
the comparator, greater, appears as a separate element, enabling you to
use the same comparator in multiple map instances without repeating the
lambda expression code. As with the priority queue example, the use of
a comparator will automatically sort the key/value pairs in the map as
they’re inserted.

What’s especially interesting is that you can assign MyMap1 to MyMap2.
However, MyMap2 is now copied from MyMap1. However, the content of
MyMap1 and MyMap2 become separate after the copy process so that



changes made to MyMap1 and MyMap2 are different beyond that point.
Here’s the output from this example:

MyMap1 Content 

D   12 

C   8 

B   4 

A   1 

  

MyMap2 Content 

F   35 

D   12 

C   8 

B   4 

A   1

Dealing with Pack Expansions
A data pack is a group of variables sent to a templated function in which
the number of variables is unknown until runtime. Pack expansion is an
essential part of dealing with a variable number of arguments. The
following sections describe pack expansion using a number of examples
so that you can see how the basic concept works.

Considering the template
Starting with C++ 11, you can send a variable number of arguments
using a variadic template. To provide you with a basic idea of how this
works, consider the code found in the VariadicTemplate example, as
shown in Listing 3-3.

LISTING 3-3: Using a Variadic Template
#include <iostream> 

  

using namespace std; 

  

template<typename… Types> 

size_t nargs(Types… args) { 

  return sizeof… (args); 

} 

  



int main() 

{ 

  cout << nargs(1, "3.5", true) << endl; 

  cout << nargs(2, 4, "Hello", 1.1) << endl; 

  cout << nargs() << endl; 

  return 0; 

}

The … operator says that this code is variadic — meaning that the number
of arguments and their types are unknown. The nargs() function
receives a variable number of arguments in a single packed variable,
args. All this function does is tell you the number of arguments passed,
so you see the following output:

3 

4 

0

If you were to look at the first call, nargs(1, "3.5", true), the
expansion of the function header would look like this:

template<int, const char*, bool> 

size_t nargs(int param1, const char* param2, bool param3)

Using a variadic template doesn’t preclude the use of known variables.
For example, if you have a function with one known variable and a pack
of unknown variables, the declaration might look like this:

template<typename T, typename… Types> 

size_t nargs(T Parm, Types… args) {

Processing the variables using recursion
Variadic templates require a special kind of recursion to process. Unlike
standard recursion, the function header for variadic recursion changes
with each call because the number of variables is one less each time.
Consequently, you create a base case as a separate function call. The
VariadicTemplate2 example, shown in Listing 3-4, demonstrates this
approach.

LISTING 3-4: Processing the Variables in Variadic
Templates



#include <iostream> 

  

using namespace std; 

  

template<typename T> 

void ProcessArgs(T arg) { 

  cout << arg << endl; 

} 

  

template<typename T, typename… Args> 

void ProcessArgs(T ThisArg, Args… args) { 

  cout << ThisArg << endl; 

  ProcessArgs(args…); 

} 

  

int main() 

{ 

  ProcessArgs(1, "Hello", true, 3.5); 

  return 0; 

}

In this case, each call to ProcessArgs() expands args, separating out
one variable for display as ThisArg until only one variable is left (the
base case), with the final variable, arg, displayed onscreen. The example
will take any number of arguments of virtually any type that cout can
display. Here’s the output from this example:

1 

Hello 

1 

3.5

Processing the variables using a lambda
expression
Using a lambda expression with variadic templates can make certain
tasks significantly easier. For example, you might want to know whether
a particular group of numbers is all greater than 7. So, you construct a
lambda expression, like this:

auto constraint = [](int x) {return x > 7;};



 The lambda expression could perform any level of constraint
checking, but in this case, it simply looks for an int input greater
than 7. Note that this lambda expression looks specifically for an
int value, which means that providing lists of values that don’t
include int values will produce an error message from the
compiler.

As with the example in the previous section, the VariadicTemplate3
example, shown in Listing 3-5, relies on recursion. However, the
recursion is a little more complex this time.

LISTING 3-5: Checking on Constraints
#include <iostream> 

#include <typeinfo> 

  

using namespace std; 

  

auto constraint = [](int x) {return x > 7;}; 

  

template<typename T> 

bool ProcessArgs(T arg) { 

  cout << "Value is: " << arg << endl; 

  return constraint(arg); 

} 

  

template<typename T, typename… Args> 

bool ProcessArgs(T arg, Args… args) { 

  cout << "Value is: " << arg << endl; 

  return constraint(arg) && ProcessArgs(args…); 

} 

  

int main() 

{ 

  cout << "List contains only numbers above 7: " 

    << (ProcessArgs(10, 11, 14, 8) ? "True" : "False") 

    << endl << endl; 

  

  cout << "List contains only numbers above 7: " 

    << (ProcessArgs(10, 3, 6) ? "True" : "False") 

    << endl;; 



  return 0; 

}

The example still outputs each of the values it processes. However, it
also checks the constraint and returns true when the number is greater
than 7. This extra level of processing is common in certain sciences,
especially in statistical analysis, machine learning, or deep learning
tasks. An advantage of this approach is that the code doesn’t check every
value if one value is out of range. The moment the code detects an
incorrect value, it ends the recursion. Here’s the output from this
example:

Value is: 10 

Value is: 11 

Value is: 14 

Value is: 8 

List contains only numbers above 7: True 

  

Value is: 10 

Value is: 3 

List contains only numbers above 7: False
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Chapter 1

Dealing with Bugs
IN THIS CHAPTER

 Distinguishing bugs from features
 Anticipating every move the user makes
 Avoiding mistakes the easy way
 Dealing with errors

Who knows whether it’s true, but as the story goes, back when the first
computer was built over a half-century ago, it filled an entire room with
circuitry (yet was about as powerful as one of those inexpensive
calculators — the kind that perform only basic math). One day, the thing
was misbehaving, and some brave engineers climbed deep into the thing.
(The version we’re thinking of has them wearing white radiation suits, of
course.) Deep in The Bowels of the Machine (sounds like a movie title),
they found none other than … an insect! A bug! It was a great big bug
that had gotten messed up in the circuitry, causing the computer to
malfunction. So the story goes, anyway. Today, we use the term bug to
mean something that is wrong with an application. In this minibook, you
discover how to track down bugs and fix them in your software. In this
chapter, you see exactly what a bug is (and is not!), how bugs occur, and
how you can try to avoid them.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookIV\Chapter01
folder of the downloadable source. See the Introduction for details
on how to find these source files.



It’s Not a Bug. It’s a Feature!
So you’re using a word processor and suddenly the application freaks
out and saves your file automatically. You didn’t tell it to do that. Then
you use the same copy of the word processor and try to do a copy-and-
paste procedure (that’s called a use case, by the way). Suddenly the Font
dialog box pops up. And then later, you’re sitting with your laptop at
Starbucks, and it automatically begins the shutdown procedure. You
didn’t tell it to do that.

Bugs! Bugs! They’re all bugs! Or are they? Seems that these pesky little
incidents might be considered features by some programmers.

Some word processors have an optional autosave feature that causes the
application to automatically save recovery information in case the
computer goes dead. And that Font dialog box that popped up was a user
mistake: You meant to press Ctrl+V, but your fingers slipped and caught
the D key instead. As it happens, by default Ctrl+D opens the Font
dialog box in some word processors. And newer versions of most
operating systems understand laptop computers: When the battery is just
about to be completely drained, the operating system saves the entire
state of the machine to a giant file on the hard drive and shuts down.
This is called hibernation. So these aren’t bugs, after all. Now you can
close that bug report you just sent to the vendor.

Now consider this: Suppose that you’re using an application and in the
middle of it, you get a message box that says something like
ExceptionError. Then the application simply closes. All your work is
lost. So you call tech support, and the helpful friend on the other end
says, “You must have typed something it didn’t like. This application has
a built-in protection scheme whereby if you type something you’re not
supposed to, it shuts down.” That’s when the guy says, “It’s a feature,
not a bug!” Unfortunately, sometimes situations walk the fine line
between bug and feature. No one would think that an application
crashing could be considered a feature, but consider this instead: When
your browser messes up, a message asks whether you want it to send the
vendor a trouble report. That’s a feature that handles bugs.



But the unnamed application that shut down definitely has a bug. And
other applications have bugs. For example, you may have been quickly
switching between browser windows, typing, resizing, doing things
quickly as you go back and forth between the windows, when suddenly
the browser crashes and you see the trouble-report message. That really
is a bug: The application choked when you, the user, did something that
the programmers did not anticipate.

Of course, you wonder why the application choked. In addition to not
having planned for some particular input, the programmers might have
simply messed up. They didn’t include code to handle a rough situation
(rapidly switching, resizing — that sort of thing), or perhaps they wrote
code that did something wrong, such as free a pointer but then continue
to use the memory address.

Here’s an example of programmers not expecting something. Suppose
that you write an application that reads a number from the console. The
user types a single character for the first choice and another character for
the second choice. The code might look like this:

char x, y; 

cout << "Enter your first choice" << endl; 

cin >> x; 

cout << "Enter your second choice" << endl; 

cout << x << endl; 

cin >> y; 

cout << y << endl;

It’s a simple little code, but suppose that the user responds to the first
request by typing an entire word, such as Read, rather than a single
letter, such as R. The application would then take the letters e, a, and d
and use them for the subsequent cin calls — something you might not
have anticipated. The e would go into the cin >> y; line and get put in
y. That’s the bug of not anticipating something: You, the programmer,
must make sure that your application can handle all situations. All of
them. Every single one. But fortunately, there are ways around such
problems, and you discover them in this chapter.

You can group these situations into the following categories:



Real features, not bugs at all
A situation that the programmers didn’t anticipate
A mistake, plain and simple

Make Your Application Features
Look Like Features

The last thing you want is to get calls from users complaining about a
bug in your application that was, in fact, a feature. This can happen, and
it does. But the technical-support people are embarrassed when they
have to explain, “No, sir/ma’am. That really is the way it’s supposed to
work.” It’s also not fun for the technical-support people to be subjected
to name-calling after this, especially when they didn’t write the software
— you did.

But programmers want to make everybody’s lives easier (starting with
our own, of course!), so building software so that it’s easy to use and
makes sense is best. The key, then, in creating software where the
features actually look like features is to make it all sensible. Don’t have
your software start the Zapper automatically unless the user explicitly
asks for the Zapper to come on:

Smiling technical-support representative: “It’s a feature! The Zapper
comes on after the computer has been sitting idle for ten minutes.”
Angry customer: “Yes, but I would kind of like to be at least ten feet
away from the thing when the Zapper starts up!”
Smiling technical-support representative: “But why would you be
sitting there for ten minutes and not using the computer if you’re not
away from it?”
Angry customer: “I was reading the manual on how to configure the
Zapper!”

You know the rest: Lawsuits follow and people get fired. Not a pretty
sight, and that says nothing for the poor customer who was in the



vicinity of the computer when the Zapper kicked in at full force.

 With features, the rules are simple: Let users choose which
features they want to happen and when. If they don’t want autosave,
for example, let them turn it off. Let them configure the software,
and don’t let it do anything surprising.

Anticipating (Almost) Everything
When you write an application, try to anticipate the different things that
users can do to your application — much of which may not exactly be
associated with the proper use of your application. Most of this kind of
protection — that is, ensuring that your application doesn’t choke when
the users do something you don’t anticipate — that you build into your
software centers around the user interface, the area where the users
interact with your application. The following sections offer some details
about user interface issues you might face.

Considering menus
If your application is a console-based application or if users can enter
characters into text boxes in a windowing application, you must guard
against invalid input. Take a look at this output from a hypothetical
application:

What would you like to do? 

    A. Add random information to the system. 

    B. Boil information. 

    C. Compress information. 

    D. Delete the information. 

    Your choice:

Now suppose that the user chooses D for Delete, and the following menu
appears:

What would you like to delete? 

    A. None of the data; forget it! 

    B. Some of the data. 



    C. Most of the data. 

    D. All the data! Get rid of it all!

Now imagine that a user starts this application and sees the first menu.
The user doesn’t know whether to type A for the first choice or Add for
the first choice. The user types Add and presses Enter. Oops. The A went
to the first choice, and the system added the random information and
printed the same first menu again. The d (the second character the user
typed) then went to the choice Delete the information. That caused
the second menu, the Delete menu, to appear. The third character that the
user typed, d, caused the second menu’s D selection to take place — All
the data! Get rid of it all! — all in one shot, without the user’s
realizing what happened.

Oops! What was supposed to be Add turned into Add, Delete, Delete
all the data. Not good! How can you avoid this kind of thing?

Restrict the user’s choices.
Clearly state what the user should do.
Support multiple options.
Anticipate what could go wrong.

For example, you might tell the user to type only a single character, with
a message such as this:

Please enter a single character for your choice:

But now, does the user have to press Enter afterward? This message
suggests so. But maybe not. So you must be more specific. Maybe one
of these examples would work better:

Type a single character and do not press Enter:

or
Type a single character and then press Enter:

But even these aren’t good enough. First, you should generally allow the
user to press Enter. Doing something automatically with a single
keystroke may surprise the user. Further, you may want to support



multiple options. If the user wants to choose option A in the menu, you
might support any of the following for input:

A
a
Add
ADD
add

This can all be wrapped up into some short code that looks like this:
string choice; 

cin >> choice; 

char ch = choice[0]; 

ch = toupper(ch); 

switch (ch) 

{ 

    case 'A': 

        cout << "Adding random data…" << endl; 

        break; 

    case 'B': 

        cout << "Boiling it down!" << endl; 

        break; 

    case 'C': 

        cout << "Compressing!" << endl; 

        break; 

    case 'D': 

        cout << "Deleting…" << endl; 

        break; 

}

Now the user can type any word, and the only thing that the application
checks is the first letter. But if you don’t like the idea that aompress can
be taken as add and not compress, you can do something like this:

string choice; 

cin >> choice; 

choice = MyUppercase(choice); 

if (choice == "A" || choice == "ADD") 

{ 

    cout << "Adding random data…" << endl; 

} 



else if (choice == "B" || choice == "BOIL") 

{ 

    cout << "Boiling it down!" << endl; 

} 

else if (choice == "C" || choice == "COMPRESS") 

{ 

    cout << "Compressing!" << endl; 

} 

else if (choice == "D" || choice == "DELETE") 

{ 

    cout << "Deleting…" << endl; 

} 

else 

{ 

    cout << "I don't know that word" << endl; 

}

This code looks for only the first letter or the exact word, and the letter
can be in either uppercase or lowercase, while words can be in
uppercase, lowercase, or mixed case. This choice is probably the best
one. However, you may notice that the example uses a function called
MyUppercase(), which relies on a lambda expression (see Book 3,
Chapter 1 for details about using lambda expressions) to perform the
processing (you need C++ 20 or above to use this version, but you can
also use a simple for loop to perform the task as well).

string MyUppercase(string str) { 

  for_each(str.begin(), str.end(), [](char & c) { 

    c = ::toupper(c); 

  }); 

  return str; 

}

Dealing with textual input
Be careful if you’re dealing with a sophisticated application. Suppose
that you are writing an application that looks up information in a
database for a particular customer name. You could run into the
following situations:

The names in the database are in all uppercase letters (for example,
GEORGE WASHINGTON), and the user can enter names in mixed
case (for example, George Washington).



The first and last names are stored separately, so your application
must look in the database for the situation where the last name is
Washington and the first name is George. The user, who doesn’t
know to enter just the last name, may enter both names into a single
text box. Or you might allow the user to enter both names at one
time, but the user doesn’t realize that the last name was supposed to
come first, or perhaps it was last name, and then a comma, and then
the first name.
The user can type some spaces at the beginning or end of the name.
The application then looks for an entry like “ George Washington ”
and does not find it, because it’s stored as “George Washington”
(with no spaces before or after).
The user might include middle initials when the name is not stored in
the database with middle initials.

All these problems are easy to avoid. Here are some tips:

You must know how the names are stored in the database before you
look for them. If they are stored in all caps, you shouldn’t require the
user to enter them in all caps. Instead, accept words in any case and
convert them to uppercase.
You must know whether the names are stored with the first name
separated from the last. Then allow any format. If the user types
George Washington (no comma), you can split the string at the
space and pull out the first name and last name. But if the user types
the name with a comma between the first and last names, you can
split it at the comma and extract the last name and then the first
name.
Spaces should not be a problem. You can strip the spaces off a string
after a user types it in.
Your application should clearly tell the user whether to enter a
middle name, a middle initial, or neither. If you are using text
controls, don’t even include a middle name field if you don’t want a
middle name. Or if you do, specify right on the window whether the



user should type a middle initial or an entire middle name. If the
entry is just an initial, you can remove a trailing period, or add it,
depending on what’s stored in the database.

All these steps will help make your application bulletproof. The idea is
to encourage users to do things the way they prefer, but to prevent them
from doing things in ways that your application doesn’t like. If your
application doesn’t want middle initials, don’t give users the opportunity
to enter them.

Performing string processing
The StringProcess example in Listing 1-1 shows you how you can strip
spaces, strip a possible period off the end of a middle initial, and split a
string based on either spaces or commas. This example uses a special
class called vector. The vector class is much like an array, except that
the vector class is a bit more powerful: Because vector is a class, you
can add things to it and remove things from it easily by using methods.
vector is also a template, however, so when you declare it, you must
state what type of variables you want it to hold. You put the variable
types in angle brackets. The example declares it using strings, like this:
vector<string>. To make your life simpler, the code uses a typedef to
make an easier name for this type: StringList.

LISTING 1-1: Processing Strings to Reduce Bugs
#include <iostream> 

#include <vector> 

#include <string.h> 

#include <algorithm> 

  

using namespace std; 

  

typedef vector<string> StringList; 

StringList Split(string orig, string delims) { 

  StringList list; 

  int pos; 

  while((pos = orig.find_first_of(delims)) != -1) { 

    list.push_back(orig.substr(0, pos)); 

    orig = orig.substr(pos + 1); 



  } 

  list.push_back(orig); 

  return list; 

} 

  

string MyUppercase(string str) { 

  for_each(str.begin(), str.end(), [](char & c) { 

    c = ::toupper(c); 

  }); 

  return str; 

} 

  

string stripspaces(string orig) { 

  int left; 

  int right; 

  

  // If string is empty, just return it. 

  if (orig.length() == 0) 

    return orig; 

  

  // Strip right 

  right = orig.find_last_not_of(" \t"); 

  if (right > -1) 

    orig.resize(right + 1); 

  

  // Strip left 

  left = orig.find_first_not_of(" \t"); 

  if (left > -1) 

    orig.erase(0, left); 

  

  // If left still has a space, it 

  // means the whole string is whitespace. 

  // So just remove it all. 

  if (orig[0] == ' ' || orig[0] == '\t') 

    orig = ""; 

  

  return orig; 

} 

  

void ProcessName(string name) { 

  StringList list; 

  string first, middle, last; 

  int size, commapos; 

  

  name = stripspaces(name); 

  commapos = name.find(","); 

  if (commapos > 0) { 

    // Name has a comma, so start with last name. 



    name.erase(commapos, 1); 

    list = Split(name, " "); 

    size = list.size(); 

    if (size > 0) 

      last = list[0]; 

    if (size > 1) 

      first = list[1]; 

    if (size > 2) 

      middle = list[2]; 

  } else { 

    // Name has no comma, so start with first name. 

    list = Split(name, " "); 

    size = list.size(); 

    if (size > 0) 

      first = list[0]; 

    if (size > 2) { 

      middle = list[1]; 

      last = list[2]; 

    } 

    if (size == 2) 

      last = list[1]; 

  } 

  // If middle name is just initial and period, 

  // then remove the initial. 

  if (middle.length() == 2) 

    if (middle[1] == '.') 

      middle.erase(1,1); 

  

  // Convert all to uppercase 

  first = MyUppercase(first); 

  middle = MyUppercase(middle); 

  last = MyUppercase(last); 

  

  cout << "first: " << first << endl; 

  cout << "middle: " << middle << endl; 

  cout << "last: " << last << endl; 

  cout << endl; 

} 

  

int main() { 

  string name; 

  name = "   Washington, George Zeus   "; 

  ProcessName(name); 

  name = "Washington, George Z."; 

  ProcessName(name); 

  name = "George Z. Washington"; 

  ProcessName(name); 

  name = "George Zeus Washington"; 



  ProcessName(name); 

  name = "George Washington"; 

  ProcessName(name); 

  return 0; 

}

Listing 1-1 is almost bug-proof, but it still doesn’t handle some
situations properly. For example, if somebody tries to process a string
with a middle name, such as Zeus. (notice the period after the name),
the application doesn’t remove the period. Here are some other
improvements you might make to this application:

Eliminate improper characters: You might make sure that no
improper characters appear in the names. Do this processing after
you find the first, middle, and last names; that way, you won’t kill
the attempt to find the data based on the presence of a single comma
that might be needed to specify the name order. You can use various
if statements to do this kind of thing.

Handle more names than three: Add a special precaution for the
case of more than three names. Some people have lots of names (like
10 or 11, especially if they’re members of British royalty). But if this
application is to be used, for example, in an oil change operation,
you probably won’t see Charles Philip Arthur George, Prince of
Wales coming through. How you handle the names depends on your
particular situation.
Perform initial processing: Do some initial processing. Right after
the user enters the names, make sure that the names are not empty
strings — that is, "" (one pair of quotation marks with no space
between them).

THE MYTH OF THE BULLETPROOF
APPLICATION

Anyone who has spent time reviewing the trade press knows that many applications
have recurring problems with bugs. Just as soon as the vendor fixes one bug, another
bug turns up. Some developers may think that the developers at these companies are
morons and are giving us all a black eye. However, these developers, more often than



not, are just like us. Because they’re human, and humans make mistakes — at both the
developer and user ends of the application — applications will never become bug-free.
Sure, you may be able to create a simple, nearly bulletproof application, but as
application complexity increases, so do the number of interactions and the number of
potential bugs. At some point, the number of interactions between application parts
increases to the point that a bug-free application becomes impossible.

The bulletproof application is a myth. If you buy into this myth, you may be tempted to
stop looking for bugs the moment the development staff can’t find any more of them.
Unfortunately, this attitude leads to headlines proclaiming your application as the next
significant security hole. Don’t buy into the myth of the bulletproof application — always
be alert for potential errors.

Avoiding Mistakes, Plain and Simple
Even though many programmers take measures to prevent bugs, they
still sometimes let problems slip through. However, if you’re careful,
you can avoid a lot of these problems. When you create software, you
should be in the right frame of mind to watch for potential problems as
you write the code. (Getting into the right frame of mind includes
ensuring that you have enough sleep, avoiding distractions, and doing
other things that help you concentrate on your work.)

The list of potential problems could probably go on and on for thousands
of pages. However, the point is not to have a big checklist, but rather for
you to review this list and start to recognize the things you need to do to
write good code. Writing code is conscious and deliberate. It’s similar to
walking down a sidewalk and being vaguely aware of such things as
whether cars are coming or whether you need to step over any holes.
These hazards are always in the back of your mind as you carefully walk
along. Writing code is the same way: Certain gotchas should stay in the
back of your mind:

Indexes: Strings and arrays run from index 0 to 1 less than the
length. Using a loop, such as for (i=0; i<=size; i++), is a
common mistake. The less-than-or-equal-to symbol is incorrect, yet
people make this mistake a lot. The scary thing is that sometimes the
code will still function, and you end up overwriting something else.



Worse, you might not catch this coding error, so it manifests itself as
a bug in the application later.
For every new, there’s a delete: Whenever you allocate an object
using new, remember to free it. But forgetting the delete doesn’t
usually create noticeable bugs in your application (at least, not at the
time they occur). Read the next item to see what’s more likely to
cause a noticeable bug.
Remember what you deleted: Worse than forgetting to delete an
object is forgetting that you deleted it and continuing to use it. When
you delete a pointer, make sure that you don’t pass it to some other
object that stores it away and plans to use it again.
Don’t forget to create an object: You may have seen this one. An
error message pops up that says:

The instruction at 0x00402119 referenced memory at 

0x00000000. The memory could not be written.

This means that someone had a pointer variable and forgot to call
new. You can generate this message with the following code:

int *x = 0; 

*x = 10;

The code creates a pointer variable and initializes it to 0, meaning
that it’s not being used. But before calling new or setting the variable
equal to an object’s address, the code tries to stuff something into the
memory it points to (which is address 0, something that the operating
system doesn’t like). The operating system responds with the error
message. This bug appears far more than expected in commercial
software.

These are just a few items to think about, but you can see that they deal
mostly with memory issues, such as allocating memory and using it
incorrectly. Most important, you can avoid them if you’re conscientious
about your programming. As you code, bear in mind the repercussions
of what you’re doing. And as crazy as this sounds, remember what you
might be forgetting! Ask yourself whether you’re forgetting to delete
some pointers or whether someone else has a copy of the pointer you’re



about to delete. If you keep these things in mind, you should avoid some
of the most common bugs.
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Chapter 2

Debugging an Application
IN THIS CHAPTER

 Working with debuggers
 Tracing code flow through an application and in and out of

functions
 Getting seriously advanced debuggers
 Adding command-line arguments to Code::Blocks debugging

In this chapter, you discover how you can use a debugger to track down
problems and bugs in your application. Sooner or later, things don’t
work the way you planned them. In this case, you have several plans of
attack. One is to use a debugger to try to fix the application, which is the
approach taken in this chapter. You could also use cause-and-effect
analysis, probabilistic analysis, or logging application output. You can
find articles online that describe all sorts of techniques, such as this one:
https://dev.to/nikpoltoratsky/debugging-you-re-doing-it-

wrong-10-techniques-to-find-a-bug-in-your-code-4f41. However,
this chapter relies on the old standby of debugging and focuses on the
Code::Blocks debugger.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookIV\Chapter02
folder of the downloadable source. See the Introduction for details
on how to find these source files.

https://dev.to/nikpoltoratsky/debugging-you-re-doing-it-wrong-10-techniques-to-find-a-bug-in-your-code-4f41


Programming with Debuggers
A debugger is a special tool that you use for analyzing your code in
various ways, including tracing the code line by line. (Tracing is the act
of viewing the code execution flow in an application.) Take a look at the
BuggyProgram example, shown in Listing 2-1. This is just a basic
application with a main() and a couple of functions used to demonstrate
the debugger.

LISTING 2-1: Tracing a Simple Application
#include <iostream> 

#include <cstdlib> 

  

using namespace std; 

  

int CountRabbits(int original) { 

  int result = original * 2; 

  result = result + 10; 

  result = result * 4; 

  cout << "Calculating " << result << endl; 

  return result * 10; 

} 

  

int CountAntelopes(int original) { 

  int result = original + 10; 

  result = result - 2; 

  cout << "Calculating " << result << endl; 

  return result; 

} 

  

int main() { 

  int rabbits = 5; 

  int antelopes = 5; 

  rabbits = CountRabbits(rabbits); 

  cout << "Rabbits now at " << rabbits << endl; 

  antelopes = CountAntelopes(antelopes); 

  cout << "Antelopes now at " << antelopes << endl; 

  //system("PAUSE"); // add this for Windows 

  return 0; 

}

When you run this application, you see the following output:



Calculating 80 

Rabbits now at 800 

Calculating 13 

Antelopes now at 13

Now look closely at main() and follow it through, line by line. The first
thing main() does is declare a couple of integers. Then main() calls the
CountRabbits() function. The CountRabbits() function declares an
integer and completes a few lines of calculations. Then the
CountRabbits() function prints a message. Finally, it returns. When it’s
back in main(), the application prints another message and then calls the
CountAntelopes() function. This function also declares an integer,
completes some calculations, prints a message, and then returns. Back in
main(), the application prints another message, and, finally, the
application finishes.

This is a linear description of the entire process of this application. You
can see these same steps by using a debugger. With a debugger, you see
the computer moving line by line through your code. A debugger
performs the first line of your application and then waits for you to tell it
to perform the next line — and then the next, and the next, and so on,
until the end of the application.

ADDING DEBUG AND SYMBOL
INFORMATION

When you compile with debug information, the compiler adds debug and symbol
information to the final executable file. This information includes data about the source
code files, including the line numbers and the variable names. This is the primary
difference between a debug version and a release version of your product: People
typically don’t include debug and symbol information in a version of the product that
they release to the general public. One reason is that including it makes it too easy for
competitors and hackers to reverse-engineer the product. (Another reason is that
including the debug and symbol information makes the application run slower and
consume more system resources.) However, the actual source code is not in the debug
and symbol information; that stays in the source code file. The debug information,
instead, just contains line numbers, which serve as references into the source code file.
So hackers and competitors won’t have the complete source to your application, but
they will have variable names and other information that could make their job easier
(and yours harder).



 This example uses the debugger that comes with the
Code::Blocks application. Even if you prefer to use another
debugger, at least try the Code::Blocks debugger. It is a nice tool,
and it’s helpful to know how to use more than one debugger
because they all have different feature sets. In addition, using the
Code::Blocks debugger allows you to follow through the chapter’s
examples. Then you can return to whatever other tool you’re using.

 You must know one important aspect before using a debugger:
For the debugger to understand your code, you must compile it with
debugging information. The compiler adds extra information into
the final executable so that the debugger can locate your source
code and variable information. Here’s how you turn on debug
information:

Code::Blocks: Choose Build⇒  Select Target⇒  Debug.
Dev-C++: Open the project and choose Tools⇒  Compiler Options. In
the Settings tab, choose Linker in the left panel. Make sure that
Generate Debugging Information entry is set to Yes.
gcc under MinGW and Cygwin: Add the -g option to the compiler.
You will probably do this inside a Makefile.

 After you change the compiler options to generate debug
information, you must rebuild your project because the compiler
and linker must regenerate object files and executable files with the
debug information.



Running the debugger
After you have rebuilt your project, you can run the debugger. However,
before you can do anything, you need to tell the debugger where to stop.
Click immediately to the right of 22 in the source code editor, the line
that reads int rabbits = 5;. You see a red octagon appear; it looks
similar to a stop sign, but without the word stop. After you have the
required configuration done, see the following sections to find out about
the initial debugging process in more detail.

Performing an initial run
To start the debugger, click Debug/Continue on the Debugger toolbar
(the right-pointing red arrow), choose Debug⇒  Start / Continue, or press
F8. (If you click Run, the application runs as normal without entering
debug mode.) When you start the debugger, you should see a screen like
the one shown in Figure 2-1. (You also get a console window behind that
screen. This console window contains the output for the application you
are debugging.)



FIGURE 2-1: The main Code::Blocks window shows your source code.

Figure 2-1 shows two special features you need to successfully debug
applications. The first is the red octagon, and the second is the yellow
triangle. The red octagon is a breakpoint — a place where you want the
debugger to stop. You add breakpoints to the Editing window by clicking
the left side next to the instruction where you want to stop. When you
click that spot again, the red octagon goes away, showing that you have



cleared the breakpoint. You can place as many breakpoints as you want
in the application, but you can place breakpoints only on instructions.

The yellow triangle is the instruction pointer, which shows the
instruction that the debugger will execute next. As you tell the debugger
to execute instructions, the yellow triangle moves. Whenever you start
the application in debug mode, the yellow pointer automatically stops at
each breakpoint. Figure 2-1 shows how the debugger looks when the
yellow triangle stops at a breakpoint.

When you start the debugger again by clicking Debug/Continue,
execution begins as if the application is in normal run mode until the
debugger encounters another breakpoint. If the debugger doesn’t
encounter a breakpoint, the dialog box closes and the application returns
to the source screen. The debugger doesn’t pause to show the application
output, as when you’re in run mode. The dialog box simply closes.

 If you don’t set any breakpoints and try to debug your
application, it will run without letting you trace through the code.
That is, the application will run as if you’re not running it in the
debugger.

Look at the Debugger tab of the Logs and Others window, shown in
Figure 2-1. This tab contains debugging messages from your application.
Whenever you see the At message, you know that the debugger has
stopped at a particular location. The remainder of the message tells you
where the debugger has stopped. In Figure 2-1, the debugger has stopped
at line 22 of this file:

At C:\CPP_AIO4\BookIV\Chapter02\BuggyProgram\main.cpp:22

When you click Debug/Continue on the Debug toolbar again, you see a
Continuing… message. Because this first run hasn’t set any other
breakpoints, the application continues to run until it ends, at which point
you see some additional messages like those shown in Figure 2-2, that
tell you things like the completion status, which is 0 in this case because
of the return 0; line in the code.



FIGURE 2-2: Completing the run shows the application results.

 Notice that the Debugger window provides you with all sorts of
additional information. If you scroll up, you can see the build
process and how it differs from a release build. When the build
process completes, you see the done message, a Setting breakpoints
message, a debugger information message, and the Process
Identifier (PID) of the application process.

Reviewing the code line by line
Click Debug/Continue again to restart the application and debugger. The
breakpoint you set earlier stops the application at line 22 again. Click
Next Line, which is the third button on the Debugger toolbar. The button
you want is the one with an icon with two squares and an arrow pointing
from the first square to the second square. (You can also press F7.) The
yellow triangle (instruction pointer) moves past the first assignment
statement on line 22, which is int rabbits = 5;, to the second
assignment statement on line 23. Notice that the Debugger window now
contains a second At entry of At
C:\CPP_AIO4\BookIV\Chapter02\BuggyProgram\main.cpp:23.



 You can use options on the Debug menu in place of the buttons
on the Debug toolbar. The Debug menu also shows shortcut keys
for each of the debugging commands that support them.

Click Next Line. When you click the button, the instruction pointer
advances to the next line. The computer will perform the second line in
main(), which is this:

int antelopes = 5;

Click Next Line again. Now the instruction pointer is on the third line of
main(), which looks like this:

rabbits = CountRabbits(rabbits);

This third line of main() is a function call, and now you have a choice.
(Don’t click Next Line!) You can either tell the computer to perform only
what’s inside this function without stopping on each line for you to see,
or you can “step into it” and see the individual lines.

Click the fourth button from the left, the one called Step Into, which
shows two squares and an arrow pointing between them. (Or press
Shift+F7.) When you do, the instruction pointer moves into the
CountRabbits() function. The highlight will be on the first line in that
function:

int result = original * 2;

When the highlight moved into the function, the computer stepped into
the function. Now think about the symbol for the icon that caused this to
happen: The icon has squares and an arrow pointing between them. The
two squares represent lines of code in the current function, and you go
between them, or step into the called function. That’s the idea behind the
odd symbols. Notice also that the Debugger shows an appropriate At
message of At
C:\CPP_AIO4\BookIV\Chapter02\BuggyProgram\main.cpp:7.



Now, before stepping into this function — because you were clicking
lines that were not functions but just individual lines — you used the
Next Line button. But you could have used either the Next Line button
or the Step Into button, because stepping into a function doesn’t have
much meaning on statements that are not functions.

 Normally, you use the Next Line button by default and choose
the Step Into button only when you specifically want to go into a
function. The reason is that some lines of code that may not appear
to be functions really are. For example, cout << "a"; is, in fact, a
function, and you might not want to step into that code, because the
source code for it might not be present or you simply might not be
interested in the details of the function.

 If you ever step into a function that you really don’t want to
trace, you can click the fifth Debugger toolbar button, Step Out, to
get back to the previous function. The result is the same as if you
had clicked Next Line when you were in the code that called the
function. Keep the debugger running for the next section of the
chapter.

Using the basic debugger functionality
The previous section tells you how to move from line to line within a
code file. Here, you can see how the debugging features work. The
following procedure takes you through the debugging process so that
you can see the Code::Blocks debugger in action:

1. Click Next Line three times until the instruction pointer appears
on the cout line:

cout << "Calculating " << result << endl;

This line writes output to the console, as shown in Figure 2-3.
Remember, in addition to the main Code::Blocks window, you have



a console window. That’s where the output from this line goes.
2. Click Next Line.

The instruction pointer lands on the return statement.

3. Click Next Line again.
The instruction pointer is on the closing brace of the function. Note
that Code::Blocks highlights both the opening brace and the closing
brace in blue, as shown in Figure 2-4. This feature helps you see
where a function begins and ends in the Integrated Development
Environment (IDE).

FIGURE 2-3: Be sure to check the output to ensure that it’s what you expected.

FIGURE 2-4: The debugger shows the beginning and end of code blocks.



4. Click Next Line yet again.
The instruction pointer returns to main(), on the line following the
call to the CountRabbits() function:

cout << "Rabbits now at " << rabbits << endl;

5. Click Next Line again.
The instruction pointer is on the second function call:

antelopes = CountAntelopes(antelopes);

6. But this time, instead of stepping into the function, just press
Next Line to step over it.
The instruction pointer advances to the next line, which is this:

cout << "Antelopes now at " << antelopes << endl;

Look at the console. The CountAntelopes() function contains a call
to cout. You can see on the console that this cout line did its stuff:

Calculating 13

You saw the output from the CountAntelopes() function because,
although you stepped over the function, you didn’t actually skip it.
The debugger just didn’t go through the function line by line.

7. Click Next Line to do the final cout line.
Your entire output now looks like this:

Calculating 80 

Rabbits now at 800 

Calculating 13 

Antelopes now at 13

and the instruction pointer ends on the final return statement:
return 0;

8. Click Next Line one more time, and the highlight is on the
closing brace of main().
Now things get just a little strange. There’s really more code than
you can see. When you compile and link your application, the linker
includes some special start-up code that calls your main() function.



9. Click Next Line one more time.
The debugger moves out of your source file and into some assembly
language code. The Debugger window shows the following message:

In __mingw_CRTStartup () ()

10. Click a new button, Next Instruction (six buttons from the left on
the Debugger toolbar), to advance to the next instruction.
The Debugger window shows the following message again:

In __mingw_CRTStartup () ()

11. To see what all this means, click Debugging Windows (ten
buttons from the left on the Debugger toolbar) and choose
Disassembly from the drop-down list box.
Code::Blocks displays a new window called Disassembly, as shown
in Figure 2-5. The numbers in your figure may differ from the
screenshot, but the code is the same.
This is assembly, a human-readable form of the language that the
computer understands. You don’t have to know what all this means,
but you can probably figure out that the line

0x4010ff call   0x430c40 <_cexit>

is where this code exits the application.
12. To end the application, click the first button (Debug/Continue).

Clicking Debug/Continue causes the application to run to the real
end of your application (or to the next breakpoint) and then finish.



FIGURE 2-5: The Disassembly window displays the assembly language version of your
code.

That’s how you step through your application line by line. But you can
do a lot more with the application than you do in this section when
you’re stepping through it. You can look at the values in your variables,
you can change the values of the variables, and you can get a list of all
the function calls that led up to the current position in your application.
You can do plenty, as explained in the remainder of this minibook.

Recognizing the parts of the Code::Blocks
debugger
The Code::Blocks debugger displays the Debugger toolbar whenever
you debug an application. The previous sections of this chapter discuss
many of the buttons on the Debugger toolbar: Debug/Continue, Next



Line, Next Instruction, Step Into, and Step Out. However, the toolbar
contains a number of other interesting buttons you should know about.

Sometimes you examine a piece of code in the editor and want to see
what the variables look like when you get to that point. To see what
happens, place the text cursor at the place you want to stop (hovering the
mouse cursor over the place you want to stop isn’t enough) and click
Run to Cursor (the second button on the Debugger toolbar). The
debugger stops at the line where the cursor is resting. In this case, the
text cursor acts as a kind of breakpoint for the debugger.

After you debug your application for a while and locate problems you
want to fix, you may not want to run the rest of the application. When
this situation occurs, simply click Stop Debugger (the button that looks
like a box with an X in the middle). The debugger stops immediately.
You can make any required changes and restart the debugger as normal.

Code::Blocks provides access to a number of debugging windows. In
fact, you can see one of these windows previously in this chapter — the
Disassembly window (refer to Figure 2-5). You access these windows by
clicking the Debugging Windows button (the one that looks like a
window, to the right of the Stop Debugger button) or by choosing
Debug⇒  Debugging Windows. Later chapters in this minibook describe
these windows in detail. Here is a quick summary of the windows for
now:

Breakpoints: Presents all the breakpoints you’ve set in your
application. Double-clicking a breakpoint entry takes you to that
breakpoint in the editor. You can use this window also to remove one
or more breakpoints.
CPU Registers: Shows the contents of the hardware registers in the
processor. You won’t normally need to view these registers unless
you’re performing low-level programming tasks (such as writing a
device driver).
Call Stack: Displays the function calls used to get to the current
point in the code.



Disassembly: Lets you see the underlying assembly language code.
You won’t normally need to view this information unless you’re
performing low-level programming tasks.
Memory Dump: Displays the precise way that the application stores
data in memory, which may not look very much like the C++ view.
This window is useful because it helps you understand how memory
works and how your application uses memory. In some cases,
knowing how a variable stores memory can help you locate problems
with your code.
Running Threads: Shows a list of threads, other than the main
thread, associated with the current application. You use this window
for debugging multithreaded applications.
Watches: Displays a list of local variables and function parameters.
You can also add other variables to monitor as a watch. In addition,
you can create new statements, such as rabbits + antelopes, so
you can see the total of the two variables. The Watches window is
probably the most useful debugger window because it illustrates the
C++ view of your data and shows how the application code
manipulates that data.

The debugger also provides access to a number of information windows.
You access these windows by clicking the Various Info button (the one
with an i in italics far down on the left) or by choosing Debug⇒  
Information. Here is a summary of the information windows:

Current Stack Frame: Shows the current stack frame information.
C++ creates something called a stack frame when certain events
occur, such as calling a function. This stack frame contains the data
and data references for the current function. You won’t normally
need to view this information unless you’re performing low-level
programming tasks.
Loaded Libraries: Lists all the libraries loaded to run your
application. It’s important to know which libraries your application
uses when you deploy it on other machines. In many cases, you may



not even know that C++ requires certain libraries to run your
application, so this window is exceptionally useful.
Targets and Files: Provides a detailed view of how the loaded
libraries are used in your application. You won’t normally need to
view this information unless you’re performing low-level
programming tasks.
FPU Status: Displays the register information for the Floating-Point
Unit (FPU) in your processor. At one time, the FPU was a separate
chip, but now it appears as part of your main processor. The FPU is
exceptionally adept at performing real number (versus integer) math.
You won’t normally need to view this information unless you’re
performing low-level programming tasks.
Signal Handling: Shows how Code::Blocks handles signals between
the hardware and your application, such as an arithmetic exception
or a segmentation fault. You won’t normally need to view this
information unless you’re performing low-level programming tasks.

Debugging with Different Tools
You can use several tools for debugging your code. However, which
compiler you usually use dictates which debugging tools you can use.
For example, Microsoft Visual C++ has a really good debugger. But
getting it to debug an application compiled with Dev-C++, for example,
is difficult because different compilers use different forms of debugging
and symbol information. The type used by the various breeds of gcc
compilers is different from the type used by Microsoft Visual C++. Here
are some of the debuggers that are available:

Visual C++: This debugger works similarly to the Code::Blocks
debugger. It’s primarily for debugging applications that were built by
using Visual C++. However, if you are brave and need to debug
something for which you have no code or symbol information, its
support for assembly-code debugging is good.



gdb: This is the standard debugger that ships with MinGW and
Cygwin. It’s a command-line tool, but you can use the Insight
debugger with it so that you can use a graphical front end. This
makes life a lot easier. But if you insist on using the command-line
version, you can learn about it by typing gdb at the command
prompt and then typing help.
Dev-C++: Starting with Version 5, Dev-C++ has an integrated
debugger that works similarly to the Insight debugger. You may want
to give this a try. (If you’re using a version of Dev-C++ prior to 5.0,
you have to use the Insight debugger.)

Debugging a Code::Blocks
Application with Command-Line
Arguments

A command-line argument is something you type along with the
command for an application at the command prompt. For example, when
you type the Dir (directory listing command) at the command prompt,
you can include additional information such as *.DOC, which will list all
files with a .DOC extension. (If you use Dir *.DOC? instead, you also see
any files with a .DOCX extension.) The full command Dir *.DOC consists
of a command (Dir) and a command-line argument (*.DOC). The
addition of command-line arguments allows you to extend the
functionality of an application and make it do more. To test such an
application, you need to be able to specify command-line arguments as
part of the debugger environment.

Code::Blocks, like most other capable IDEs, provides the means for
specifying command-line arguments. The “Setting the command-line
parameters in Code::Blocks” sidebar in Book 1, Chapter 6 provides you
with the basics of setting command-line arguments. However, a number
of readers of previous editions of this book wanted more information.
With this in mind, I wrote a more detailed description of how command-



line arguments work as part of the post “Debugging a CodeBlocks
Application with Command Line Arguments” for a previous edition of
this book on my blog at
http://blog.johnmuellerbooks.com/2011/11/01/debugging-a-

codeblocks-application-with-command-line-arguments/. Please be
sure to check out this blog post if you want additional information about
precisely what is going on.
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Chapter 3

Stopping and Inspecting Your
Code

IN THIS CHAPTER
 Setting, enabling, and disabling breakpoints
 Temporarily setting or disabling a breakpoint
 Inspecting a variable
 Watching any or all local and global variables

Sometimes, code breaks. The word break has different meanings among
the people using it in the coding world. When programmers talk about
breaking the code, it may mean that the programmer made a mistake and
the code no longer works. It could also mean that a change in a library
causes the code to malfunction despite a lack of errors caused by the
programmer. But this chapter uses a different definition for break. When
you’re debugging an application, you can have the application run until
it gets to a certain line in the code. The debugger then stops at that line,
and you can look at the values of variables, inspect the code, or even
change the variables. When the application stops, that’s called breaking.
It stops on that particular line because you put a breakpoint on that line.

This chapter discusses setting and manipulating breakpoints in your code
(if nothing else in your code is broken). You also inspect and modify
various aspects of your code, such as variables, after your code stops at a
breakpoint. You also see how to use watches to keep track of certain
variables or expressions.



 The examples in this chapter rely on the debugger supplied with
the Code::Blocks IDE. If you use a different product, the debugger
will probably work about the same but not precisely the same. For
example, you can do everything shown here using Microsoft Visual
C++. The keystrokes and mouse clicks may be different, but the
features are present. Make sure to check the vendor documentation
for precise details on using your debugger.

 To work through the examples in this chapter, you must compile
with debug information turned on. (In Code::Blocks, you can
compile with debug information by choosing Debug in the Build
Target field of the Compiler toolbar. If you can’t see the Compiler
toolbar, choose View ⇒ Toolbars ⇒ Compiler to place a check mark
next to the Compiler entry.) When you develop software, you
should always have debug information on. That way, you’re always
ready to debug your code and fix things. Only when you’re ready to
release the product formally should you recompile it without debug
information. (You should still perform a full test of the software
again without debug information, just to make sure that it functions
correctly.)

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookIV\Chapter03
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Setting and Disabling Breakpoints



A breakpoint is a place in your code where you tell the debugger to stop.
The sections that follow discuss breakpoints. You use the Breakpoints
sample code, shown in Listing 3-1, for these sections. Make sure that
you compile it with debug information on.

LISTING 3-1: Using an Application for Breakpoints
and Inspections
#include <iostream> 

  

using namespace std; 

  

class BrokenMirror { 

private: 

  int NumberOfPieces; 

public: 

  int GetNumberOfPieces(); 

  void SetNumberOfPieces(int newamount); 

  BrokenMirror() : NumberOfPieces(100) {} 

}; 

  

int BrokenMirror::GetNumberOfPieces() { 

  return NumberOfPieces; 

} 

  

void BrokenMirror::SetNumberOfPieces(int newamount) { 

  newamount = newamount * 20; 

  NumberOfPieces = newamount; 

} 

  

int main() { 

  BrokenMirror mirror; 

  mirror.SetNumberOfPieces(10); 

  cout << mirror.GetNumberOfPieces() << endl; 

  return 0; 

}

Setting a breakpoint in Code::Blocks
Compile the application in Listing 3-1 (with debug information turned
on). Look at the left margin of the window, to the right of the line
numbers. Figure 3-1 shows a small octagon on line 14. When you view
the IDE, this octagon is red. The red octagon is a breakpoint. To set this
breakpoint in your own code, click in the area between the left margin



and the code (or right-click the line of code and choose Toggle
Breakpoint from the context menu), as shown in the figure on line 14. If
you haven’t done so, click the mouse in the left margin of the int
BrokenMirror::GetNumberOfPieces() line. You see a red octagon
appear in the left margin. You just placed a breakpoint on that line.

Click again in the left margin of the same line. The red octagon
disappears. When the octagon disappears, the breakpoint is gone.

Finally, click a third time, because for now you do want a breakpoint
there.

Run the application by clicking the Debug/Continue button (the icon
with the red, right-pointing arrow on it) on the Debugger toolbar. If you
don’t see the Debugger toolbar, choose View ⇒ Toolbars ⇒ Debugger to
place a check mark next to the Debugger entry. (Don’t click the Run
button, which is the green right-pointing triangle on the Compiler
toolbar, because choosing this option simply runs the application without
debugging it.) When you click Debug/Continue, the console window
may pop in front, so just click the Code::Blocks window to bring it back
to the front.



FIGURE 3-1: Code::Blocks displays any breakpoints you set using a red octagon.

The application runs until it gets to the breakpoint you chose for the int
BrokenMirror::GetNumberOfPieces() line, as shown in Figure 3-2.
Note that execution actually ends with the opening curly brace because
this is the beginning of execution for this function. The yellow, right-
pointing triangle tells you the current instruction that the Code::Blocks
debugger will execute. You can now click the Next Line button (the
button with two squares and an arrow pointing from the upper square to
the lower square) to move to the next line, or you can click
Debug/Continue to run the rest of the application.

Enabling and disabling breakpoints
You may have times when you have several breakpoints set and you
want to turn them off momentarily but don’t want to lose them because
you may want to turn them back on later. You can do this by disabling



the breakpoints. Disabling the breakpoint is faster than removing the
breakpoints and then going back and finding them again to turn them
back on. Use the following steps to disable a breakpoint:

1. Right-click the red octagon on the left side of the editor and
choose Edit Breakpoint from the context menu.
You see the Edit Breakpoint dialog box, as shown in Figure 3-3.

FIGURE 3-2: Debug mode tells Code::Blocks to stop execution when it reaches the
breakpoint.



FIGURE 3-3: Use the Edit Breakpoint dialog box to enable and disable breakpoints.

2. Clear the Enabled option and click OK.
Code::Blocks disables the breakpoint so that it no longer stops
application execution.

Many debuggers show a disabled breakpoint using a hollow red circle
(or sometimes an octagon). Code::Blocks turns the red octagon gray
instead. However, you’ll still want to see that disabling the breakpoint
actually does work. Set a new breakpoint after the line that reads return
NumberOfPieces; (on the curly brace). Click Debug/Continue and you’ll
see that the debugger bypasses the first breakpoint and stops at the
second, as shown in Figure 3-4.



FIGURE 3-4: Disabled breakpoints don’t stop application execution.

In some cases, you want to enable or disable a number of breakpoints.
Use the following steps to perform this task:

1. Choose Debug ⇒ Debugging Windows ⇒ Breakpoints.
You see the Breakpoints window, shown in Figure 3-5. The window
shows the kind of breakpoint (with a red or gray octagon to tell you
whether it’s enabled or disabled), the breakpoint location, the line in
the code file where the breakpoint appears, and the name of the
debugger being used.



FIGURE 3-5: Use the Breakpoints window to access a number of breakpoints at
one time.

2. Right-click the breakpoint entry and choose one of the
management options from the context menu.
The management options help you control one or more breakpoints.
You can perform the following tasks using the management options:

Open the breakpoint in the editor so that you can see where
it’s located.
Edit the breakpoint, which displays the Edit Breakpoint dialog
box, shown in Figure 3-3.
Remove the selected breakpoint.
Disable the selected breakpoint.
Add a bookmark so that you can find this location in the code
with greater ease. When you choose this option, you see a
right-pointing blue arrow between the line number and the
code. Use the Edit ⇒ Bookmarks menu options to work with
bookmarks.
Remove all the breakpoints you have set in the application.

Watching, Inspecting, and Changing
Variables



When you stop at a breakpoint in an application, you can do more than
just look at the code. You can have fun with it! You can look at the
current values of the variables, and you can change them.

The Breakpoints2 example, shown in Listing 3-2, is a sample
application that you can use to try these examples of inspecting,
changing, and watching variables. Please note that this application is
similar to Listing 3-1, earlier in this chapter, but you should see some
differences. Specifically, it adds a line to the SetNumberOfPieces()
method:

newamount = newamount * 20;

The example adds a new function called SpecialMath() and an i
variable to main() that is initialized to 10. The code then manipulates i
and passes it into the SetNumberOfPieces() function.

LISTING 3-2: Using an Application for Breakpoints
and Inspections
#include <iostream> 

  

using namespace std; 

  

class BrokenMirror { 

private: 

  int NumberOfPieces; 

public: 

  int GetNumberOfPieces(); 

  void SetNumberOfPieces(int newamount); 

  BrokenMirror() : NumberOfPieces(100) {} 

}; 

  

int BrokenMirror::GetNumberOfPieces() { 

  return NumberOfPieces; 

} 

  

void BrokenMirror::SetNumberOfPieces(int newamount) { 

  newamount = newamount * 20; 

  NumberOfPieces = newamount; 

} 

  

int SpecialMath(int x) 



{ 

    return x * 10 - 5; 

} 

  

int main() { 

  int i = 10; 

  BrokenMirror mirror; 

  

  i = i + SpecialMath(i); 

  mirror.SetNumberOfPieces(i); 

  cout << mirror.GetNumberOfPieces() << endl; 

  

  // Clear this comment if you want the application to 

  // stop to display the results. 

  // system("PAUSE"); 

  return 0; 

}

When you run this application by clicking Run, you should see an output
value of 2100.

Watching the variables
To watch the variables in your application, follow these steps:

1. Compile this application using a debug build (Build ⇒ Select
Target ⇒ Debug) rather than a release build.

2. Set a breakpoint at the int i = 10; line in main().

3. Click Debug/Continue.
4. When the debugger stops at the breakpoint, choose Debug ⇒ 

Debugging Windows ⇒ Watches.
You see the Watches window, as shown in Figure 3-6. Notice that the
Watches window automatically includes i and mirror. If you click
the + next to mirror, you can drill down to see NumberOfPieces.
Notice that the values in i and NumberOfPieces are random because
the code hasn’t assigned values to them yet. The values you see will
differ from those shown in Figure 3-6. This is the reason you never
want to use a variable until after you assign a value to it. In this case,
the variables are shown in red because C++ has just created them.



 Objects such as mirror contain not only variables but also
other objects. When an object contains a child object, the child
object will also have a plus sign next to it. To see the contents of this
child object, simply click the plus sign next to it. You can keep
drilling down until you reach the end of the object list.

FIGURE 3-6: The Watches window shows the value of variables and objects.

5. Click the Next Line button on the Debugger toolbar so that you
are one line beyond the following line:

int i = 10;

The application changes the value of i to 10, as shown in Figure 3-7.
The variable is still shown in red because its value has just changed.
However, notice that NumberOfPieces is now shown in black
because its value hasn’t changed since the last instruction.



FIGURE 3-7: Assigning a value to i changes its value in the Watches window.

6. Click Next Line on the Debugger toolbar.
The entry for i turns black to show that it has remained stable during
the execution of this command. However, NumberOfPieces is now
shown in red and has a value of 100. The use of red for changed
variables and black for unchanged variables makes it easy to
determine which variables have changed.

7. Click Debug/Continue.
The application ends.

8. Remove any breakpoints you’ve set in the example application.

Changing values
Sometimes you need to verify that the application works as intended by
simulating changes that might occur in the code. In many cases, this
means changing a value from its default to the value you want to test.
Fortunately, the Watches window provides the means to perform this
task. Follow these steps to see how you can change variable values:

1. Set a breakpoint at the i = i + SpecialMath(i); line in main().

2. Click Debug/Continue.
3. When the debugger stops at the breakpoint, choose Debug ⇒ 

Debugging Windows ⇒ Watches.
You see the Watches window (refer to Figures 3-6 and 3-7). The
values of i and NumberOfPieces appear as before. However, you
can’t change these values; you can only view them.

4. Type i in the first column of the last row of the Watches window
and press Enter.
You see the current value of i, which is 10. Notice also that you see a
variable type, int, in the third column, as shown in Figure 3-8. This
entry is also in red because you’ve just added it to the Watches
window.



FIGURE 3-8: Adding a watch to the window presents additional information.

5. Select the value, 10, in the second column of the Watches window
for the i you added, type 100, and click the next line of the
Watches window.
Code::Blocks changes the value of i to 100. The i variable entry,
which used to be black, has turned red because you changed the
value. Notice that the copy of i in the Locals area has also changed
in both value and color.

6. Click Next Line three times so that the instruction pointer is on
the line that reads

return 0;

Notice that the output of the application (as well as the value of
NumberOfPieces in the Watches window) has changed to 21900.
Normally the output is 2100. The difference occurs because the value
of i was changed.

7. Click Debug/Continue.
The application ends.
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Chapter 4

Traveling About the Stack
IN THIS CHAPTER

 Moving about the stack
 How local variables are stored
 Viewing threads and memory
 Tracing through assembly code

Debuggers can be powerful things. They can leap tall computer
applications in a single bound and see through them to find all their
flaws. The more you know about debuggers, the more you can put them
to use. In this chapter, you see how to move about the stack, which
provides you with a record of calls within your application, among other
useful information.

This chapter also helps you view data in various ways. For example, in
the previous chapter you got a quick view of local variables in the
“Watching the variables” section. This chapter enhances your
understanding of local variables. In addition, you see how threads and
memory work, which offers another perspective of data and how code
interacts with it. Finally, you get down to the nuts and bolts with
assembly language, which is sort of the way that the computer sees your
application, except with a human-readable twist.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookIV\Chapter04
folder of the downloadable source. See the Introduction for details
on how to find these source files.



Stacking Your Data
A stack is a common data structure in the computer world. When the
operating system runs an application, it gives that application a stack,
which is simply a big chunk of memory used to store data. But the data
is stored just like a stack of cards (or a stack of pancakes if you prefer):
With a stack of real cards, you can put a card on the top, and then
another, and do that six times over; then you can take a card off and take
another card off. You can put cards on the top and take them off the top.
And if you follow these rules, you can’t insert them into the middle or
bottom of the stack. You can only look at what’s on the top. A stack data
structure works the same way: You can store data in it by pushing the
data onto the stack, and you can take data off by popping it off the stack.
And yes, because the stack is just a bunch of computer memory,
sneaking around and accessing memory in the middle of the stack is
possible. But under normal circumstances, you don’t do that: You put
data on and take data off.

 What’s interesting about the stack is that it works closely with
the main CPU in your system. The CPU has its own little storage
bin right on the chip itself. (It isn’t in the system memory, or RAM;
it’s inside the CPU itself.) This storage bin holds what are called
registers. One such register is the stack pointer, called the SP when
working with 16-bits, ESP when working with 32-bits, or RSP
when working with 64-bits. The names of the registers vary by
register size. When the folks at Intel replaced the earlier chips with
newer, more powerful chips, they made the registers bigger. You
can see a listing of register names at
https://docs.microsoft.com/en-us/windows-

hardware/drivers/debugger/x64-architecture. The tutorial at
https://www.tutorialspoint.com/assembly_programming/asse

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://www.tutorialspoint.com/assembly_programming/assembly_registers.htm


mbly_registers.htm provides additional information as
well.@@@

The stack is useful in many situations and is used extensively behind the
scenes in the applications you write. The compiler generates code that
uses the stack to store:

Local variables
Function parameters
Function calling order

It’s all stacked onto the stack and stuck in place, ready to be unstacked.

Moving about the stack
The Code::Blocks debugger, like most debuggers, lets you look at the
stack. But really, you’re not looking directly at the hardware stack.
When a debugger shows you the application stack, it’s showing you the
list of function calls that led up to the application’s current position in
the application code. However, the application stack is a human-readable
form of the hardware stack, and the debugger uses the hardware stack to
get that information. So that’s why programmers always call the list of
function calls the stack, even though you’re not actually looking at the
hardware stack.

Figure 4-1 shows an example of the Call Stack window in Code::Blocks.
To see the Call Stack window, simply choose Debug⇒  Debugging
Windows⇒  Call Stack. You can see the Call Stack window in front of
the main Code::Blocks window. No information appears in the Call
Stack window until you start running an application.

https://www.tutorialspoint.com/assembly_programming/assembly_registers.htm


FIGURE 4-1: The Call Stack window shows the function calls that led up to the current
position.

You can try viewing the stack yourself. Look at the NestedCalls
example, shown in Listing 4-1. This listing shows a simple application
that makes several nested function calls.

LISTING 4-1: Making Nested Function Calls
#include <iostream> 

  

using namespace std; 

  

int SeatsPerCar() { 

    return 4; 

} 

  

int CountCarSeats() { 

    return 10 * SeatsPerCar(); 

} 

  

int CountStuff() { 

    return CountCarSeats() + 25; 

} 

  

int main() { 

    cout << CountStuff() << endl; 

    // Remove the following comment to see the code 

    // execute in the debugger. 

    //system("PAUSE"); 

    return 0; 

}

To try the Call Stack window, follow these steps:



1. Compile this application (set the Build Target field to Debug).
2. Set a breakpoint at the cout << CountStuff() << endl; line.

3. Run the application in the Code::Blocks debugger by pressing
F8.

4. Step into the CountStuff() function, and then into the
CountCarSeatsfunction(), and then into the SeatsPerCar()
function.
(Or, just put a breakpoint in the SeatsPerCar() function and run the
application until it stops at the breakpoint.)

5. Choose Debug⇒  Debugging Windows⇒  Call Stack.
A window like the one in Figure 4-1 appears. Note the order of
function calls in the Call Stack window:

SeatsPerCall() 

CountCarSeats() 

CountStuff() 

main()

This information in the Call Stack window means that your
application started with main(), which called CountStuff(). That
function then called CountCarSeats(), which in turn called
SeatsPerCall(). And that’s where you are now. Code::Blocks
places a red highlight on the current stack location — the block of
code that the application is currently executing.

 This window is handy if you want to know what path the
application took to get to a particular routine. For example, you
might see a routine that is called from many places in your
application and you’re not sure which part is calling the routine
when you perform a certain task. To find out which part calls the
routine, set a breakpoint in the function. When you run the
application and the debugger stops at that line, the Call Stack
window shows you the path the computer took to get there,



including the name of the function that called the function in
question.

In the Call Stack window, you can double-click any function name, and
the Debugger moves the cursor to the function’s body in the source code.
This feature makes it easy for you to locate any function within the call
stack and see why the code followed the path it did. Double-clicking
only moves your view to the line on the call stack; the program is still
stopped on the line at the top of the stack. When you switch to a new
location in the call stack, the red bar moves to that location in the Call
Stack window so that you can always keep track of where you are in the
call stack.

 Stack features are common to almost all debuggers. It’s not
possible to say all, because some truly bad debuggers that don’t
have stack features are out there. But the good debuggers, including
those built into Code::Blocks and Microsoft Visual C++, include
features for moving about the stack.

Storing local variables
As you get heavily into debugging, it always helps to fully understand
what goes on under the hood of your application. At this point, the text
speaks on two levels:

Your C++ code
The resulting assembly code that the compiler generates based on
your C++ code. (Assembly is the human-readable form of machine
code that the processor on your machine understands.)

This chapter clearly states which level you’re reading about. Suppose
that you write a function in C++ and you call the function in another part
of your application. When the compiler generates the assembly code for
the function, it inserts some special code at the beginning and end of the
function. At the start of the function, this special code allocates space for



the local variables. At the end of the function, the special code de-
allocates the space. This space for the variables is called the stack frame
for the function.

This space for the local variables lives on the stack. The storage process
works as follows: When you call your function, the computer pushes the
return address of the caller onto the stack. After the computer is running
inside the function, the special code that the compiler inserted saves
some more of the stack space — just enough for the variables. This extra
space becomes the local storage for the variables, and just before the
function returns, the special code removes this local space. Thus, the top
of the stack is now the return address. The return then functions
correctly.

 This process with the stack frame takes place with the help of
the internal registers in the CPU. Before a function call, the
assembly code pushes the arguments to the function onto the stack.
Then it calls the function by using the CPU’s built-in call
statement. (That’s an assembly-code statement.) This call
statement pushes the return address onto the stack and then moves
the instruction pointer to the function address. After the execution
is inside the function, the stack contains the function arguments and
then the return address. The special function start-up code (called a
prolog) saves the beginning of the stack frame address in one of the
CPU registers, called the Base Pointer (BP) register. (As with SP,
the name of BP can be EBP or RBP based on the register size.)

The prolog saves the value on the stack. The prolog code first pushes the
BP value onto the stack. Then the prolog code takes the current stack
pointer (which points to the top of the stack in memory) and saves it
back in the BP register for later use. Then the prolog code adjusts the
stack pointer to make room for the local variable storage. The code
inside the function then accesses the local variables as offsets above the



position of BP on the stack and the arguments as offsets below the
position of BP on the stack.

Finally, at the end of the function, the special code (now called an
epilog) undoes the work: The epilog copies the value in BP back into
SP; this de-allocates the local variable storage. Then it pops the top of
the stack off and restores this value back into BP. Now the top of the
stack contains the function return address, which is back to the way it
was when the function began. The next assembly statement is a return,
which pops the top of the stack off and goes back to the address that the
epilog code popped off the stack. Just think: Every single time a function
call takes place in your computer, this process takes place.

 Inside the computer, the stack actually runs upside down. When
you push something onto the stack, the stack pointer goes down in
memory — it gets decremented. When you pop something off the
stack, the stack pointer gets incremented. Therefore, in the stack
frame, the local variables are actually below BP in memory, and
you access their addresses by subtracting from the value stored in
the BP register. The function arguments, in turn, are above the BP
in memory, and you get their addresses by adding to the value
stored in BP.

 The one topic not discussed in the preceding paragraph is the
return value of a function. In C++, the standard way to return a
value from a function is for the function’s assembly code to move
the value into the Accumulator, or AX, register (whose name also
varies by register size). The calling code can inspect the AX
register after the function is finished. However, if you are returning
something complex, such as a class instance, things get a bit more
complex. Suppose that you have a function that returns an object,



but not as a pointer, as in the function header MyClass
MyFunction();. Different compilers handle this differently, but
when the gcc compiler that’s a part of Code::Blocks, Dev-C++,
MinGW, or Cygwin encounters something such as MyClass inst =
MyFunction();, it takes the address of inst and puts it in AX.
Then, in the function, it allocates space for a local variable, and in
the return line it copies the object in the local variable into the
object whose address is in AX. So when you return a non-pointer
object, you are, in a sense, passing your object into the function as a
pointer.

Debugging with Advanced Features
Most debuggers, including Code::Blocks, have some advanced features
that are handy when you’re tracing through your application. These
features include the capability to look at threads (individual sequences
of programmed instructions) and assembly code.

Viewing threads
If you are writing an application that uses multiple threads and you stop
at a breakpoint, you can get a list of all current threads by using the
Running Threads window. To open the Running Threads window, in the
main Code::Blocks window choose Debug⇒  Debugging Windows⇒  
Running Threads. A window showing the currently running threads
opens. Each line looks something like this:

2 thread 2340.0x6cc  test() at main.cpp:7

The first number indicates which thread this is in the application; for
example, this is the second thread. The two numbers after the word
thread are the process ID and the thread ID in hexadecimal, separated
by a dot. Then you see the name of the function where the thread is
stopped, along with the line number where the thread is stopped.

Tracing through assembly code



If you feel the urge, you can view the actual assembly code. In some
cases, you use the assembly code view to find particularly difficult bugs,
or you might want to determine which of two programming techniques
produces less code. In fact, you may just be curious as to how the
compiler converts your code. To see the assembly code, choose Debug⇒  
Debugging Windows⇒  Disassembly and you see the Disassembly
window. Check the Mixed Mode option when you want see a mix of
C++ and assembly code, as shown in Figure 4-2. This approach makes it
a lot easier to understand how Code::Blocks turns your C++ code into
assembly language. Notice that the top of the window tells you the name
of the function you’re viewing and which file contains the function, and
the C++ code includes line numbers so that you know precisely where
you are in the source code.

FIGURE 4-2: The Disassembly window shows the assembly code that results from the C++
code you write.

 Some readers have noted that Code::Blocks will sometimes
freeze when displaying the Disassembly window. The IDE will
report that the disassembly is being loaded, but the process never
completes. In this case, close the sample code and restart the IDE.
In most cases, the disassembly will load on the second try.



The window shown in Figure 4-2 is the disassembly of the
SeatsPerCar() function shown previously in Listing 4-1. Here’s the
function again so that you can compare it to Figure 4-2:

int SeatsPerCar() { 

    return 4; 

}

The following lines create the stack frame:
0x401350   push   %ebp 

0x401351   mov    %esp,%ebp

 You know that this is a 32-bit application because the
disassembly uses the 32-bit register names throughout. If this were
a 64-bit application, the register names would reflect the proper
size, such as %rbp and %rsp.

After the code creates a stack frame, it moves a value of 4 (the return
4; part of the code) into EAX, as shown here:

0x401353   mov    $0x4,%eax

The code then pops EBP and returns to the caller (the CountCarSeats()
function) using this code:

0x401358   pop    %ebp 

0x401359   ret

Now, if you move into the CountCarSeats() function, you see assembly
like that shown in Figure 4-3.



FIGURE 4-3: This Disassembly window shows the CountCarSeats() function code.

As before, the assembly code begins by creating a stack frame. It then
issues a call to the SeatsPerCar() function. When the function returns,
the assembly performs the multiplication part of the task. Finally, the
code performs the usual task of placing the return value in EAX,
popping EBP, and returning to the caller. Notice that what appears to be
simple multiplication to you may not be as simple in assembly language.
Say that you change the code to read

int CountCarSeats() { 

    return 4 * SeatsPerCar(); 

}

The math is simpler now because you’re using 4, which is easily
converted into a binary value. Figure 4-4 shows the assembly that results
from this simple change.



FIGURE 4-4: Small C++ code changes can result in large assembly-code changes.

Now all the code does is perform a shift-left (SHL) instruction. Shifting
the value in EAX left by 2 is the same as multiplying it by 4. The
assembler uses the SHL instruction because shifting takes far fewer
clock cycles than multiplication, which makes the code run faster. The
result is the same, even if the assembly code doesn’t quite match your
C++ code.

If you want to see the values in the registers so that you can more easily
follow the assembly code, choose Debug⇒  Debugging Windows⇒  CPU
Registers. You see the CPU Registers window, shown in Figure 4-5. This
window reflects the state of the registers at the current stopping point in
the code. Consequently, you can’t see each step of the assembly code
shown in the Disassembly window reflected in these registers unless you
step through the code, one instruction at a time.



FIGURE 4-5: Viewing the CPU registers can give you insight into how code interacts with
the processor.
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Chapter 1

Working with Arrays, Pointers,
and References

IN THIS CHAPTER
 Working with arrays and multidimensional arrays
 Understanding the connection between arrays and pointers
 Dealing with pointers in all their forms
 Using reference variables

When the C programming language, predecessor to C++, came out in the
early 1970s, it was a breakthrough because it was small. C had only a
few keywords. Tasks like printing to the console were handled not by
built-in keywords but by functions. Technically, C++ still has few
keywords, so it’s still small. So what makes C++ big?

Its libraries are huge.
It’s extremely sophisticated, resulting in millions of things you can
do with the language.

In this chapter, you encounter the full rundown of topics that lay the
foundation for C++: arrays, pointers, and references. In C++, these items
come up again and again.

This chapter assumes that you have a basic understanding of C++ — that
you understand the material in Books 1 and 2. You know the basics of
pointers and arrays (and maybe just a teeny bit about references) and
you’re ready to grasp them thoroughly. When you finish this chapter,
you’ll have expanded on your knowledge enough to perform some
intermediate and advanced tasks with relative ease.



 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookV\Chapter01
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Building Up Arrays
As you work with C++ arrays, it seems like you can do a million things
with them. This section provides the complete details on arrays. The
more you know about arrays, the less likely you are to use them
incorrectly, which would result in a bug. (The following sections don’t
tell you about the std::array class described at
https://en.cppreference.com/w/cpp/container/array. Instead, they
discuss basic C++ arrays. Book 3, Chapter 1 provides a simple
std::array example in the “Creating a declarative C++ example”
section, and you get a more detailed look in the “Working with
std::array” section in Chapter 6 of this minibook.)

 Know how to get the most out of arrays when necessary — not
just because they’re there. Avoid using arrays in the most complex
way imaginable.

Declaring arrays
The usual way of declaring an array is to line up the type name, followed
by a variable name, followed by a size in brackets, as in this line of
code:

int Numbers[10];

https://en.cppreference.com/w/cpp/container/array


 This code declares an array of 10 integers. The first element gets
index 0, and the final element gets index 9. Always remember that
in C++, arrays start at 0, and the highest index is one less than the
size. (Remember, index refers to the position within the array, and
size refers to the number of elements in the array.) To declare an
array of indeterminate size, leave out the size value, like this:

int Numbers[];

In certain situations, you can declare an array without putting a number
in the brackets. For example, you can initialize an array without
specifying the number of elements:

int MyNumbers[] = {1,2,3,4,5,6,7,8,9,10};

The compiler is smart enough to count how many elements you put
inside the braces, and then the compiler makes that count the array size.

Specifying the array size helps decrease your chances of having bugs.
Plus, it has the added benefit that, in the actual declaration, if the number
in brackets does not match the number of elements inside braces, the
compiler issues an error. The following

int MyNumbers[5] = {1,2,3,4,5,6,7,8,9,10};

yields this compiler error:
error: too many initializers for 'int [5]'

But if the number in brackets is greater than the number of elements, as
in the following code, you won’t get an error. Instead, the remaining
array elements aren’t defined, so you can’t access them. So be careful!

int MyNumbers[15] = {1,2,3,4,5,6,7,8,9,10};

You also can skip specifying the array size when you pass an array into a
function, like this:

int AddUp(int Numbers[], int Count) { 

    int loop; 

    int sum = 0; 



    for (loop = 0; loop < Count; loop++) { 

        sum += Numbers[loop]; 

    } 

    return sum; 

}

This technique is particularly powerful because the AddUp() function can
work for any size array. You can call the function like this:

cout << AddUp(MyNumbers, 10) << endl;

But this way to do it is kind of annoying because you have to specify the
size each time you call in to the function. However, you can get around
this problem. Look at this line of code:

cout << AddUp(MyNumbers, sizeof(MyNumbers) / 4) << endl;

With the array, the sizeof operator tells you how many bytes it uses.
But the size of the array is usually the number of elements, not the
number of bytes. So you divide the result of sizeof by 4 (the size of
each int element).

But now you have that magic number, 4, sitting there. (By magic
number, we mean a seemingly arbitrary number that’s stuffed
somewhere into your code.) So a slightly better approach would be to
enter this line:

cout << AddUp(MyNumbers, sizeof(MyNumbers) / sizeof(int)) 

  << endl;

Now this line of code works, and here’s why: The sizeof the array
divided by the sizeof each element in the array gives the number of
elements in the array. (You also see this technique demonstrated in the
“Declaring and accessing an array” section of Book 2, Chapter 2.)

Arrays and pointers
The name of the array is a pointer to the array itself. The array is a
sequence of variables stored in memory. The array name points to the
first item. The following sections discuss arrays and pointers.

Seeing arrays as arrays and pointers



An interesting question about arrays and pointers is whether it’s possible
to use a function header, such as the following line, and rely on sizeof
to determine how many elements are in the array. If so, this function
wouldn’t need to have the caller specify the size of the array.

int AddUp(int Numbers[]) {

Consider this function found in the Array01 example and a main() that
calls it:

#include <iostream> 

  

using namespace std; 

  

void ProcessArray(int Numbers[]) { 

  cout << "Inside function: Size in bytes is " 

    << sizeof(Numbers) << endl; 

} 

  

int main(int argc, char *argv[]) { 

  int MyNumbers[] = {1,2,3,4,5,6,7,8,9,10}; 

  cout << "Outside function: Size in bytes is "; 

  cout << sizeof(MyNumbers) << endl; 

  ProcessArray(MyNumbers); 

  return 0; 

}

When you run this application, here’s what you see:
Outside function: Size in bytes is 40 

Inside function: Size in bytes is 4

Outside the function, the code knows that the size of the array is 40
bytes. However, inside the function the size reported is 4 bytes. The
reason is that even though it appears that you’re passing an array, you’re
really passing a pointer to an array. The size of the pointer is just 4, and
so that’s what the final cout line prints.

Understanding external declarations
Declaring arrays has a slight idiosyncrasy. When you declare an array by
giving a definite number of elements, such as

int MyNumbers[5];



the compiler knows that you have an array, and the sizeof operator
gives you the size of the entire array. The array name, then, is both a
pointer and an array! But if you declare a function header without an
array size, such as

void ProcessArray(int Numbers[]) {

the compiler treats this as simply a pointer and nothing more. This last
line is, in fact, equivalent to the following line:

void ProcessArray(int *Numbers) {

Thus, inside the functions that either line declares, the following two
lines of code are equivalent:

Numbers[3] = 10; 

*(Numbers + 3) = 10;

This equivalence means that if you use an extern declaration on an
array, such as

extern int MyNumbers[];

and then take the size of this array, the compiler will get confused.
Here’s an example: If you have two files, numbers.cpp and main.cpp,
where numbers.cpp declares an array and main.cpp externally declares
it (as shown in the Array02 example), you will get a compiler error if
you call sizeof:

#include <iostream> 

  

using namespace std; 

  

extern int MyNumbers[]; 

  

int main(int argc, char *argv[]) { 

  cout << sizeof(MyNumbers) << endl; 

  return 0; 

}

In Code::Blocks, the gcc compiler gives this error:
error: invalid application of 'sizeof' to incomplete type 'int []'



The solution is to put the size of the array inside brackets, such as
extern int MyNumbers[10];. Just make sure that the size is the same as
in the other source code file! You can fake out the compiler by changing
the number, and you won’t get an error. But that’s bad programming
style and just asking for errors.

 Although an array is simply a sequence of variables all adjacent
to each other in memory, the name of an array is really just a
pointer to the first element in the array. You can use the name as a
pointer. However, do that only when you really need to work with a
pointer. After all, you really have no reason to write code that is
cryptic, such as *(Numbers + 3) = 10;.

The converse is also true. Look at this function:
void ProcessArray(int *Numbers) { 

    cout << Numbers[1] << endl; 

}

This function takes a pointer as a parameter, yet you access it as an array.
Again, don’t write code like this; instead, you should try to understand
why code like this works. That way, you gain a deeper knowledge of
arrays and how they live inside the computer, and this knowledge, in
turn, can help you write code that works properly.

Differentiating between pointer types
Even though this chapter tells you that the array name is just a pointer,
the name of an array of integers isn’t the exact same thing as a pointer to
an integer. Check out these lines of code (found in the Array03
example):

#include <iostream> 

  

using namespace std; 

  

int main() { 

  int LotsONumbers[50]; 

  int x; 



  LotsONumbers = &x; 

}

The code tries to point the LotsONumbers pointer to something different:
something declared as an integer. The compiler doesn’t let you do this;
you get an error. That wouldn’t be the case if LotsONumbers were
declared as int *LotsONumbers; then this code would work. But as
written, this code gives you a compiler error like this one:

error: incompatible types in assignment of 'int*' to 'int [50]'

This error implies the compiler does see a definite distinction between
the two types, int* and int[50]. Nevertheless, the array name is indeed
a pointer, and you can use it as one; you just can’t do everything with it
that you can with a normal pointer, such as reassign it. These tips will
help you keep your arrays bug-free:

Keep your code consistent. If you declare, for example, a pointer to
an integer, do not treat it as an array.
Keep your code clear and understandable. If you pass pointers, it’s
okay to take the address of the first element, as in &(MyNumbers[0])
if this makes the code clearer — though it’s equivalent to just
MyNumbers.

When you declare an array, always try to put a number inside the
brackets, unless you are writing a function that takes an array.
When you use the extern keyword to declare an array, also put the
array size inside brackets. But be consistent! Don’t use one number
one time and a different number another time. The easiest way to be
consistent is to use a constant, such as const int ArraySize = 10;
in a common header file and then use that in your array declaration:
int MyArray[ArraySize];.

Using multidimensional arrays
Arrays do not have to be just one-dimensional. Dimensions make it
possible to model data more realistically. For example, a three-



dimensional array would allow you to better model a specific place in 3-
D space. The following sections discuss using multidimensional arrays.

Declaring a multidimensional array
You can declare a multidimensional array using a technique similar to a
single-dimensional array, as shown in the Array04 example in Listing 1-
1. The difference is that you must declare each dimension separately.

LISTING 1-1: Using a Multidimensional Array
#include <iostream> 

  

using namespace std; 

  

int MemorizeThis[10][20]; 

  

int main() { 

  for (int x = 0; x < 10; x++) { 

    for (int y = 0; y < 20; y++ ) { 

        MemorizeThis[x][y] = x * y; 

    } 

  } 

  

  cout << MemorizeThis[9][13] << endl; 

  cout << sizeof(MemorizeThis) / sizeof(int) << endl; 

  return 0; 

}

When you run this, MemorizeThis gets filled with the multiplication
tables. Here’s the output for the application, which is the contents of
MemorizeThis[9][13], and then the size of the entire two-dimensional
array:

117 

200

And indeed, 9 times 13 is 117. The size of the array is 200 elements.
Because each element, being an integer, is 4 bytes, the size of the array
in bytes is 800.



 You can have many, many dimensions, but be careful. Every
time you add a dimension, the size multiplies by the size of that
dimension. Thus an array declared like the following line has
48,600 elements, for a total of 194,400 bytes:

int BigStuff[4][3][5][3][5][6][9];

And the following array has 4,838,400 elements, for a total of
19,353,600 bytes. That’s about 19 megabytes!

int ReallyBigStuff[8][6][10][6][5][7][12][4];

 If you really have this kind of a data structure, consider
redesigning it. Any data stored like this would be downright
confusing. And fortunately, the compiler will stop you from going
totally overboard. Just for fun, try this giant monster:

int GiantMonster[18][16][10][16][15][17][12][14];

You’ll get an error of:
error: size of array 'GiantMonster' is too large

Considering data type
The data type of your array also makes a difference. Here are some byte
values for arrays of the same size, but using different types:

char CharArray[20][20];     // 400 bytes 

short ShortArray[20][20];   // 800 bytes 

long LongArray[20][20];     // 1,600 bytes 

float FloatArray[20][20];   // 1,600 bytes 

double DoubleArray[20][20]; // 3,200 bytes

Initializing multidimensional arrays
Just as you can initialize a single-dimensional array by using braces and
separating the elements by commas, you can initialize a



multidimensional array with braces and commas and all that jazz, too.
But to do this, you combine arrays inside arrays, as in this code:

int Numbers[5][6] = { 

    {1,2,3,4,5,6}, 

    {7,8,9,10,12}, 

    {13,14,15,16,17,18}, 

    {19,20,21,22,23,24}, 

    {25,26,27,28,29,30} 

};

The hard part is remembering whether you put in five arrays containing
six subarrays or six arrays containing five subarrays. Think of it like
this: Each time you add another dimension, it goes inside the previous
dimension. That is, you can write a single-dimensional array like this:

int MoreNumbers[5] = { 

    100, 

    200, 

    300, 

    400, 

    500, 

};

Then, if you add a dimension to this array, each number in the
initialization is replaced by an array initializer of the form
{1,2,3,4,5,6}. Then you end up with a properly formatted
multidimensional array.

Passing multidimensional arrays
If you have to pass a multidimensional array to a function, things can get
just a bit hairy. That’s because you don’t have as much freedom in
leaving off the array sizes as you do with single-dimensional arrays.
Suppose you have this function:

int AddAll(int MyGrid[5][6]) { 

  int x,y; 

  int sum = 0; 

  for (x = 0; x < 5; x++) { 

    for (y = 0; y < 6; y++) { 

      sum += MyGrid[x][y]; 

    } 

  } 



  return sum; 

}

So far, the function header is fine because it explicitly states the size of
each dimension. But you may want to do this:

int AddAll(int MyGrid[][]) {

or maybe pass the sizes as well:
int AddAll(int MyGrid[][], int rows, int columns) {

But unfortunately, the compiler displays this error for both lines:
declaration of 'MyGrid' as multidimensional array 

must have bounds for all dimensions except the first

The compiler is telling you that you must explicitly list all the
dimensions, but it’s okay if you leave the first one blank, as with one-
dimensional arrays.

So this crazy code will compile:
int AddAll(int MyGrid[][6]) {

The reason is that the compiler treats multidimensional arrays in a
special way. A multidimensional array is not really a two-dimensional
array, for example; rather, it’s an array of an array. Thus, deep down
inside C++, the compiler treats the statement MyGrid[5][6] as if it were
MyGrid[5] where each item in the array is itself an array of size 6. And
you’re free not to specify the size of a one-dimensional array. Well, the
first brackets represent the one-dimensional portion of the array. So you
can leave that space blank, as you can with other one-dimensional
arrays. But then, after that, you have to give the subarrays bounds, a
specific number of entries.

 When using multidimensional arrays, it’s often easier to think of
them as an array of arrays. Either of the following function headers,
for example, is confusing:

int AddAll(int MyGrid[][6]) { 

int AddAll(int MyGrid[][6], int count) {



Here’s a way around this problem: Use a typedef, which is cleaner:

typedef int GridRow[6]; 

int AddAll(GridRow MyGrid[], int Size) { 

  int x,y; 

  int sum = 0; 

  for (x = 0; x < Size; x++) { 

    for (y = 0; y < 6; y++) { 

      sum += MyGrid[x][y]; 

    } 

  } 

  return sum; 

}

The typedef line defines a new type called GridRow. This type is an
array of six integers. Then, in the function, you’re passing an array of
GridRows.

Using this typedef is the same as simply using two brackets, except it
emphasizes that you’re passing an array of an array — that is, an array in
which each member is itself an array of type GridRow.

Arrays and command-line parameters
In a typical C++ application, the main() function receives an array and a
count as command-line parameters — parameters provided as part of the
command to execute that application at the command line. However, to
beginning programmers, the parameters can look intimidating. But
they’re not: Think of the two parameters as an array of strings and a size
of the array. However, each string in this array of strings is actually a
character array. In the old days of C, and earlier breeds of C++, no
string class was available. Thus strings were always character arrays,
usually denoted as char *MyString. (Remember, an array and a pointer
can be used interchangeably for the most part). Thus you could take this
thing and turn it into an array — either by throwing brackets at the end,
as in char *MyString[], or by making use of the fact that an array is a
pointer and adding a second pointer symbol, as in char **MyString.
The following code from the CommandLineParams example shows how
you can get the command-line parameters:



#include <iostream> 

  

using namespace std; 

  

int main(int argc, char *argv[]) { 

  int loop; 

  for (loop = 0; loop < argc; loop++) { 

    cout << argv[loop] << endl; 

  } 

  return 0; 

}

Before you build your application, add some command-line arguments
to it by choosing Project ⇒ Set Program’s Arguments to display the
Select Target dialog box, shown in Figure 1-1. Type these arguments
(one on each line) in the Program Arguments field and then click OK.

FIGURE 1-1: Use the Select Target dialog box to add program arguments.



You see the following output when you run the application. (Note that
the application name comes in as the first parameter and the quoted
items come in as a single parameter.)

C:\CPP_AIO4\BookV\Chapter01\CommandLineParams\bin\Debug\CommandLineParams.exe 

abc 

def 

abc 123

The first argument is always the name of the executable. The executable
name can be accompanied by the .exe extension, the executable path,
and the drive on which the executable resides. What you see depends on
your IDE and compiler.

Allocating an array on the heap
Arrays are useful, but it would be a bummer if the only way you could
use them were as stack variables. This section shows an exception to not
treating arrays as pointers by telling how you can allocate an array on
the heap by using the new keyword. (If you can’t quite remember the
difference between the stack and the heap, check out the “Heaping and
Stacking the Variables” section in Book 1, Chapter 8.) But first you need
to know about a couple of little tricks to make it work.

You can easily declare an array on the heap by using new int[50], for
example. But think about what this is doing: It declares 50 integers on
the heap, and the new word returns a pointer to the allocated array. But,
unfortunately, the makers of C++ didn’t see it that way. For some reason,
they based the array pointer type on the first element of the array (which
is, of course, the same as all the elements in the array). Thus the call:

new int[50]

returns a pointer of type int *, not something that explicitly points to
an array, just as this call does:

new int;

If you want to save the results of new int [50] in a variable, you have
to have a variable of type int *, as in the following:

int *MyArray = new int[50];



In this case, an array name is a pointer and vice versa. So now that you
have a pointer to an integer, you can treat it like an array:

MyArray[0] = 25;

Deleting an array from the heap
When you finish using the array, you can call delete. But you can’t just
call delete MyArray;. The reason is that the compiler knows only that
MyArray is a pointer to an integer; it doesn’t know that it’s an array!
Thus delete MyArray will only delete the first item in the array, leaving
the rest of the elements sitting around on the heap, wondering when their
time will come. So the makers of C++ gave us a special form of delete
to handle this situation. It looks like this:

delete[] MyArray;

If you’re really curious about the need for delete[] and delete,
consider that there’s a distinction between allocating an array and
allocating a single element on the stack. Look closely at these two lines:

int *MyArray = new int[50]; 

int *somenumber = new int;

The first allocates an array of 50 integers, while the second allocates a
single array. But look at the types of the pointer variables: They’re both
the same! They’re both pointers; each one points to an integer. And so
the statement

delete something;

is ambiguous if something is a pointer to an integer: Is it an array, or is it
a single number? The designers of C++ knew this was a problem, so
they unambiguated it. They declared and proclaimed that delete shall
delete only a single member. Then they invented a little extra that must
have given the compiler writers a headache: They said that if you want
to delete an array instead, just throw on an opening and closing bracket
after the word delete. And all will be good.

Storing arrays of pointers and arrays of arrays



Because of the similarities between arrays and pointers, you are likely to
encounter some strange notation. For example, in main() itself, you
have seen both of these at different times:

char **argc 

char *argc[]

If you work with arrays of arrays and arrays of pointers, the best bet is to
make sure that you completely understand what these kinds of
statements mean. Remember that although you can treat an array name
as a pointer, you’re in for some technical differences. The following
lines of code show these differences. First, think about what happens if
you initialize a two-dimensional array of characters like this:

char NameArray[][6] = { 

  {'T', 'o', 'm', '\0', '\0', '\0'}, 

  {'S', 'u', 'z', 'y' , '\0', '\0'}, 

  {'H', 'a', 'r', 'r' , 'y', '\0'} 

};

This is an array of an array. Each inner array is an array of six
characters. The outer array stores the three inner arrays. (The individual
content of an array is sometimes called a member — the inner array has
six members and the outer array has three members.) Inside memory, the
18 characters are stored in one consecutive row, starting with T, then o,
and ending with m and finally three copies of \0, which is the null
character. But now take a look at this:

char* NamePointers[] = { 

  "Tom", 

  "Suzy", 

  "Harry" 

};

This is an array of character arrays as well, except that it’s not the same
as the code that came just before it. This is actually an array holding
three pointers: The first points to a character string in memory
containing Tom (which is followed by a null-terminator, \0); the second
points to a string in memory containing Suzy ending with a null-
terminator; and so on. Thus, if you look at the memory in the array, you



won’t see a bunch of characters; instead, you see three numbers, each
being a pointer.

 It’s often helpful to see the content of memory as you work with
arrays. To see memory in Code::Blocks, choose Debug ⇒ 
Debugging Windows ⇒ Memory Dump. You see the Memory
window. Type & (ampersand) plus the name of the variable you
want to view in the Address field and click Go. (You can also see
the content of a specific memory address by typing its address, such
as 0x28ff08, or the memory pointed to by a register by typing $
plus the register name, such as $sp.)

 So where on earth (or in the memory, anyway) are the three
strings, Tom, Suzy, and Harry when you have an array of three
pointers to these strings? When the compiler sees string constants
such as these, it puts them in a special area where it stores all the
constants. These constants then get added to the executable file at
link time, along with the compiled code for the source module. And
that’s where they reside in memory. The array, therefore, contains
pointers to these three constant strings in memory. Now, if you try
to do the following (notice the type of PointerToPointer)

char **PointerToPointer = { 

  "Tom", 

  "Suzy", 

  "Harry" 

};

you will get an error:
error: initializer for scalar variable requires one element

A scalar is just another name for a regular variable that is not an array.
In other words, the PointerToPointer variable is a regular variable (that
is, a scalar), not an array.



Yet, inside the function header for main(), you can use char **, and you
can access this as an array. As usual, there’s a slight but definite
difference between an array and a pointer. You can’t always treat a
pointer as an array; for example, you can’t initialize a pointer as an array.
But you can go the other way: You can take an array and treat it as a
pointer most of the time. Thus you can do this:

char* NamePointers[] = { 

  "Tom", 

  "Harry", 

  "Suzy" 

}; 

char **AnotherArray = NamePointers;

This code compiles, and you can access the strings through
AnotherArray[0], for example. Yet you’re not allowed to skip a step
and just start out initializing the AnotherArray variable like so:

char** AnotherArray = { 

  "Tom", 

  "Harry", 

  "Suzy" 

};

If you write the code that way, it’s the same as the code shown just
before this example — and it yields a compiler error! This is one
(perhaps obscure) example in which the slight differences between
arrays and pointers become obvious, but it does help explain why you
can see something like this:

int main(int argc, char **argv)

and you are free to use the argv variable to access an array of pointers
— specifically, in this case, an array of character pointers, also called
strings.

Building constant arrays
If you have an array and you don’t want its contents to change, you can
make it a constant array. The following lines of code, found in the
Array05 example, demonstrate this approach:



const int Permanent[5] = { 1, 2, 3, 4, 5 }; 

cout << Permanent[1] << endl;

This array works like any other array, except you cannot change the
numbers inside it. If you add a line like the following line, you get a
compiler error, because the compiler is aware of constants:

Permanent[2] = 5;

Here’s the error you get when working in Code::Blocks:
error: assignment of read-only location 'Permanent[2]'

Arrays have a certain constancy built in. For example, you can’t assign
one array to another. If you make the attempt (as shown in the Array06
example), the Code::Blocks compiler presents you with an error:
invalid array assignment error message.)

int NonConstant[5] = { 1, 2, 3, 4, 5 }; 

int OtherList[5] = { 10, 11, 12, 13, 14 }; 

OtherList = NonConstant;

In other words, that third line is saying, “Forget what OtherList points
to; instead, make it point to the NonConstant array, {1,2,3,4,5}!” The
point is that arrays are always constant. If you want to make the array
elements constant, you can precede its type with the word const. When
you do so, the array name is constant, and the elements inside the array
are also constant.

Pointing with Pointers
To fully understand C++ and all its strangeness and wonders, you need
to become an expert in pointers. (Fortunately, many modern innovations
in C++ are making the need to know pointers less of an issue — you
have other means at your disposal, as discussed in Book 1, Chapter 8.)
One of the biggest sources of bugs is when programmers who have a so-
so understanding of C++ work with pointers and mess them up. But
what’s bad in such cases is that the application may run properly for a
while and then suddenly not work. Those bugs are the hardest bugs to
catch, because the user may see the problem occur and then report it, but



programmers can’t reproduce the problem. In this section, you see how
you can get the most out of pointers and use them correctly in your
applications so that you won’t have these strange problems.

Becoming horribly complex
You could see a function header like this:

void MyFunction(char ***a) {

Yikes! What are all those asterisks for? Looks like a pointer to a pointer
to a pointer to … something! How confusing. Some humans have brains
that are more like computers, and they can look at that code and
understand it just fine, but most people can’t. The following sections
help you understand how passing pointers to functions works.

Using a typedef
To understand the code, think about this: Suppose you have a pointer
variable, and you want a function to change what the pointer variable
points to. What this is saying is that the function wants to make the
pointer point to something else, rather than change the contents of the
thing that it points to. There’s a big difference between the two. Any
time you want a function to change a variable, you have to either pass it
by reference or pass its address. This process can get confusing with a
pointer. One way to reduce the confusion is to define a new type —
using the typedef word. It goes like this (as shown in the Pointer01
example):

typedef char *PChar;

This is a new type called PChar that is equivalent to char *. That is,
PChar is a pointer to a character.

Now look at this function:
void MyFunction(PChar &x) { 

  x = new char('B'); 

}

This function takes a pointer variable and points it to the result of new
char(’B’). That is, it points it to a newly allocated character variable



containing the letter B. Now, think this through carefully: A PChar
simply contains a memory address — really. You pass it by reference
into the function, and the function modifies the PChar so that the PChar
contains a different address. That is, the PChar now points to something
different from what it previously did.

To try this function, here’s some code you can put in main() that tests
MyFunction():

PChar ptr = new char('A'); 

PChar copy = ptr; 

MyFunction(ptr); 

cout << "ptr points to " << *ptr << endl; 

cout << "copy points to " << *copy << endl;

The code creates two variables of type PChar: ptr and copy. It assigns a
new char, ’A’, to ptr and then copies the address of ptr to copy so that
they both point to the same location in memory. At this point, then, ptr
and copy both have the same memory address in them.

Next, the code calls MyFunction(), which changes where ptr points in
memory. On return from the function, the code prints two characters: the
character that ptr points to and the character that copy points to. Here’s
what you see when you run it:

ptr points to B 

copy points to A

This means that MyFunction() worked! The ptr variable now points to
the character allocated in MyFunction (a B), while the copy variable still
points to the original A. In other words, they no longer point to the same
thing: MyFunction() managed to change what the variable points to.

Using pointers to pointers
Now consider the same function, but instead of using references, try it
with pointers. Here’s a modified form (as found in the Pointer02
example):

typedef char *PChar;



void AnotherFunction(PChar *x) { 

  *x = new char('C'); 

}

The parameter is really a char ** in this case. You could create another
typedef to handle it, as in typedef char **PPChar;. Because the
parameter is a pointer, you have to dereference it to modify its value.
Thus you see an asterisk, *, at the beginning of the middle line. Here’s a
modified main() that calls this function:

PChar ptr = new char('A'); 

PChar copy = ptr; 

AnotherFunction(&ptr); 

cout << "ptr points to " << *ptr << endl; 

cout << "copy points to " << *copy << endl;

Because the function uses a pointer rather than a reference, you have to
pass the address of the ptr variable, not the ptr variable directly. So
notice that the call to AnotherFunction() has an ampersand, &, in front
of the ptr. This code works as expected. When you run it, you see this
output:

ptr points to C 

copy points to A

This version of the function, called AnotherFunction(), made a new
character called C. Indeed, it’s working correctly: ptr now points to a C
character, and copy hasn’t changed. Again, the function pointed ptr to
something else.

Avoiding typedefs
The previous examples created a typedef to make it much easier to
understand what the functions are doing. However, not everybody does it
that way; therefore you have to understand what other people are doing
when you attempt to fix their code. So here are the same two functions
found in the previous sections, MyFunction() and AnotherFunction(),
but without typedef. Instead of using the new PChar type, they directly
use the equivalent char * type:



void MyFunction(char *&x) { 

  x = new char('B'); 

} 

  

void AnotherFunction(char **x) { 

  *x = new char('C'); 

}

To remove the use of the typedefs, all you do is replace the PChar in the
two function headers and the variable declarations with its equivalent
char *. You can see that the headers now look goofier. But they mean
exactly the same as before: The first is a reference to a pointer, and the
second is a pointer to a pointer.

But think about char **x for a moment. Because char * is also the
same as a character array in many regards, char **x is a pointer to a
character array. In fact, sometimes you may see the header for main()
written like this

int main(int argc, char **argv)

instead of
int main(int argc, char *argv[])

Notice the argv parameter in the first of these two is the same type as
we’ve been talking about: a pointer to a pointer (or, in a more easily
understood manner, the address of a PChar). But you know that the
argument for main() is an array of strings.

Using multiple typedefs
Now it’s time to consider what happens when you have a pointer that
points to an array of strings and a function that is going to make it point
to a different array of strings. The Pointer03 example begins by
creating the required typedefs:

typedef char **StringArray; 

typedef char *PChar;

StringArray is a type equivalent to an array of strings. In fact, if you put
these two lines of code before your main(), you can actually change
your main() header into the following and it will compile:



int main(int argc, StringArray argv)

Now here’s a function that will take as a parameter an array of strings,
create a new array of strings, and set the original array of strings to point
to this new array of strings:

void ChangeAsReference(StringArray &array) { 

  StringArray NameArray = new PChar[3]; 

  NameArray[0] = "Tom"; 

  NameArray[1] = "Suzy"; 

  NameArray[2] = "Harry"; 

  array = NameArray; 

}

Just to make sure that it works, here’s something you can put in main():

StringArray OrigList = new PChar[3]; 

OrigList[0] = "John"; 

OrigList[1] = "Paul"; 

OrigList[2] = "George"; 

  

StringArray CopyList = OrigList; 

ChangeAsReference(OrigList); 

  

cout << OrigList[0] << endl; 

cout << OrigList[1] << endl; 

cout << OrigList[2] << endl << endl; 

cout << CopyList[0] << endl; 

cout << CopyList[1] << endl; 

cout << CopyList[2] << endl;

The code creates a pointer to an array of three strings. It then stores three
strings in the array. Next, the code saves a copy of the pointer in the
variable called CopyList, changes the OrigList pointer by calling
ChangeAsReference(), and prints all the values. Here’s the output:

Tom 

Suzy 

Harry 

  

John 

Paul 

George

The first three outputs are the elements in OrigList, which were passed
into ChangeAsReference(). They no longer have the values John,Paul,



and George. The three original Beatles names have been replaced by
three new names: Tom, Harry, and Suzy. However, the Copy variable still
points to the original string list. Thus, once again, changing the pointer
reference worked.

Working with string arrays using pointers
The previous section uses typedefs to work with string arrays, but you
can also do it with pointers. Here’s the modified version of the function,
this time using said pointers (as shown in the Pointer04 example):

void ChangeAsPointer(StringArray *array) { 

  StringArray NameArray = new PChar[3]; 

  NameArray[0] = "Tom"; 

  NameArray[1] = "Harry"; 

  NameArray[2] = "Suzy"; 

  *array = NameArray; 

}

As before, here’s the slightly modified sample code that tests the
function:

StringArray OrigList = new PChar[3]; 

OrigList[0] = "John"; 

OrigList[1] = "Paul"; 

OrigList[2] = "George"; 

  

StringArray CopyList = OrigList; 

ChangeAsPointer(&OrigList); 

  

cout << OrigList[0] << endl; 

cout << OrigList[1] << endl; 

cout << OrigList[2] << endl << endl; 

cout << CopyList[0] << endl; 

cout << CopyList[1] << endl; 

cout << CopyList[2] << endl;

You can see that when the code calls ChangeAsPointer(), it passes the
address of OrigList. The output of this version is the same as that of the
previous version.

Here are the two function headers without using the typedefs:

int ChangeAsReference(char **&array) {

and



int ChangeAsPointer(char ***array) {

You may see code like these two lines from time to time. Such code isn’t
the easiest to understand, but after you know what these lines mean, you
can interpret them.

 Most developers use a typedef, even if it’s just before the
function in question. That way, it’s clearer to other people what the
function does. You are welcome to follow suit. But if you do, make
sure that you’re familiar with the non-typedef version so that you
understand that version when somebody else writes it without using
typedef.

Pointers to functions
When an application is running, the functions in the application exist in
the memory; so just like anything else in memory, they have an address.

You can access the address of a function by taking the name of it and
putting the address-of operator (&) in front of the function name, like
this:

address = &MyFunction;

But to make this work, you need to know what type to declare address.
The address variable is a pointer to a function, and the cleanest way to
assign a type is to use auto, like this:

auto address = &MyFunction;

The traditional method is to use a typedef (as shown in the
FunctionPointer01 example). Here’s the typedef you need:

typedef int(*FunctionPtr)(int);

It’s hard to follow, which is why using auto is better, but the name of the
new type is FunctionPtr. This defines a type called FunctionPtr that
returns an integer (the leftmost int) and takes an integer as a parameter
(the rightmost int, which must be in parentheses). The middle part of



this statement is the name of the new type, and you must precede it by an
asterisk, which means that it’s a pointer to all the rest of the expression.
Also, you must put the type name and its preceding asterisk inside
parentheses. Now you’re ready to declare some variables! Here goes:

FunctionPtr address = &MyFunction;

This line declares address as a pointer to a function and initializes it to
MyFunction(). For this to work, the code for MyFunction() must have
the same prototype declared in the typedef: In this case, it must take an
integer as a parameter and return an integer. So, for example, you may
have a function like this:

int TheSecretNumber(int x) { 

  return x + 1; 

}

Then you could have a main() that stores the address of this function in
a variable — and then calls the function by using the variable:

int main() { 

  typedef int (*FunctionPtr)(int); 

  int MyPasscode = 20; 

  FunctionPtr address = &TheSecretNumber; 

  cout << address(MyPasscode) << endl; 

}

Using the typedef approach has the advantage of specifying precisely
what you want in the way of inputs, but the auto form is shorter and
easier to understand. Here’s main() using the auto form (you must be
using C++ 11 or above to use this form):

int main() { 

  int MyPasscode = 20; 

  auto address = &TheSecretNumber; 

  cout << address(MyPasscode) << endl; 

}

Just so you can say that you’ve seen it, here’s what the address
declaration would look like without using a typedef:

int (*address)(int) = &TheSecretNumber;



The giveaway should be that you have two things in parentheses side by
side, and the set on the right has only types inside it. The one on the left
has a variable name. So this line is not declaring a type; rather, it’s
declaring a variable.

Pointing a variable to a method
When working with object-oriented programming (OOP), you need a
way to access the methods within the object. Within an object’s code,
you use the this pointer to obtain the address of an object’s method so
that you can access the method instance data directly.

Remember that each instance of a class gets its own copy of the
properties unless the properties are static. But methods are shared
throughout the class. Yes, you can distinguish static methods from
nonstatic methods. But doing so just refers to the types of variables they
access: Static methods can access only static properties, and you don’t
need to refer to them with an instance. Nonstatic (that is, normal,
regular) methods work with a particular instance. However, inside the
memory, really only one copy of the method exists.

So how does the method know which instance to work with? The this
parameter gets passed into the method to differentiate between instances.
Suppose you have a class called Gobstopper that has a method called
Chew(). Next, you have an instance called MyGum, and you call the
Chew() method, like so:

MyGum.Chew();

When the compiler generates assembly code for this, it actually passes a
parameter into the function — the address of the MyGum instance, also
known as the this pointer. Therefore only one Chew() function is in the
code, but to call it, you must use a particular instance of the class.

Because only one copy of the Chew() method is in memory, you can take
its address. But to do so requires some sort of cryptic-looking code. Here
it is, quick and to the point. Suppose your class looks like this:

class Gobstopper { 

public: 



  int WhichGobstopper; 

  int Chew(string name) { 

    cout << WhichGobstopper << endl; 

    cout << name << endl; 

    return WhichGobstopper; 

  } 

};

The Chew() method takes a string and returns an integer. Here’s a
typedef for a pointer to the Chew() function:

typedef int (Gobstopper::*GobMember)(string);

And here’s a variable of the type GobMember:

GobMember func = &Gobstopper::Chew;

 As with other functions, you can use auto to make things simple
when you work with C++ 11 or above. Here’s the auto form of a
variable that points to the Chew() method:

auto func = &Gobstopper::Chew;

If you look closely at the typedef, it looks similar to a regular function
pointer. The only difference is that the class name and two colons
precede the asterisk. Other than that, it’s a regular old function pointer.

But whereas a regular function pointer is limited to pointing to functions
of a particular set of parameter types and a return type, this function
pointer shares those restrictions but has a further limitation: It can point
only to methods within the class Gobstopper.

To call the function stored in the pointer, you need to have a particular
instance. Notice that in the assignment of func in the earlier code, there
was no instance, just the class name and function, &Gobstopper::Chew.
So to call the function, grab an instance, add func, and go! The
FunctionPointer02 example, shown in Listing 1-2, contains a complete
example with the class, the method address, and two separate instances.



LISTING 1-2: Taking the Address of a Method
#include <iostream> 

  

using namespace std; 

  

class Gobstopper { 

public: 

  int WhichGobstopper; 

  int Chew(string name) { 

    cout << WhichGobstopper << endl; 

    cout << name << endl; 

    return WhichGobstopper; 

  } 

}; 

  

int main() { 

  typedef int (Gobstopper::*GobMember)(string); 

  GobMember func = &Gobstopper::Chew; 

  

  Gobstopper inst; 

  inst.WhichGobstopper = 10; 

  

  Gobstopper another; 

  another.WhichGobstopper = 20; 

  

  (inst.*func)("Greg W."); 

  (another.*func)("Jennifer W."); 

  return 0; 

}

The code begins by creating a typedef called GobMember, as discussed
earlier in this section. It then creates a method pointer, func, to access
the method. When using C++ 11 or above, you can replace these two
lines with the much easier-to-understand single line:

auto func = &Gobstopper::Chew;

Of course, when you use this alternative, the compiler must deduce the
correct types, which it may not always do correctly. Using the typedef
gives you additional control at the cost of complexity.

The code then creates two instances of Gobstopper, inst and another.
In both cases, it directly assigns a value to WhichGobstopper, which will
vary depending on instance and accessed through this. The final section



calls the Chew() method indirectly using func in each instance and
assigns a name as the input string.

When you run the code, you can see from the output that it is indeed
calling the correct method for each instance:

10 

Greg W. 

20 

Jennifer W.

Now, when you hear “the correct method for each instance,” what the
statement really means is that the code is calling the same method each
time but using a different instance. If you’re thinking in object-oriented
terms, consider each instance as having its own copy of the method.
Therefore it’s okay to say “the correct method for each instance.”

Pointing to static methods
A static method is, in many senses, just a plain old function. The
difference is that you have to use a class name to call a static function.
But remember that a static method does not go with any particular
instance of a class; therefore you don’t need to specify an instance when
you call the static function.

Here’s an example class (as shown in the FunctionPointer03 example)
with a static function:

class Gobstopper { 

public: 

  static string MyClassName() { 

    return "Gobstopper!"; 

  } 

  int WhichGobstopper; 

  int Chew(string name) { 

    cout << WhichGobstopper << endl; 

    cout << name << endl; 

    return WhichGobstopper; 

  } 

};

And here’s some code that takes the address of the static function and
calls it by using the address:



int main() { 

  typedef string (*StaticMember)(); 

  StaticMember staticfunc = &Gobstopper::MyClassName; 

  cout << staticfunc() << endl; 

  return 0; 

}

Note that the call staticfunc() doesn’t refer to a specific instance and
it doesn’t refer to the class, either. The application just called it. Because
the truth is that deep down inside, the static function is just a plain old
function.

Referring to References
This section discusses how to use references and assumes that you
already know how to pass a parameter by reference when you’re writing
a function. (For more information about passing parameters by
reference, see Book 1, Chapter 8.) But you can use references for more
than just parameter lists. You can declare a variable as a reference type.
And just like job references, this use of references can be both good and
devastating. So be careful when you use them.

Reference variables
Declaring a variable that is a reference is easy. Whereas the pointer uses
an asterisk, *, the reference uses an ampersand, &. But it has a twist. You
can’t just declare it, like this:

int &BestReference; // Nope! This won't work!

If you try this, you see an error that says BestReference declared as
reference but not initialized. That sounds like a hint: Looks like
you need to initialize it.

Yes, references need to be initialized. As the name implies, reference
refers to another variable. Therefore, you need to initialize the reference
so that it refers to some other variable, like so (as shown in the
Reference01 example):

int ImSomebody; 

int &BestReference = ImSomebody;



From this point on, the variable BestReference refers to — that is, is an
alias for — ImSomebody. So, if you change the value of BestReference,
as shown here:

BestReference = 10;

you’ll really be setting ImSomebody to 10. Look at this code that could go
inside main():

int ImSomebody; 

int &BestReference = ImSomebody; 

BestReference = 10; 

cout << ImSomebody << endl;

When you run this code, you see the output
10

That is, setting BestReference to 10 caused ImSomebody to change to 10,
which you can see when you print the value of ImSomebody. That’s what
a reference does: It refers to another variable.

 Because a reference refers to another variable, that implies that
you can’t have a reference to just a number, as in int &x=10. In
fact, the offending line has been implicated: You are not allowed to
do that. You can have only a reference that refers to another
variable.

Returning a reference from a function
It’s possible to return a reference from a function. But be careful if you
try to do this: You don’t want to return a reference to a local variable
within a function, because when the function ends, the storage space for
the local variables goes away.

But you can return a reference to a global variable. Or, if the function is
a method, you can return a reference to a property.

For example, here’s a class found in the Reference02 example that has a
function that returns a reference to one of its variables:



class DigInto { 

private: 

  int secret; 

public: 

  DigInto() { secret = 150; } 

  int &GetSecretVariable() { return secret; } 

  void Write() { cout << secret << endl; } 

};

Notice that the constructor stores 150 in the secret variable, which is
private. The GetSecretVariable() function returns a reference to the
private variable called secret. The Write() function writes out the
value of the secret variable. Lots of secrets here! And some surprises,
too, which you discover shortly. You can use this class like so:

int main() 

{ 

  DigInto inst; 

  inst.Write(); 

   

  int &pry = inst.GetSecretVariable(); 

  pry = 30; 

  inst.Write(); 

   

  auto &pry2 = inst.GetSecretVariable(); 

  pry2 = 40; 

  inst.Write(); 

  return 0; 

}

The example uses two kinds of references, one int and one auto (you
must have C++ 11 or above installed to use the second type). Notice that
using auto doesn’t eliminate the need for the & to create a reference. If
you were to write auto pry2 = inst.GetSecretVariable(); instead,
you’d receive a warning message stating warning: variable ’pry2’
set but not used. However, the code would still compile, and if you
use the Build ⇒ Build and Run option, you might not even notice the
warning.

When you run this example, you see the following output:
150 

30 



40

Here’s a look at the code in a little more detail. The first output line is
the value in the secret variable right after the application creates the
instance. But look at the code carefully: The variable called pry is a
reference to an integer, and it gets the results of
GetSecretVariable().What is that result? It’s a reference to the private
variable called secret — which means that pry itself is now a reference
to that variable. Yes, a variable outside the class now refers directly to a
private member in the instance! After that, the code sets pry to 30. When
the code calls Write() again, the private variable will indeed change.
(The same sequence occurs when you use the auto variable pry2.)

Creating code like this is a bad idea because it provides access to a
private variable. The GetSecretVariable() function pretty much wipes
out any sense of the variable’s actually remaining private. The main()
function is able to grab a reference to it and poke around and change it
however it wanted, as if it were not private!

That’s a problem with references: They can potentially leave your code
wide open. Therefore, think twice before returning a reference to a
variable. Here’s one of the biggest risks: Somebody else may be using
this code, may not understand references, and may not realize that the
variables called pry and pry2 have a direct link to the private secret
variable. Such an inexperienced programmer might then write code that
uses and changes pry or pry2 — without realizing that the property is
changing along with it. Later on, then, a bug results — a pretty nasty one
at that!



 Because functions returning references can leave unsuspecting
and less-experienced C++ programmers with just a wee bit too
much power on their hands, it’s a best practice to use caution with
references. No, you don’t have to avoid them altogether; it’s simply
a good idea to be careful. Use them only if you really feel you must.
But remember also that a better approach in classes is to have
member access functions that can guard the private variables.

However, now that you’ve received the usual warnings, know that
references can be very powerful, provided that you understand what they
do. When you use a reference, you can easily modify another variable
without having to go through pointers — which can make life much
easier sometimes. So, please: Use your newfound powers carefully.
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Chapter 2

Creating Data Structures
IN THIS CHAPTER

 Discovering all the different data types
 Casting and converting
 Using structures with your data
 Comparing and manipulating structures

C++, being a computer language and all, provides you with a lot of ways
to manipulate data — numbers, letters, strings, arrays — anything you
can store inside the computer memory. To get the most out of C++, you
should know as much as you can about the fundamental data types. This
chapter covers them and how to use them.

This chapter refers to the ANSI standard of C++. ANSI is the American
National Standards Institute. The information provided in this chapter
deals with the ANSI standard (singular) of C++. Fortunately, the GNU
gcc compiler that comes with Code::Blocks is ANSI-standard-compliant.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookV\Chapter02
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Working with Data
In the sections that follow, you see how to manipulate data, consider the
data types available to you, and discover how you can change one data



type to another.

The great variable roundup
The ANSI C++ standard dictates the fundamental C++ types shown in
Table 2-1.

 C++ includes a signed keyword, but you have little reason to
use it because signed is assumed if you don’t specifically use
unsigned. Note that when you use unsigned, the size of the
variable doesn’t change: It takes the same number of bytes. Instead,
the range shifts. For example, a short ranges from –32,768 to
32,767, so there are 65,536 possibilities. An unsigned short
ranges from 0 to 65,535; again, there are 65,536 possibilities.

The precise values of some of these types, such as long double, can
vary by compiler. The best way to ensure that you understand the limits
of your compiler is to run a simple test. The VarTypes example, shown
in Listing 2-1, demonstrates the maximum values for each data type
found in Table 2-1.

TABLE 2-1: ANSI C++ Character Types

Name Size in
Bytes Range

char 1 –128 to 127

unsigned char 1 0 to 255

short 2 –32,768 to 32,767

unsigned short 2 0 to 65,535

int and long 4 -2,147,483,648 to 2,147,483,647

unsigned int and
unsigned long

4 0 to 4,294,967,295

long long 8 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807



Name Size in
Bytes Range

unsigned long long 8 0 to 18,446,744,073,709,551,615

bool 1 true/false

float 4 1.17549e-038 to 3.40282e+038

double 8 2.22507e-308 to 1.79769e+308

long double 12 3.3621e-4932 to 1.18973e+4932

LISTING 2-1: Testing Maximum Type Values
#include <iostream> 

#include <climits> 

#include <cfloat> 

  

using namespace std; 

  

int main() { 

  char Char = CHAR_MAX; 

  unsigned char UChar = UCHAR_MAX; 

  short Short = SHRT_MAX; 

  unsigned short UShort = USHRT_MAX; 

  int Int = INT_MAX; 

  unsigned int UInt = UINT_MAX; 

  long Long = LONG_MAX; 

  unsigned ULong = ULONG_MAX; 

  long long LongLong = LLONG_MAX; 

  unsigned long long ULongLong = ULLONG_MAX; 

  bool Bool = true; 

  float Float = FLT_MIN; 

  double Double = DBL_MIN; 

  long double LDouble = LDBL_MIN; 

  

  cout << "Char\t\t\t" << Char << "\t\t\t" << 

    sizeof(Char) << endl; 

  cout << "Unsigned Char\t\t" << UChar << "\t\t\t" << 

    sizeof(UChar) << endl; 

  cout << "Short\t\t\t" << Short << "\t\t\t" << 

    sizeof(Short) << endl; 

  cout << "Unsigned Short\t\t" << UShort << "\t\t\t" << 

    sizeof(UShort) << endl; 

  cout << "Int\t\t\t" << Int << "\t\t" << 

    sizeof(Int) << endl; 



  cout << "Unsigned Int\t\t" << UInt << "\t\t" << 

    sizeof(UInt) << endl; 

  cout << "Long\t\t\t" << Long << "\t\t" << 

    sizeof(Long) << endl; 

  cout << "Unsigned Long\t\t" << ULong << "\t\t" << 

    sizeof(ULong) << endl; 

  cout << "Long Long\t\t" << LongLong << "\t" << 

    sizeof(LongLong) << endl; 

  cout << "Unsigned Long Long\t" << ULongLong << "\t" << 

    sizeof(ULongLong) << endl; 

  cout << "Bool\t\t\t" << (Bool ? "True" : "False") << 

    "\t\t\t" << sizeof(Bool) << endl; 

  cout << "Float\t\t\t" << Float << "\t\t" << 

    sizeof(Float) << endl; 

  cout << "Double\t\t\t" << Double << "\t\t" << 

    sizeof(Double) << endl; 

  cout << "Long Double\t\t" << LDouble << "\t\t" << 

    sizeof(LDouble) << endl; 

  return 0; 

}

 Notice the use of constants, such as CHAR_MAX, to set maximum
values. When working with integers, you use the statement
#include <climits>, which reads as include the file climits. You
may see other headers used, but they may not include the
ULLONG_MAX constant. When working with floating-point numbers,
you #include <cfloat>. This example provides the following
output:

Char                    127                     1 

Unsigned Char           255                     1 

Short                   32767                   2 

Unsigned Short          65535                   2 

Int                     2147483647              4 

Unsigned Int            4294967295              4 

Long                    2147483647              4 

Unsigned Long           4294967295              4 

Long Long               9223372036854775807     8 

Unsigned Long Long      18446744073709551615    8 

Bool                    True                    1 

Float                   1.17549e-038            4 

Double                  2.22507e-308            8



 The char output will reflect a character, rather than a number, in
all cases. Consequently, you may see a different character output on
your display. Notice also the use of (Bool ? "True" : "False")
to display a textual value, rather than a numeric value, for Bool.

Expressing variables from either side
Occasionally, when you look at error messages (or if you read the ANSI
standard), you see the terms lvalue and rvalue. The l and r refer to left
and right, respectively. In an assignment statement, an lvalue is any
expression that can be on the left side of the equals sign, and an rvalue
is an expression that can be on the right side of an equals sign.

 The terms lvalue and rvalue don’t refer to what happens to be
on the left side and right side of an assignment statement. They
refer to what is allowed or not allowed on the left or right side of an
assignment statement. You can have only lvalues on the left side
of an assignment statement and rvalues on the right side of an
assignment statement. Here are some examples, in which ploggle
is an int type. This is allowed because ploggle is an lvalue:

ploggle = 3;

On the left side, you cannot have items that are strictly an rvalue. The
following is not allowed because 2 is strictly an rvalue:

2 = ploggle;

The number 2 can’t appear on the left (setting it equal to something else
makes no sense), therefore it isn’t an lvalue. In fact, anything you can
set equal to something else is an lvalue.

The main reason you need to know these terms is their tendency to show
up in error messages. If you try to compile the line 2 = ploggle, you



see an error message similar to this one:
non-lvalue in assignment

If you don’t know what the term lvalue means, these messages can be
confusing. Although seeing the problem with 2 = ploggle is pretty
easy, sometimes the problem is not that obvious. Look at this:

ChangeMe() = 10;

In most cases, putting a function call on the left doesn’t make sense, so
you don’t do it. In other words, you must consider whether the
expression ChangeMe() is considered an lvalue. Look at this code from
the LValueAndRValue example:

#include <iostream> 

  

using namespace std; 

  

int uggle; 

  

int &ChangeMe() { 

  return uggle; 

} 

  

int main() { 

  ChangeMe() = 10; 

  cout << ChangeMe() << endl; 

  return 0; 

}

The function ChangeMe() returns a reference to an integer; this line is
valid:

ChangeMe() = 10;

The expression ChangeMe() refers to the variable uggle, and thus this
line of code stores 10 in uggle. You can still use ChangeMe() as a
function, as shown in the next line with the cout, so it can still stand
alone.



 The words lvalue and rvalue aren’t C++ keywords. You don’t
type these into an application.

Casting a spell on your data
Although C++ has all these great data types, such as int and char, the
fact is that the CPU just stores them as numbers. And sometimes you
may have a character and need to use its underlying number. To do this,
you can cast the data into a different type.

The way you cast is to take a variable of one type and type the variable’s
name, preceded by the other type you would like it to be. You put that
other type in parentheses, as shown in the SimpleCast example that
follows.

#include <iostream> 

  

using namespace std; 

  

int main() { 

  char buddy = 'A'; 

  int underneath = (int)buddy; 

  cout << underneath << endl; 

  return 0; 

}

When you run this code, you obtain an output value of 65. If you
substituted a lowercase a, the output would be 97 because uppercase and
lowercase letters have different numeric values.

Comparing casting and converting
The idea behind casting is to take some data and, without changing it,
use it in another way. For example, you could have an array containing
the characters Apple. But inside the memory, each letter is stored as a
number. For example, the A is stored as 65, p is stored as 112, l as 108,
and e as 101. Therefore, you use code like that found in the



CastOrConvert example that follows when you want to cast each
character to an integer:

char str[] = {'A','p','p','l','e','\0'}; 

cout << str << endl; 

  

for (int x: str) 

  cout << x << endl;

where str is the string Apple (notice the null value required to end the
string). The for each loop casts each character in str, one at a time, to an
int, and then prints it out onscreen. This act would print out the
numerical equivalents of each letter, as shown here:

Apple 

65 

112 

112 

108 

101 

0

In other words, the code casts the characters to integers — but doesn’t
actually change any data.

Converting, however, is different. If you want to take the number 123,
casting it to a string will not create a string 123. The string 123 is made
up of three underlying characters. The numbers for the string 123 are 49,
50, and 51, respectively. Casting the number 123 into a char won’t
produce the string, "123". Instead, you would need to convert the
number to a string using code like this, as shown in CastOrConvert.

int value = 123; 

char strValue[4]; 

strValue[3] = '\0'; 

for (int counter = 2; counter >= 0; counter--) { 

  strValue[counter] = (char)(value % 10 + 48); 

  value = value / 10; 

} 

cout << strValue << endl;

In this case, the code works backward to create the string from the
number by using a combination of integer division and modulus. The



content in value is destroyed in the process, but strValue contains the
correct string in the end. To get an idea of how this works, 123 % 10 =
3, while 123 / 10 = 12. The value 3 + 48 = 51 comes out to the char
value ’3’ when cast. Of course, there is a much easier way to perform
this task (you must #include <string>):

string EasyValue = to_string(123); 

cout << EasyValue << endl;

As is true of most techniques, there are times when casting won’t work
as expected. One of those times come into play when converting
between floats and integers. Instead of using a conversion function, the
C++ compiler automatically converts from float to integer and vice versa
if you try to cast one to the other. Ugh. That goes against the rest of the
rules, so be careful. Here’s an example of converting a float to an
integer:

float f = 6.3; 

int i = (int)f;

But the crazy part is that you can also do the same thing without even
using the cast:

float f = 6.3; 

int i = f;

 Casting and converting can both cause problems. For example,
when casting between a float and an int, you have the potential
for data loss. A float value of 0.123 will appear as an int value of
0. Whenever possible, use built-in conversions (those where you
can simply make one data type equal to another data type, such as
making an int variable equal to a char variable) to ensure that the
output you receive truly represents the correct transition between
one type and another. Later in this chapter, you also see how to use
safe casting techniques with both dynamic_cast and static_cast.
Unlike most languages, C++ won’t protect you from yourself. For
example, you can cast a pointer to some other type, even though



such a cast doesn’t make sense. You could even convert the address
into a string if you want. C++ assumes that you want the low-level
access that it can provide, so it also gives you the extra flexibility to
perform tasks incorrectly.

UNDERSTANDING AND AVOIDING
NARROWING CASTS

A narrowing cast is one in which you could lose data, such as casting a float into an
int (you can lose the decimal part of the data) or a double into a float (double holds
larger numbers). Unfortunately, standard implementations of most compilers don’t
necessarily warn you about narrowing casts, as is the case for the CastOrConvert
example. However, you can overcome this issue by using the Guideline Support Library
(GSL) described at https://www.modernescpp.com/index.php/c-core-guideline-the-
guidelines-support-library. It includes the narrow cast, which throws an exception
when some code you’ve written will result in a narrowing cast, such as that shown here:

double d = 9.9; 

int i = narrow<int>(d);

This code will throw an exception because the cast will result in a narrowing of the data.
The narrow_cast is an alternative that allows a narrowing cast because you’ve indicated
that you’re aware that narrowing will occur, as shown here:

double d = 9.9; 

int i = narrow_cast<int>(d);

This time, you don’t see an exception because you’ve indicated that you know the cast
will result in a narrowing of the data. The Microsoft documentation at
https://docs.microsoft.com/en-us/cpp/code-quality/c26472?view=vs-2019 provides
some additional insights about GSL.

Casting safely with C++
The ANSI standard of C++ comes with all kinds of goodies that make
life easier than it used to be. Casting is one example. Originally, you
could just cast all you wanted and change from one data type to another,
possibly causing a mess, especially if you take existing code and
compile it under a different operating system or perhaps even under a
different compiler on the same operating system. One type may have a
different underlying representation, and then, when you convert it on one

https://www.modernescpp.com/index.php/c-core-guideline-the-guidelines-support-library
https://docs.microsoft.com/en-us/cpp/code-quality/c26472?view=vs-2019


system, you get one thing; take it to a different system and you get
something else. That’s bad. It creates bugs!

So the ANSI standard for C++ gives some newer and better ways of
casting between items of data. These include dynamic_cast,
static_cast, and const_cast. (There is also a reinterpret_cast, but
it’s incredibly unsafe to use and therefore not demonstrated.)

Dynamically casting with dynamic_cast
When the makers of C++ came up with these new ways of casting, their
motivation was this: Think in terms of conversions. A cast simply takes
one data type and tells the compiler to treat it as another data type. So
first ask yourself whether one of the conversions will work for you. If
not, you can consider one of the new ways of casting.

But remember, a cast tells the compiler to treat some data as another type
of data. But the new ways of casting prevent you from doing a cast that
doesn’t make sense. For example, you may have a class hierarchy, and
you have a pointer to a base class. But because an instance of a derived
class can be treated as an instance of a base class, this instance that
you’re looking at could actually be an instance of a derived class.

In the old style of C and C++ programming, you could just cast the
instance and have at it:

DoSomethingCool( (derivedclass *) someptr);

This code assumes that someptr is of type pointer-to-base-class that, in
fact, points to a derivedclass instance. It may point to derivedclass,
but that depends on how you wrote the application. But, relying on
assumptions rather than actual knowledge is a great way to create a
buggy application.

However, with the new ANSI ways of casting, you can be sure that
someptr points to a derivedclass instance. The DynamicCast example,
shown in Listing 2-2, is a complete application that demonstrates a
proper down-cast that uses a pointer to a base class and casts it down to
a pointer of a derived class.



LISTING 2-2: Casting Instances Dynamically for
Safety
#include <iostream> 

  

using namespace std; 

  

class King { 

protected: 

  string CrownName; 

public: 

  virtual string &MyName() { return CrownName; } 

  virtual ~King(){} 

}; 

  

class Prince : public King { 

public: 

  string School; 

}; 

  

void KingInfo(King *inst) { 

  cout << "=========" << endl; 

  cout << inst->MyName() << endl; 

  Prince *asPrince = dynamic_cast<Prince *>(inst); 

  if (asPrince != 0) 

  { 

    cout << asPrince->School << endl; 

  } 

} 

  

int main() { 

  Prince George; 

  George.MyName() = "George I"; 

  George.School = "School of the Kings"; 

  KingInfo(&George); 

  King Henry; 

  Henry.MyName() = "Henry II"; 

  KingInfo(&Henry); 

  return 0; 

}

When you run this code, you see output that looks like this:
========= 

George I 

School of the Kings 



========= 

Henry II

Some strange things are going on in this code. Starting with main(), the
code calls KingInfo(), first passing it the address of George (a Prince
instance, derived from King) and then the address of Henry (a King
instance).

The KingInfo() function first prints the information that is common to
both due to inheritance using the MyName() function and prints the
resulting name. Then comes the important part: the dynamic cast. To do
the dynamic cast, the code calls dynamic_cast and saves inst (which
can be of type King or Prince) in a pointer variable called asPrince.
Notice the syntax of dynamic_cast. It looks like a template in that you
include a type in angle brackets. Then you put the variable you want to
cast in parentheses (in this case inst).

If the dynamic cast works, it returns a pointer that you can save as the
type inside angle brackets. Otherwise, the dynamic cast returns 0. After
calling dynamic_cast, the code tests the result against 0. If the result is
not 0, the dynamic cast worked, which means that inst is of type
Prince. Then, in the if block, the code retrieves and prints the School
member, which is part of Prince, not King.

Notice the unique design of the King class in Listing 2-2. For
dynamic_cast to work, the base class involved must have at least one
virtual function. Thus the base class — and each of its derived classes —
has a virtual table (also needed for dynamic_cast to work). In addition,
the Code::Blocks compiler raises a warning message when you don’t
provide a virtual destructor:

warning: 'class King' has virtual functions but non-virtual destructor

Consequently, the example includes a virtual destructor as well. Notice
also that this class uses good design by keeping CrownName private and
providing an accessor function, MyName(), to it.



 You don’t need to use references in a class as shown here to
make dynamic_cast work. But you do need at least one virtual
function.

The fundamental difference between an old-style direct cast and a
dynamic_cast is that the compiler generates code that automatically
does an old-style cast, regardless of whether the cast is valid, during
compile time. That is, the cast is hardcoded. But dynamic_cast tests the
types at runtime. The dynamic cast may or may not work depending on
the type of the object.

When you use a dynamic cast, you can cast either a pointer or a
reference. The KingInfo() function shown previously in Listing 2-2
uses a pointer. Here’s a modified form that uses a reference:

void KingInfoAsReference(King &inst) { 

  cout << "=========" << endl; 

  cout << inst.MyName() << endl; 

  try { 

    Prince &asPrince = dynamic_cast<Prince &>(inst); 

    cout << asPrince.School << endl; 

  } catch (…) { } 

}

To make this version work, you have to use an exception handler (which
is a way to deal with unusual situations; see Chapter 3 in this minibook
for more information on exception handlers). The reason for using an
exception handler is that with a pointer, you can simply test the result
against 0. But with references, you have no such thing as a null
reference or 0 reference. The reference must work or you get a runtime
error. In C++, the way you can catch a situation that didn’t work is by
typing the word try, followed by your code that attempts to do the job,
in braces. Follow that with the word catch and a set of parentheses
containing three periods. Following that, you put braces — and possibly
any code you want to run — just in case the earlier code didn’t work.



This code doesn’t do anything inside the catch block because the
application will continue to work even if the call fails — the output
simply lacks the school name. C++ requires that all try blocks are
matched with a catch block, so you must include the catch block even
when it doesn’t do anything.

Statically casting with static_cast
The ANSI C++ standard includes a special type of cast that does no type
checking. If you have to cast directly without the help of dynamic_cast,
you should opt for static_cast instead of the old C-style cast.

When you want to do a static cast, call static_cast and follow it with
angle brackets containing the type you want to cast to. Then put the item
being cast inside parentheses, as in the following:

FinalType *f = static_cast<FinalType *>(orig);

The advantage of using static_cast is that it does some type checking
at compile time, whereas old C-style casts do not. The compiler allows
you to do static_cast only between related objects. You can do a
static_cast from an instance of one class to an instance of a derived or
base class. But if two classes are not related, you will get a compiler
error. For example, suppose that you have these two lines of code:

class FinalType {}; 

class AnotherType {};

They’re unrelated classes. Then, if you have these lines of code
AnotherType *orig = new AnotherType; 

FinalType *f = static_cast<FinalType *>(orig);

and you try to compile the code, you get an error:
static_cast from 'AnotherType *' to 'FinalType *'

The following code, found in the StaticCast example, shows how to
make the casting work:

#include <iostream> 

  

using namespace std; 



  

class FinalType {}; 

class AnotherType : public FinalType {}; 

  

int main() { 

    AnotherType *orig = new AnotherType; 

    FinalType *f = static_cast<FinalType *>(orig); 

}

 The difference between static_cast and dynamic_cast is that
static_cast does all its type checking at compile time; the
compiler makes sure that the cast is okay. A dynamic_cast
performs both runtime and compile time checks, so it’s more
comprehensive. Old C-style casts do none of this type checking.

If you’re just doing a conversion between floating-point numbers and
integers, you can do an old-style cast. (That’s because an old-style cast is
really a conversion, not a cast.) Alternatively, of course, you’re welcome
to use static_cast to get the same job done:

float f = static_cast<float>(x);

Changing the constness of variables with const_cast
Sometimes you need to add or remove const from a variable in order to
perform a cast. The variable itself doesn’t change, but the cast output
does. For example, if you want to send a const value to a function that
doesn’t accept a const value, you need to perform a const_cast.
Likewise, you may have a volatile variable, one that is changed by
code outside the current application. (This is a common process in
embedded applications; see the article at
https://www.tutorialspoint.com/What-does-the-volatile-

keyword-mean-in-Cplusplus for more information.) You may need to
cast the volatile variable as a common variable. The ConstCast
example that follows shows both techniques:

#include <iostream> 

  

https://www.tutorialspoint.com/What-does-the-volatile-keyword-mean-in-Cplusplus


using namespace std; 

  

void PrintIt(int *out) { 

  cout << "The value is: " << *out << endl; 

} 

  

int main() { 

    volatile int X = 20; 

    const int Y = 30; 

  

    PrintIt(const_cast<int*>(&X)); 

    PrintIt(const_cast<int*>(&Y)); 

    return 0; 

}

In the first case, if you were to try PrintIt(&X), you’d see error:
invalid conversion from ’volatile int*’ to ’int*’ during
compilation. Likewise, in the second case, PrintIt(&Y) would produce
an error: invalid conversion from ’const int*’ to ’int*’ error
message. Of course, neither X nor Y has its attributes removed; you
simply strip the volatile or const attribute off for the purpose of
sending the value to PrintIt().

Structuring Your Data
Before C++ came to life, C had something that was similar to classes,
called structures. The difference was that structures had only properties
— no methods. Here’s an example of a structure:

struct Dimensions { 

  int height; 

  int width; 

  int depth; 

  int weight; 

  int price; 

};

This block of code is similar to a class; as you can see, it has some
properties but no methods. Nor does it have any access control (such as
public, private, or protected).



But not only did the designers of C++ add classes to C++, they also
enhanced the structures in C++. So now you can use structures more
powerfully in C++ than you could in C. The main change to structures in
C++ is that they can have methods and access control. Thus, you can add
to the Dimensions structure like so (making struct and class
equivalent):

struct Dimensions { 

private: 

  int price; 

public: 

  int height; 

  int width; 

  int depth; 

  int weight; 

  int GetPrice() { return price; } 

};

Then create an instance of Dimensions in your code like this:

Dimensions FirstIem; 

Dimensions *SecondItem = new Dimensions;

 When the great founder of the C++ language (Bjarne Stroustrup)
created C++, he enhanced structures to the point that classes and
structures are identical, with one exception. Members of a structure
are public by default. Members of a class, however, are private by
default. Because the differences are so small, most C++
programmers today never even touch a structure, except to create
an object that has only public properties.

In other words, programmers use struct for simple data types that are a
collection of smaller data types. (That is, they use structs the same way
C originally used them.) The sections that follow tell you about some of
these data-structure issues.



 If you’re familiar with C and just learning C++, you may be
interested to know that when you declare a variable that is a
structure type, in C++ you need to give only the name of the
structure. You no longer need the word struct in the declaration.
Thus the following line will still compile in C++:

struct Dimensions another;

but all you really need is
Dimensions another;

Structures as component data types
A common use of structures is as an advanced data type made up of
underlying data types. For example, a lot of operating systems that deal
with graphics include libraries that require a Point structure. Typically, a
Point structure is simply a grouping of an X-coordinate and a Y-
coordinate, all in one package like this:

struct Point { 

  int x; 

  int y; 

};

Then, when you need to call a function that requires such a structure —
such as the function created for this example called DrawDot() — you
would simply declare a Point and call the function, as in the following:

Point onedot; 

onedot.x = 10; 

onedot.y = 15; 

DrawDot(onedot);

The DrawDot function would have a prototype that looks like this:

void DrawDot(Point pt);

Note that the function doesn’t take a pointer to a Point, nor does it take
a reference to a Point. It just gets right to the Point directly.



 If you want, you can initialize the members of a structure the
same way you would an array:

Point seconddot = { 30, 50 }; 

DrawDot(seconddot);

Equating structures
Setting simple structures that are equal to another structure is easy. The
C++ compiler automatically handles this by copying the members one
by one. The EquateStruct example, shown in Listing 2-3, is an example
of this process in action.

LISTING 2-3: Copying Structures Easily
#include <iostream> 

  

using namespace std; 

  

struct Point3D { 

  double x; 

  double y; 

  double z; 

}; 

  

int main() { 

  Point3D FirstPoint = { 10.5, 22.25, 30.8 }; 

  Point3D SecondPoint = FirstPoint; 

  

  cout << SecondPoint.x << endl; 

  cout << SecondPoint.y << endl; 

  cout << SecondPoint.z << endl; 

  return 0; 

}

 Because structures are almost identical to classes, you can take
Listing 2-2 and change the structure definition to the following



class definition, and the application will continue to function the
same:

class Point3D { 

public: 

  double x; 

  double y; 

  double z; 

};

No matter which form of the application you use, the output is simple.
When you run this application, you see output similar to this:

10.5 

22.25 

30.8

Returning compound data types
Because simple structures are just a grouping of smaller data items, you
can treat them as one chunk of data. For that reason, you can easily
return them from functions without having to use pointers. The
following function (found in the CompoundData example) shows how to
return a structure:

Point3D StartingPoint(float x) { 

  Point3D start; 

  start.x = x; 

  start.y = x * 2; 

  start.z = x * 3; 

  return start; 

}

This function relies on the Point3D struct defined in the preceding
section, “Equating structures.” The following code shows how to use
this function:

int main() { 

  Point3D MyPoint = StartingPoint(5.2); 

  Point3D OtherPoint = StartingPoint(6.5); 

  

  cout << MyPoint.x << endl; 

  cout << MyPoint.y << endl; 

  cout << MyPoint.z << endl; 

  cout << endl; 



  cout << OtherPoint.x << endl; 

  cout << OtherPoint.y << endl; 

  cout << OtherPoint.z << endl; 

}

These cout statements produce the following output:

5.2 

10.4 

15.6 

  

6.5 

13 

19.5

Note that StartingPoint() creates a local variable, start, of type
Point3D. This variable isn’t a pointer or reference. The return is an
unmodified start. Calling StartingPoint() copies the value of the
returned structure into variables in main(), first MyPoint and then
OtherPoint.

 You may start to see some trouble in paradise when returning
structures (or class instances, because they’re the same thing).
Returning a structure works, but what happens is sophisticated.
When you create an instance of the structure in the function, you’re
just creating a local variable. That’s definitely not something you
want to return; it would sit on the stack as a local variable. But
consider this call:

Point3D MyPoint = StartingPoint(5.2);

At the assembly level, StartingPoint() receives the address of
MyPoint. Then at the end of the function, again at the assembly level, the
compiled code copies the contents of start into the MyPoint structure
by using the pointer to MyPoint. So StartingPoint() doesn’t actually
return anything; instead, the data is copied. Thus, if your structure
includes a pointer variable (for example), you get a copy of the pointer
variable as well — that is, your pointer variable will point to the same



thing as the pointer in the function. That may or may not be what you
want, depending on your situation. So be careful and make sure you
fully understand what you’re doing when you return a structure from a
function!

Naming Your Space
It’s often nice to be able to use a common name for a variable or other
item without fear that the name will clash with a preexisting identifier.
For example, somewhere in a header file, you may have a global
variable called Count, and somebody else may want to make a variable
called Count in an application that uses your header file. Or you may
want to name a function GetData() — but you need to ensure that it
doesn’t conflict with another header that already has a GetData()
function. These are examples of potential naming clashes (or sometimes
called a name collision). The following sections describe how to create
and use namespaces to your benefit.

Creating a namespace
You can use namespaces to group identifiers, such as all your classes,
under a single name. If you called this group Menagerie, for example,
Menagerie is your namespace. You would then put your classes inside it,
as shown in the SimpleNamespace example:

namespace Menagerie { 

  class Oxen { 

  public: 

    int Weight; 

    int NumberOfTeeth; 

  }; 

  

  class Cattle { 

  public: 

    int Weight; 

    int NumberOfChildren; 

  }; 

}



The names Oxen and Cattle are unique within the Menagerie
namespace. You are free to reuse these names in other namespaces
without worrying about a clash. Then, if you want to use either of the
two classes outside the Menagerie namespace, you fully qualify the
names of the classes, like so (notice the use of the double colons
between Menagerie and Cattle):

Menagerie::Cattle bessie; 

bessie.Weight = 643;

 Unlike class and structure declarations, a namespace declaration
doesn’t have to end with a semicolon.

Employing using namespace
If you plan to use the names in the Menagerie namespace without having
to retype the namespace name each time, just put a line after the
namespace declaration in the other namespace (but somewhere
preceding the use of the names Cattle and Oxen in your code), like this:

using namespace Menagerie;

Then you can access the names as if they’re not in a namespace:
Cattle bessie; 

bessie.Weight = 643;

 When you include a line that has using namespace, the
compiler knows that the namespace is only for lines that follow the
using namespace declaration. Consider the following code:

void cattleranch() { 

  Cattle x; 

} 

  

using namespace Menagerie; 

void dairy() { 



  Cattle x; 

}

Here the first function won’t compile because the compiler won’t know
the name Cattle. To get it to work, you have to replace Cattle with
Menagerie::Cattle. But the second function will compile because you
included using namespace Menagerie;.

The using namespace line is good only for lines that follow it. If you
put using namespace inside a code block — inside curly braces { and },
as you would inside a function — the line applies only to lines that
follow it within the same code block. Thus, in this case:

void cattleranch() { 

    using namespace Menagerie; 

    Cattle x; 

} 

  

void dairy() { 

    Cattle x; 

}

the compiler will be happy with the first function, cattleranch() but
not with the second function, dairy(). The using namespace line is
good only for the length of the cattleranch() function; it’s inside that
function’s code block.

 When you have a using namespace line, any variables or
identifiers you create after that line don’t become part of the
namespace you’re using. The using namespace line simply tells the
compiler that if it finds an identifier it doesn’t recognize, it should
check next inside the namespaces you’re using.

 When you have a using namespace line, you can follow it with
more using namespace lines for other namespaces — and doing so



won’t cause the compiler to forget the previous using namespace
line. Thus, if you have

using namespace Menagerie; 

using namespace Ocean;

you can successfully refer to identifiers in both the Menagerie and the
Ocean namespaces.

CREATING ONE NAMESPACE IN MANY
PLACES

After you create a namespace, you can add to it later in your code if necessary. All you
have to do is start the first block of code with (for example) namespace Menagerie { and
then finish it with a closing brace. Then, later in your code, do the same line again —
starting the block again with namespace Menagerie { and ending it with a closing brace.
The identifiers in both blocks become part of the namespace Menagerie.

 However, now if there are multiple occurrences of the same
name, you receive an error message saying that the reference to the
name is ambiguous. The compiler then presents a list of
namespaces that contain the name so that you can decide which one
to use. You resolve the name clash by fully qualifying the name.

Using variables
You can put variables in a namespace and then later refer to them
through the namespace, as in the following:

namespace Menagerie { 

    int CattleCount; 

}

And do it again later — for example, in your main() — like this:

Menagerie::CattleCount = 10;



But remember: A namespace is not a class! Only one instance of the
CattleCount variable exists; it just happens to have a full name of
Menagerie::CattleCount. You can’t get away with creating multiple
instances of Menagerie because it’s a namespace. (Think of it like a
surname: There could be multiple people named John, and to distinguish
between them in a meeting at work, you might tack on their last names:
John Squibbledash and John Poltzerbuckin.) Although the namespace
name comes first in Menagerie::CattleCount, it’s analogous to the last
name. Two variables can be called CattleCount: one in the Menagerie
namespace and one in the Farm namespace. Their full names are
Menagerie::CattleCount and Farm::CattleCount.

Using part of a namespace
You can use only a portion of a namespace if desired. Using the
Menagerie namespace declared earlier in this section, you could do
something like this outside the namespace:

using Menagerie::Oxen; 

Oxen ollie;

(Notice that no namespace word appears after using.) The first line tells
the compiler about the name Oxen, and the second line creates an
instance of Oxen. Of course, if you have using namespace Menagerie,
the using Menagerie::Oxen isn’t very useful because the Oxen name is
already available from the using namespace Menagerie line.

 Think of a using declaration as pulling a name into the current
namespace. Therefore, a declaration such as using
Menagerie::Oxen pulls the name Oxen into the current namespace.
The single name then lives in both namespaces.

To understand how one name becomes a part of two namespaces,
consider the Namespace example, shown in Listing 2-4.



LISTING 2-4 Pulling Names into Other Namespaces
with the using Declaration
#include <iostream> 

  

using namespace std; 

  

namespace A { 

  int X; 

} 

  

namespace B { 

  using A::X; 

} 

  

int main() { 

  A::X = 2; 

  cout << B::X << endl; 

  return 0; 

}

THE STANDARD NAMESPACE
Sooner or later, you’re going to encounter something like this:

std::cout << "Hi" << std::endl;

You see this because normally cout, cin, endl, and everything else that comes from
#include<iostream> is in a namespace called std (which is short for standard). Most
developers don’t want to write a namespace name and two colons every time for each
occurrence of cout or endl. To avoid this problem you simply put

using namespace std;

at the beginning of your application, after the include lines. So if you look at the
downloadable code, you see that line at the beginning of every application.

This code has two namespaces, A and B. The first namespace, A, has a
variable called X. The second namespace, B, has a using statement that
pulls the name X into that namespace. The single variable that lives
inside A is now part of both namespaces, A and B. main() verifies this: It
saves a value in the X variable of A and prints the value in the X variable
of B with an output of:



2

A::X and B::X refer to the same variable, thanks to the using
declaration!
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Chapter 3

Constructors, Destructors, and
Exceptions

IN THIS CHAPTER
 Writing and using different kinds of constructors
 Writing destructors
 Understanding constructor and destructor ordering
 Throwing and catching exceptions

In this chapter, you encounter three vital topics: constructors,
destructors, and exceptions. Fully understanding what goes on with
constructors (creating an object) and destructors (destroying an object)
is very important. The better you understand how constructors and
destructors work, the less likely you are to write class and structure code
that doesn’t function the way you expected and the more likely you are
to avoid bugs.

Exceptions are important also in that they let you handle unexpected
situations — that is, you can handle problems when they do come up.
An exception can signal a program error, a missing resource, use input
issues, or any number of other situations that the application code didn’t
expect. That’s why it’s called an exception — an exception to what was
expected.

Many developers feel that constructors, destructors, and exceptions are
extremely simple. In fact, many developers would doubt that these three
topics could fill an entire chapter, but they can. After you read this
chapter, you should have a good mastery of constructors, destructors,
and exceptions.



 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookV\Chapter03
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Constructing and Destructing
Objects

As described in Book 2, Chapter 3, classes describe how to build
objects. Constructors are methods that the application calls when it
creates an instance. This topic appeared as early as the “Using an
initializer” section of Book 1, Chapter 8, so you’ve already heard about
them a few times. Destructors, on the other hand, are methods that the
application calls when it deletes an instance. The “Starting and Ending
with Constructors and Destructors” section of Book 2, Chapter 1
provides you with an overview of them. Both are essential to making
classes complete by telling how to create and delete objects described by
the class.

A single class can have multiple constructors. In fact, several kinds of
constructors are available. There aren’t as many kinds of destructors. (In
fact, there’s really only one.) In the sections that follow, you obtain all
the necessary information to create both constructors and destructors.

Overloading constructors
You’re allowed to put multiple constructors in your class. The way the
user of your class chooses a constructor is by setting up the parameters
in the variable declaration. Suppose you have a class called Clutter, and
suppose you see the following two lines of code:

Clutter inst1("Jim"); 

Clutter inst2(123, "Sally");



These two lines have different types of parameters in the list. Each one is
making use of a different constructor for the single class.

You can put multiple constructors in your class. The process of putting
multiple constructors is called overloading the constructors. The
Constructor01 example demonstrates how to create a Clutter class
that has two constructors, as shown here:

class Clutter { 

protected: 

  string ChildName; 

  int Toys; 

  

public: 

  Clutter(int count, string name) { 

    ChildName = name; 

    Toys = count; 

  } 

  

  Clutter(string name) { 

    ChildName = name; 

    Toys = 0; 

  } 

};

The compiler determines which overloaded constructor to use based on
the parameters. Therefore, the overloaded constructors must differ by
parameter lists, which means the number or type of parameters (or both);
just changing the names doesn’t count! If the parameter lists don’t differ,
the compiler can’t distinguish them, and you’ll get an error when it tries
to compile the class definition.

 If your constructor doesn’t have a parameter provided by other
constructors, you should initialize the associated variable within the
constructor code. For example, the second constructor doesn’t
include a parameter for Toys, so the constructor code initializes this
variable to 0. As an alternative, you can use an initializer, as
described in the “Initializing members” section of the chapter.



 Having multiple constructors makes your class more flexible
and easier to use. Multiple constructors give the users of your class
more ways to use the class, allowing them to configure the
instances differently, depending on the situation. Further, the
constructors force the user to configure the instances only in the
ways your constructors allow.

Initializing members
When C++ originally came out, any time you wanted to initialize a
property, you had to put it inside a constructor. This created some
interesting problems. The main problem had to do with references: You
can put reference variables in a class, but normally reference variables
must be initialized. You can’t just have a reference variable floating
around that doesn’t refer to anything. But if you put a reference variable
inside a class and create an instance of the class, the application will first
create the instance and then call the constructor. Even if you initialize
the reference in the first line of the constructor, there’s still a moment
when you have an uninitialized reference. The following sections help
you build a class with an initializer, and you see the result of these
efforts as the Constructor2 example.

Starting the ANSI approach simply
The ANSI standard uses a single approach for setting up properies:
initializers. An initializer goes on the same line as the constructor in the
class definition; or, if the constructor isn’t inline — defined within the
class code block — the initializer goes with the constructor in the code
outside the class definition. Here’s an example of how to add an
initializer to a class (this section continues to build on this class):

class MySharona { 

protected: 

  int OneHitWonders; 

  int NumberRecordings; 

public: 

  MySharona() : OneHitWonders(1), NumberRecordings(10) {} 

};



When you create an instance of this class, the OneHitWonders member
gets the value 1 and the NumberRecordings member gets the value 10.
Note the syntax: The constructor name and parameter list (which is
empty in this case) are followed by a single colon. The properties appear
after that, each followed by an initial value in parentheses. Commas
separate the properties. After the properties is the open brace for any
code you want in the constructor.

 You can put any of the class properties in the initializer list, but
you don’t have to include them all. If you don’t care to initialize
some, you don’t have to. Note also that you cannot put inherited
members in the initializer list; you can include only members that
are in the class itself.

Passing a variable
Initializers don’t have to rely on static values. You can also pass these
initial values in through the constructor. Here’s a slightly modified
version of the MySharona class. This time, the constructor has a
parameter saved in the NumberRecordings member:

class MySharona { 

protected: 

  int OneHitWonders; 

  int NumberRecordings; 

public: 

  MySharona(int Records) : OneHitWonders(1), 

    NumberRecordings(Records) {} 

};

 By associating an initializer list with a constructor, you can have
different initializers with different constructors. You’re not limited
to initializing the data the same way for all your constructors.

Accessing base constructors



You may have noticed that the member initialization follows a format
similar to the way you initialize an inherited constructor. Look at how
the following code calls the base class constructor:

class MusicInfo { 

public: 

  int PhoneNumber; 

  MusicInfo(int Phone) : PhoneNumber(Phone) {} 

}; 

  

class MySharona : public MusicInfo { 

protected: 

  int OneHitWonders; 

  int NumberRecordings; 

public: 

  MySharona(int Records) : OneHitWonders(1), 

    NumberRecordings(Records), 

    MusicInfo(8675309) {} 

};

In the MySharona class, the properties get initialized, and the base class
constructor gets called, all in the initialization. The call to the base class
constructor is this portion:

MusicInfo(8675309)

But note that the code passes a number into the constructor. The
MusicInfo constructor takes a single number for a parameter, and it uses
the number it receives to initialize the Phone member:

MusicInfo(int Phone) : PhoneNumber(Phone) {}

Therefore, every time someone creates an instance of the class
MySharona, the inherited PhoneNumber member is automatically
initialized to 8675309. Thus you can create an instance of MySharona like
this:

MySharona CD(20);

This instance starts out having the member values OneHitWonders = 1,
NumberRecordings = 20, and Phone = 8675309. The only thing the user
can specify is the NumberRecordings member. The other two members
are set automatically by the class.



However, you don’t have to do it this way. Perhaps you want the users of
this class to be able to specify the PhoneNumber when they create an
instance. Here’s a modified form that does it for you:

class MusicInfo { 

public: 

  int PhoneNumber; 

  MusicInfo(int Phone) : PhoneNumber(Phone) {} 

}; 

  

class MySharona : public MusicInfo { 

protected: 

  int OneHitWonders; 

  int NumberRecordings; 

public: 

  MySharona(int Records, int Phone) : OneHitWonders(1), 

    NumberRecordings(Records), MusicInfo(Phone) {} 

};

Look carefully at the difference: The MySharona class now has two
parameters. The second is an integer that’s passed into the base class
through the portion:

MusicInfo(Phone)

So to use this class, you might do something like this:
MySharona CD(20, 5551212);

This code snippet creates an instance of MySharona, with the members
initialized to OneHitWonders = 1, NumberRecordings = 20, and
PhoneNumber = 5551212.

Overloading the constructor
If you have overloaded constructors, you can have different sets of
initializations. Look at one more modification to this final version of the
Constructor02 example:

class MySharona : public MusicInfo { 

protected: 

  int OneHitWonders; 

  int NumberRecordings; 

public: 

  MySharona(int Records, int Phone) : MusicInfo(Phone), 

    OneHitWonders(1), NumberRecordings(Records) {} 



  

  MySharona(int Records) : MusicInfo(8675309), 

    OneHitWonders(1), NumberRecordings(Records)  {} 

};

This class has two constructors from the combination of the previous
two versions, so now you can use either constructor. You can create two
variables, for example, each using a different constructor:

MySharona CD(20, 5551212); 

MySharona OldCD(30); 

cout << CD.PhoneNumber << endl; 

cout << OldCD.PhoneNumber << endl;

When you run the cout lines, they have different values for the
PhoneNumber member. The first passes a specific value; the second
accepts a default value:

5551212 

8675309

 You should initialize the base class values first. Otherwise the
compiler is likely to display warning messages when you compile
the application.

Using default values
If the only real difference in the different constructors is whether the user
supplies a value (as was the case in the previous example), you can use a
slightly better approach. Constructors (and any function in C++, really)
can have default values. The Constructor03 example shortens the
previous examples by using default values. The result is the same:

class MySharona : public MusicInfo { 

protected: 

  int OneHitWonders; 

  int NumberRecordings; 

public: 

  MySharona(int Records, int Phone=8675309) : 

    MusicInfo(Phone), OneHitWonders(1), 

    NumberRecordings(Records) {} 

};



 In the preceding code, the second parameter to the constructor
has an equals sign and a number after it, which means that the user
of the class doesn’t have to specify this parameter. If the parameter
is not present, it automatically gets the value 8675309.

 You can have as many default parameters as you want in a
constructor or any other function, but the rule is that the default
parameters must come at the end. After you have a default
parameter, all the parameters that follow must have a default value.
Therefore, the following type of code is not allowed:

MySharona(int Records = 6, int Phone) : 

    MusicInfo(Phone), OneHitWonders(1), 

    NumberRecordings(Records) {}

There’s a practical reason for this prohibition: When the user calls the
constructor (by creating a variable of type MySharona, there is no way to
leave out just a first parameter and have only a second one. It’s not
possible, unless C++ were to allow an empty parameter followed by a
comma, as in MySharona(,8675309). Overloaded constructors (and
other functions) must also differ by non-optional parameters. Otherwise,
the compiler can’t tell whether you’re trying to use one function or
another with some parameters omitted.

Adding a default constructor
A default constructor is a constructor that takes no parameters — the
compiler generally creates it when you don’t create any constructors.
You can have a default constructor in a class in either of two ways: by
coding it or by letting the compiler implicitly build one for you. Every
class that lacks a constructor has a default constructor created by the
compiler.



You’ve probably seen a default constructor before. This class has no
constructor, so the compiler generates an implicit one for you. It works
like this:

class Simple { 

public: 

  int x,y; 

  void Write() { 

    cout << x << " " << y << endl; 

  } 

};

Of course, the preceding class doesn’t do much. It’s the same as this:
class Simple { 

public: 

  int x,y; 

  void Write() { 

      cout << x << " " << y << endl; 

  } 

  

  Simple() {} 

};

Recognizing that the default constructor is there, however, is important.
And you need to realize when the compiler doesn’t create a constructor
automatically because you may run into some problems. Look at this
modified version of the class (found in the Constructor04 example):

class Simple { 

public: 

  int x,y; 

  void Write() { 

    cout << x << " " << y << endl; 

  } 

  

  Simple(int startx) { x = startx; } 

};

This class includes a constructor that takes a parameter. After adding this
constructor, the class no longer gets an implicit default constructor from
the compiler. Adding a line like this to main():

Simple inst;

causes the compiler to generate an error message like this:



In function 'int main()' 

error: no matching function for call to 'Simple::Simple()' 

note: candidate: Simple::Simple(int) 

note:   candidate expects 1 argument, 0 provided 

note: candidate: constexpr Simple::Simple(const Simple&) 

note:   candidate expects 1 argument, 0 provided 

note: candidate: constexpr Simple::Simple(Simple&&) 

note:   candidate expects 1 argument, 0 provided|

If you remove the added constructor, this error goes away! Therefore,
when you provide no constructors, the compiler gives you an implicit
default constructor.

Now here’s where you could run into trouble: Suppose you build a class
and provide no constructors for it. You give the class to other people to
use. They’re using it in their code, all happy, making use of the default
constructor. Then one day somebody else decides to enhance the class by
adding a special constructor with several parameters. The rogue
programmer adds the constructor and then makes use of it.
Unfortunately, this also means that all the other people who were using
the implicit default constructor suddenly start getting compiler errors!
You can avoid this problem by explicitly including a default constructor,
even if it does nothing:

class Simple { 

public: 

  int x,y; 

  void Write() { 

    cout << x << " " << y << endl; 

  } 

  

  Simple() {} 

};

Then when someone adds a constructor with parameters, the default
constructor will still be there. The added constructor will overload the
default constructor:

class Simple { 

public: 

  int x,y; 

  void Write() { 

      cout << x << " " << y << endl; 

  } 



  

  Simple() {} 

  Simple(int startx) { x = startx; } 

};

Note that now this class has two constructors! And all will be happy,
because everybody’s code will still compile.

Functional constructors
Every once in a while, you may come across code that looks like this:

Simple inst = Simple(5);

It looks like a function call or like the way you would declare a pointer
variable, except there’s no asterisk and no new word. It’s actually a
functional syntax for calling a constructor. The right side creates a new
instance of Simple, passing 5 into the constructor. This new instance gets
copied into the inst variable.

 This approach can be handy when you create an array of objects,
where the array contains actual objects, not pointers to objects:

Simple MyList[] = { Simple(1), Simple(50), Simple(80), 

  Simple(100), Simple(150) };

The approach seems a little strange because the variable MyList is not a
pointer, yet you’re setting it equal to something on the right. But this
approach is handy because you may need a temporary variable. The
Constructor05 example, shown in Listing 3-1, demonstrates how you
can use the functional syntax to create a temporary instance of the class
string.

LISTING 3-1: Creating Temporary Instances with
Functional Constructors
#include <iostream> 

  

using namespace std; 

  



void WriteMe(string str) { 

  cout << "Here I am: " << str << endl; 

} 

  

int main() { 

  WriteMe(string("Sam")); 

  return 0; 

}

When you compile and run this, you see this output:
Here I am: Sam

The code creates a temporary instance of the string class in main(). But
as it turns out, an even shorter version of this code is available by calling
WriteMe() like this:

WriteMe("Sam");

This code works out well because you don’t even feel like you’re
working with a class called string. The parameter just seems like a
basic type, and you’re passing a character array, Sam. However, the
parameter is an instance of a class. Here’s how the code works. Suppose
you have a class like the one found in the Constructor06 example and a
function to go with it:

class MyNumber { 

public: 

  int First; 

  MyNumber(int TheFirst) : First(TheFirst) {} 

}; 

  

void WriteNumber(MyNumber num) { 

  cout << num.First << endl; 

}

WriteNumber() isn’t a member of MyNumber. You can make any of the
following calls to WriteNumber().

Use a previously declared variable of type MyNumber:
MyNumber prime = 17; 

WriteNumber(prime);



Create a temporary instance, passing the value 23 into the
constructor:

WriteNumber(MyNumber(23));

Create a temporary instance, but do so implicitly:
WriteNumber(29);

The output from this example is
17 

23 

29

 You may wonder when your temporary variables get destroyed.
For instance, if you call WriteNumber(MyNumber(23));, how long
does the temporary MyNumber instance live on? The ANSI standard
states that the instance is deleted at the end of the full expression.

 Be careful when using implicit temporary objects. Consider the
following class and function found in the Constructor07 example:

class MyName { 

public: 

  string First; 

  MyName(string TheFirst) : First(TheFirst) {} 

}; 

  

void WriteName(MyName name) { 

  cout << "Hi I am " << name.First << endl; 

}

Seems straightforward. The MyName constructor takes a string, so it
seems as though the following code should work:

WriteName("George");

Unfortunately, the compiler gives the following error message:



In function 'int main()': 

error: could not convert '(const char*)"George"' from 

   'const char*' to 'MyName'

Here’s the problem: The compiler got shortsighted. The compiler
considers the type of the string constant to be a const char * (that is, a
pointer to a const character, or really a constant character array). There
aren’t any constructors that take a const char * parameter, but one does
take a string, and the string class has a constructor that takes a const
char * parameter. Unfortunately, the compiler doesn’t fall for that, and
it complains. To make the call work, you must adjust the

WriteName(string("George"));

This time it works. Now the compiler explicitly creates a temporary
string instance. Using a temporary string implicitly creates a
temporary instance of MyName class.

Calling one constructor from another
If you have some initialization code and you want several constructors to
call it, you might try putting the code in one constructor and then having
the other constructors call the constructor that has the initialization code.
Unfortunately, this scenario won’t work. When you have a constructor
and write code to call another constructor from within it, such as this:

CallOne::CallOne(int ax) 

{ 

  y = 20; 

  CallOne(); 

}

where CallOne is your class, the code will compile but won’t behave the
way you may expect. The line CallOne(); isn’t calling a constructor for
the same instance! The compiler treats this line as a functional
constructor, which creates a separate, temporary instance. When
CallOne() ends, the application deletes the instance. You can see this
behavior with the following class:

class CallOne { 

public: 

  int x,y; 



  CallOne(); 

  CallOne(int ax); 

}; 

  

CallOne::CallOne() { 

  x = 10; 

  y = 10; 

} 

  

CallOne::CallOne(int ax) { 

  y = 20; 

  CallOne(); 

}

When you create an instance by using the second constructor like this,
the value of the y member of the instance will be 20, not 10:

CallOne Mine(10);

To people who don’t know any different, it may look as though the y
would first get set to 20 in the second constructor, and then the call to the
default constructor would cause it to get changed to 10. But that’s not the
case: The second constructor is not calling the default constructor for the
same object; it’s creating a separate, temporary instance.

 If you have common initialization code that you want in
multiple constructors, put the code in its own private or protected
function (called, for example, Init()), and have each constructor
call the Init() function. If you have one constructor call another
constructor, it won’t work. The second constructor will be operating
on a separate instance.

Copying instances with copy constructors
One nice thing about C++ is that it lets you copy instances of classes.
For example, if you have a class called Copyable, you can write code
like this:

Copyable first; 

Copyable second = first;



This code creates two instances, and second is a duplicate of first. The
application accomplishes this by simply copying all the properties from
first to second, which works well except that you may want to
customize the behavior. For example, you may have a property that
contains a unique ID for each instance. In your constructor, you may
have code that generates a unique ID. The problem is that the previous
sample doesn’t call your constructor: It makes a duplicate of the object.
Thus, your two objects have the same number for their supposedly
unique IDs.

If you want control over the copying, you can create a copy constructor.
A copy constructor is just a constructor that takes as a parameter a
reference to another instance of the same class, as in this example:

Copyable(const Copyable& source);

When you copy an instance, your application calls this constructor. The
parameter to this constructor is the instance you’re copying. Thus, in the
case of Copyable second = first;, the source parameter is first. And
because it’s a reference (which is required for copy constructors), you
can access its members by using the dot notation (.) rather than the
pointer notation (->).

The Constructor08 example shown in Listing 3-2 is a complete
application that demonstrates copy constructors.

LISTING 3-2: Customizing the Copying of Instances
#include <iostream> 

  

using namespace std; 

  

class Copyable { 

protected: 

  static int NextAvailableID; 

  int UniqueID; 

public: 

  int SomeNumber; 

  int GetID() { return UniqueID; } 

  Copyable(); 

  Copyable(int x); 



  Copyable(const Copyable& source); 

}; 

  

Copyable::Copyable() { 

  UniqueID = NextAvailableID; 

  NextAvailableID++; 

} 

  

Copyable::Copyable(int x) { 

  UniqueID = NextAvailableID; 

  NextAvailableID++; 

  SomeNumber = x; 

} 

  

Copyable::Copyable(const Copyable& source) { 

  UniqueID = NextAvailableID; 

  NextAvailableID++; 

  SomeNumber = source.SomeNumber; 

} 

  

int Copyable::NextAvailableID; 

  

int main() { 

  Copyable take1 = 100; 

  Copyable take2; 

  take2.SomeNumber = 200; 

  Copyable take3 = take1; 

  cout << take1.GetID() << " " 

       << take1.SomeNumber << endl; 

  cout << take2.GetID() << " " 

       << take2.SomeNumber << endl; 

  cout << take3.GetID() << " " 

       << take3.SomeNumber << endl; 

  return 0; 

}

You see the following output when you run this application:
0 100 

1 200 

2 100

You need to know two things about this code:

Copy constructor with const instance. C++ has a rule where you
must have a constant instance to create a copy. If you leave off
const, this line would not compile properly.



Copying the propeterties manually from one instance to the
other. Now that the class has its own copy constructor, the computer
will not copy the members as it would when the code lacks a copy
constructor.

Listing 3-2 uses a static member to keep track of what the next available
UniqueID is. Remember that a class shares a single static member among
all instances of the class. Therefore, you have only one instance of
NextAvailableID, and it’s shared by all the instances of class Copyable.

When constructors go bad
Suppose that you’re writing a class that will connect to the Internet and
automatically download the latest weather report for the country of
Upper Zamboni. The question is this: Do you put the code to connect to
the Internet in the constructor or not?

People are often faced with this common design issue. Putting the
initialization code in the constructor provides many advantages. For one,
you can produce a usable instance without having to first create it and
then call a separate method that does the initialization. In general, this
approach works fine.

However, sometimes the initialization process can produce an error. For
example, suppose that the constructor is unable to connect to the
Internet. Remember: A constructor doesn’t return a value. So you can’t
have it return, for example, a bool that would state whether it
successfully did its work.

You have many choices for dealing with issues like Internet connections,
and different people seem to have rather strong opinions about which
choice is best. Here are the common options:

Just don’t do it: Write your constructors so that they create the
object but don’t do any work. Instead, put the work code in a
separate method, which can return a bool representing whether it
was successful.



Let the constructor do the work: If the work fails (for example, it
can’t connect to the Internet), have the constructor save an error code
in a property. When you create an instance, you can check the
property to see whether it works.
Let the constructor do some more of the work: If the work fails,
throw an exception. In your code, then, you would wrap the creation
of the instance with a try…catch block and include an exception
handler. (See “Programming the Exceptions to the Rule,” later in this
chapter, for more information on try…catch blocks and exception
handlers.)

 Each of these options comes with potential problems. For
example, having a two-part creation and initialization process
means that you depend on the developer to perform both steps.
Using an error code means that you depend on the developer to
check it. Raising exceptions during the creation process means that
you’re depending on the developer to wrap the code in a try…catch
block. None of these options comes without risk.

Destroying your instances
Although constructors are versatile and people could seemingly write
entire books on them, destructors are simple, and there’s not a whole lot
to say about them. But you do need to know some information to make
them work properly. For example, destructors don’t get parameters, and
(like constructors) they do not provide return values.

Suppose you have a class that contains, as members, instances of other
classes. When you delete an instance of the main class, you need to
know that the contained instances will be deleted automatically. If your
class contains actual instances (as opposed to pointers), they will get
deleted. Look at this code from the Destructor01 example:

class LittleInst { 

public: 



  int MyNumber; 

  ~LittleInst() { cout << MyNumber << endl; } 

}; 

  

class Container { 

public: 

  LittleInst first; 

  LittleInst *second; 

  Container(); 

}; 

  

Container::Container() { 

  first.MyNumber = 1; 

  second = new LittleInst; 

  second->MyNumber = 2; 

}

You see two classes, LittleInst and Container. The Container class
holds an instance of LittleInst (the property called first) and a
pointer to LittleInst. The constructor sets up the two LittleInst
instances. For first, it already exists, and all you have to do is
configure first’s MyNumber member. But second is just a pointer, so the
code creates the instance before it can configure the second MyNumber
member. Thus we have two instances, one a pointer and one a regular
instance.

Now suppose you use these classes like so:
Container *inst = new Container; 

delete inst;

Container has no destructor, so the concern is whether first and
second get destroyed. Here’s the output you see:

1

That’s the output from the LittleInst destructor. The number 1 goes
with the first member. So you can see that first was destroyed, but
second wasn’t.



 Here’s the rule: When you delete an instance of a class, the
members that are direct (that is, not pointers) are deleted as well. If
you have any pointers, however, you must manually delete them in
your destructor (or elsewhere).

Sometimes you may want an object to hold an instance of another class
but want to keep the instance around after you delete the containing
object. In that case, you wouldn’t delete the other instance in the
destructor.

Here’s a modification to the Container class (found in the
Destructor02 example) that deletes the second instance:

class Container { 

public: 

  LittleInst first; 

  LittleInst *second; 

  Container(); 

  ~Container() { delete second; } 

};

Then, when you run these two lines again:
Container *inst = new Container; 

delete inst;

you see this output, which deletes both instances:
2 

1

In the preceding output, you can see that it deleted the second instance
first. The reason is that the application calls the destructor before it
destroys the direct members. In this case, when the code deleted the
Container instance, the application first called the destructor before
deleting the first member. That’s actually a good idea, because in the
code for the destructor, you may want to do some work on the properties
before they get wiped out.

Virtually inheriting destructors



You can (and should) make destructors virtual — unlike constructors
(the constructor can’t be virtual because when a constructor of a class is
executed, there is no virtual table in the memory, which means no virtual
pointer has been defined yet). The reason is that you can pass an instance
of a derived class into a function that takes a base class, like this:

void ProcessAndDelete(DeleteMe *inst) { 

  cout << inst->Number << endl; 

  delete inst; 

}

This function takes an instance of class DeleteMe, does some work on it,
and deletes it. Now, suppose you have a class derived from DeleteMe —
say, class Derived. Because of the rules of inheritance, you’re allowed to
pass the instance of Derived into this function. But by the rules of
polymorphism (as described in the “Specializing with polymorphism”
section of Book 2, Chapter 3), if you want the ProcessAndDelete()
function to call an overloaded method of Derived, you need to make the
method virtual. That’s the case with all destructors as well. The
Destructor03 example, shown in Listing 3-3, demonstrates making
destructors virtual.

LISTING 3-3: Making the Destructors Virtual
#include <iostream> 

  

using namespace std; 

  

class DeleteMe { 

public: 

  int Number; 

  virtual ~DeleteMe(); 

}; 

  

class Derived : public DeleteMe { 

public: 

  virtual ~Derived(); 

}; 

  

DeleteMe::~DeleteMe() { 

  cout << "DeleteMe::~DeleteMe()" << endl; 

} 



  

Derived::~Derived() { 

  cout << "Derived::~Derived()" << endl; 

} 

  

void ProcessAndDelete(DeleteMe *inst) { 

  cout << inst->Number << endl; 

  delete inst; 

} 

  

int main() { 

  DeleteMe *MyObject = new(Derived); 

  MyObject->Number = 10; 

  ProcessAndDelete(MyObject); 

  return 0; 

}

When you run this application, delete calls the destructor for Derived ,
which in turn calls the base class destructor. You can see how all this
works thanks to the cout calls in the destructors. Here’s the output:

10 

Derived::~Derived() 

DeleteMe::~DeleteMe()

The first line is the output from ProcessAndDelete(). The middle line is
the output from the Derived() destructor, and the third line is the output
from the DeleteMe() destructor. The code passes in a Derived instance,
and the application calls the Derived destructor.

Now try this: Remove virtual from the DeleteMe destructor:

class DeleteMe { 

public: 

  int Number; 

  ~DeleteMe(); 

};

When you compile and run the application, the application calls the base
class destructor. Because ProcessAndDelete() takes a DeleteMe
instance, you see this output:

10 

DeleteMe::~DeleteMe()



ORDERING YOUR CONSTRUCTORS AND
DESTRUCTORS

When you have constructors and destructors in a base and derived class and you
create an instance of the derived class, remember the ordering: The computer first
creates the members for the base class, and then the computer calls the constructor for
the base class. Next, the computer creates the members of the derived class, and then
the computer calls the constructor for the derived class.

The order for destruction is opposite. When you destroy an instance of a base class,
first the computer calls the destructor for the derived class and then deletes the
members of the derived class. Next, the computer calls the destructor for the base
class and then deletes the members of the base class.

In the preceding example, the destructor isn’t virtual; it’s not able to
find the proper destructor when you pass a Derived instance. So it calls
the destructor for whatever type is listed in the parameter.

 Getting into the habit of always making your destructors
virtual is a good idea. That way, if somebody else writes a
function, such as ProcessAndDelete(), you can be assured the
function automatically calls the correct destructor.

Programming the Exceptions to the
Rule

An exception is an unexpected situation that occurs in your software. For
example, if you try to write to a file, but somehow that file is corrupted
and you can’t, the operating system might throw an exception. Or you
might have a function that processes some data, and if the function
encounters corrupted data, it might throw an exception. The following
sections get you started using exceptions.

Creating a basic try…catch block



The Exception01 example, shown in Listing 3-4, is a sample of a
function that throws an exception.

LISTING 3-4: Throwing and Catching Exceptions
#include <iostream> 

  

using namespace std; 

  

void ProcessData() { 

  throw new string("Oops, I found some bad data!"); 

} 

  

int main() { 

  try { 

    ProcessData(); 

    cout << "No problems!" << endl; 

  } catch (string *excep) { 

    cout << "Found an error. Here's the message."; 

    cout << endl; 

    cout << *excep; 

    cout << endl; 

  } 

  cout << "All finished." << endl; 

  return 0; 

}

You see the following text as output when you run this application:
Found an error. Here's the message. 

Oops, I found some bad data! 

All finished.

Look closely at what this application does. In main(), there’s a call to
ProcessData() inside a try…catch block. Because the call is inside a
try…catch block, the computer calls the function; and if the function
throws an exception, the application automatically comes back out of the
function and goes into the catch block. The catch block receives the
object that was thrown as a parameter, much like a parameter to a
function.

But if ProcessData() doesn’t encounter any problems and therefore
doesn’t throw an exception, the function will complete its work and the
application will continue with the code after the function call. If there is



no exception, then upon completion of ProcessData(), the computer
executes the cout line after the ProcessData() call.

 Think of an exception handler as a way to detect unexpected
events. When something unexpected happens, even if there is no
fault in the code or the assumptions you make, the catch block can
handle the situation or at least alert you to it. After the try…catch
block completes, the application runs any lines that follow,
regardless of whether an exception occurred. Thus, in all cases,
Listing 3-4 executes the line

cout << "All finished." << endl;

In the listing, note that ProcessData() calls throw, meaning that it
generates an exception. Normally, you probably wouldn’t just have a
function throw an exception for no reason, as this function does — it’s
included like this for the example. This particular throw looks like this:

throw new string("Oops, I found some bad data!");

The exception is thrown using a new string instance. You can create an
instance of any class you want, and it can be either a pointer or a direct
instance, depending on whether you prefer to work with pointers or
references (it’s your choice).

Now look at the catch block in Listing 3-4. Notice that it starts with
this:

catch (string *excep)

 Because the function throws a pointer to a string instance, the
catch block must accept a pointer to a string instance. Everything
must match.



Normally you don’t throw an exception of type string. Instead, you use
one of the exception categories described at
https://en.cppreference.com/w/cpp/error, such as
invalid_argument, to standardize the exception. You can also create a
custom exception category using a struct or a class that extends
std::exception, as described at
http://peterforgacs.github.io/2017/06/25/Custom-C-Exceptions-

For-Beginners/. Note that some exception categories are available only
to users of C++ 11, C++ 17, or above. Both C++ 17 and C++ 20 remove
some exception categories, so it’s important to verify the categories you
use in your application.

When working with C++ 11 or above, the catch block parameter may
also have attributes that control how you interact with it, such as making
the parameter const. Catching exceptions by reference avoids some
significant problems that can occur when catching exceptions by value,
as described in the article at
https://riptutorial.com/cplusplus/example/9212/best-practice-

-throw-by-value--catch-by-const-reference.

 Never throw an exception in a destructor. If an object’s method
throws an exception, the application calls the object’s destructor
before moving out of the try…catch block. When the destructor
experiences an unexpected event and also throws an exception, the
application sees that two exceptions are active at the same time and
calls the terminate() function, which causes the application to
stop running.

Using multiple catch blocks
You can have more than one catch block. Suppose that different types of
exceptions could get thrown. For example, you might have a function
like this to use with ProcessData() from the previous section:

https://en.cppreference.com/w/cpp/error
http://peterforgacs.github.io/2017/06/25/Custom-C-Exceptions-For-Beginners/
https://riptutorial.com/cplusplus/example/9212/best-practice--throw-by-value--catch-by-const-reference


void ProcessMore() { 

    throw new int(10); 

}

ProcessData() threw a pointer to a string, but this one throws a pointer
to an integer. When you call the two functions, your try…catch block
can look like this:

try { 

  ProcessData(); 

  ProcessMore(); 

  cout << "No problems!" << endl; 

} catch (string *excep) { 

  cout << "Found an error. Here's the message."; 

  cout << endl; 

  cout << *excep; 

  cout << endl; 

} catch (int *num) { 

  cout << "Found a numerical error. Here it is."; 

  cout << endl; 

  cout << *num; 

  cout << endl; 

} 

cout << "All finished." << endl;

If you add this code and the ProcessMore() function to Listing 3-4, you
want to comment out the throw line from ProcessData() if you want to
see this application handle the integer exception. That’s because the
execution of the lines in the try block cease as soon as a throw
statement occurs, and control transfers to the appropriate catch block.
Which catch block gets the honor depends on the type of the object
thrown.

Throwing direct instances
You can throw a direct instance that is not a pointer. This is called
throwing an exception by value. However, you should avoid this practice
for two reasons (which is why the technique isn’t demonstrated here):

Resource usage and time: Throwing an exception by value means
that the application must create a second copy of the object because



the original object goes out of scope. You now have two copies of
the exception object on the stack.
The slicing problem: If the catch clause is created to catch a super
class object (the parent) and the exception thrower uses a derived
class instead, the catch block receives only a copy of the super class
object without any of the attributes intact. The super class object in
the catch block doesn’t have the values defined by the derived class,
so if the thrown object includes any of those values they are lost.

The preferred method of throwing exceptions in newer versions of C++
is to use references in the catch block. (The throw line does not
change.) It looks like this:

try { 

  ProcessData(); 

  ProcessMore(); 

} catch (string &excep) { 

  cout << excep; 

} catch (int &num) { 

  cout << num; 

}

 You may notice something just a little strange. For the integer
version, the throw statement looks like this:

throw 10;

That is, the line of code is throwing a value, not an object. But the catch
line looks like this:

catch (int &num) {

The catch statement is catching a reference. Normally you can have
references only to variables, not to values! But it works here because
inside the computer, the application makes a temporary variable, and
that’s what you’re referring to in the catch block.

Catching any exception



If you want to write a general catch handler that will catch any
exception and you don’t care to actually catch the object that was
thrown, you can write your handler like this:

try { 

  ProcessData(); 

  ProcessMore(); 

  cout << "No problems!" << endl; 

} catch (…) { 

  cout << "An unknown exception occurred." << endl; 

}

That is, instead of putting what is effectively a parameter in the catch
header, you just put three dots, called an ellipsis. You can also use the
ellipsis as a general exception catcher in addition to your other handlers.
However, because the general exception handler is generic, you must
place it last in the list. When creating a list of catch blocks, always
move from most specific to least specific. Here’s an example:

try { 

  ProcessData(); 

  ProcessMore(); 

  cout << "No problems!" << endl; 

} catch (string excep) { 

  cout << "Found an error. Here's the message."; 

  cout << endl; 

  cout << excep; 

  cout << endl; 

} catch (int num) { 

  cout << "Found a numerical error. Here it is."; 

  cout << endl; 

  cout << num; 

  cout << endl; 

} catch (…) { 

  cout << "An unknown exception occurred." << endl; 

}

 If your function calls throw an exception and you don’t have any
exception handler for it (because your catch blocks don’t handle
the type of exception being thrown or you don’t have any try…
catch blocks), your application will stop. The application prints the



following message on the console and then immediately terminates
the application:

abnormal program termination

 These programming rules keep your users happily ignorant of
exceptions:

Know when you’re calling a function that could throw an exception.
When you’re calling a function that could throw an exception,
include an exception handler.
It doesn’t matter how deep the exception is when it’s thrown;
somewhere, somebody needs to catch it. A function could call a
function that calls a function that calls a function that calls a function
that throws an exception. If no intermediate function has an
exception handler, put one in your outer function.

Rethrowing an exception
When inside a catch block, a throw statement without anything after it
simply rethrows the same exception. Although this reaction may seem a
bit convoluted (and indeed it can be), you may have a function that
contains a try…catch block that works with the object at a low level.
However, the function may not have the resources or information to
handle the exception, so it rethrows the exception to a function higher up
that may have the required access. The calling function might have a
try…catch block that can actually handle the exception. In other words,
you might have something like the code found in the Exception02
example:

#include <iostream> 

  

using namespace std; 

  

void Inner() { 

  throw string("Error!"); 



} 

  

void Outer() { 

  try { 

    Inner(); 

  } catch (string excep) { 

    cout << "Outer caught an exception: "; 

    cout << excep << endl; 

    throw; 

  } 

} 

  

int main() 

{ 

  try { 

    Outer(); 

  } catch (string excep) { 

    cout << "main caught an exception: "; 

    cout << excep << endl; 

  } 

  return 0; 

}

In the preceding code, main() calls Outer(). Outer(), in turn, calls
Inner(). Inner() throws an exception, and Outer() catches it. But
main() also wants to catch the exception. So Outer() rethrows the
exception. You do that by calling throw without anything after it, like
this:

throw;

When you run this application, you see the following output.
Outer caught an exception: Error! 

main caught an exception: Error!

Using a standard category
Normally you use a standard category of exception whenever possible.
Previous examples show one method of working with exceptions, but
using a standard category means that you gain access to additional
functionality and know how the recipient will interpret the exception.
Also, using categories helps you create hierarchies of exceptions so that
you handle the most detailed exception first. With these ideas in mind,



the Exception03 example shows how to use an exception category of
invalid_argument. You must have C++ 11 or above to use this
example.

#include <iostream> 

  

using namespace std; 

  

bool CheckInt(int value) { 

  if (value > 5) { 

    return true; 

  } else { 

    throw invalid_argument("Input too small!"); 

  } 

  return false; 

} 

  

int main() { 

  try { 

    cout << (CheckInt(6) ? "OK" : "Not Right") << endl; 

    cout << (CheckInt(5) ? "OK" : "Not Right") << endl; 

  } catch (const invalid_argument& ex) { 

    cerr << "Invalid Argument: " << ex.what() << endl; 

  } 

  return 0; 

}

Notice that you use the same techniques as usual, such as calling throw
to throw the exception. In this case, though, you’re creating an exception
object of type invalid_argument, which requires an input string
detailing the error.

The catch block relies on a const invalid_argument reference, which is
the most efficient and least error-prone method of passing exception
information. Notice that you can call the what() method to obtain access
to the error information. This example also shows how to use cerr to
output the exception information to the standard error stream.
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Chapter 4

Advanced Class Usage
IN THIS CHAPTER

 Using polymorphism effectively
 Adjusting member access when deriving new classes
 Multiple-inheriting new classes
 Making virtual inheritance work correctly
 Putting one class or type inside another

Classes are amazingly powerful. You can do so much with them. In this
chapter, you discover many of the extra features you can use in your
classes. But these aren’t just little extras that you may want to use on
occasion. If you follow the instructions in this chapter, you should find
that your understanding of classes in C++ greatly improves, and you’ll
want to use many of these topics throughout your programming.

This chapter also discusses many of the issues that come up when you’re
deriving new classes and inheriting members. This discussion includes
virtual inheritance and multiple inheritance, topics that people mess up a
lot. As part of this discussion, you see the ways you can put classes and
types inside other classes.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookV\Chapter04
folder of the downloadable source. See the Introduction for details
on how to find these source files.



Inherently Inheriting Correctly
Without inheritance, doing object-oriented programming (OOP) would
be nearly impossible. Yes, you could divide your work into objects, but
the real power comes from inheritance. However, you have to be careful
when using inheritance or you can really cause yourself problems. In the
sections that follow, you see different ways to use inheritance — and
how to keep it all straight.

Morphing your inheritance
Polymorphism refers to using an object as an instance of a base class.
For example, if you have the class Creature and from that you derive
the class Platypus, you can treat the instances of class Platypus as if
they’re instances of class Creature. This concept is useful if you have a
function that takes as a parameter a pointer to Creature. You can pass a
pointer to Platypus.

However, you can’t go further than that. You can’t take a pointer to a
pointer to Creature. (Remember that when creating a pointer to a
pointer, the first pointer is the address of the second pointer variable.) So
if you have a function such as this:

void Feed1(Creature *c) { 

  cout << "Feed me!" << endl; 

}

you’re free to pass the address of a Platypus object, as in the following:

Platypus *plato = new Platypus; 

Feed1(plato);

However, with a function that takes the address of a pointer variable
(note the two asterisks in the parameter), like this:

void Feed2(Creature **c) { 

  cout << "Feed me!" << endl; 

}

you can’t pass the address of a pointer to a Platypus instance, as in this
example:



Platypus *plato = new Platypus; 

Feed2(&plato);

If you try to compile this code, you get a compiler error.

Avoiding polymorphism
You don’t always use polymorphism when you declare a variable, as
shown in the previous section. If you do, you’re declaring variables like
this:

Creature *plato = new Platypus;

The type of plato is a pointer to Creature. But the object is a Platypus.
You can create a Platypus from a Creature because a pointer to a base
class can point to an object of a derived class. But now the compiler
thinks that plato is a pointer to a Creature instance, so you can’t use
plato to call a Platypus method — you can use plato only to call
Creature methods. For example, if your two classes look like this:

class Creature { 

public: 

  void EatFood() { 

    cout << "I'm eating!" << endl; 

  } 

}; 

  

class Platypus : public Creature { 

public: 

  void SingLikeABird() { 

    cout << "I'm siiiiiinging in the rain!" << endl; 

  } 

};

the following code doesn’t work:
Creature *plato = new Platypus; 

plato->SingLikeABird();

Although the first line compiles, the second doesn’t. When the compiler
gets to the second line, it thinks that plato is an object of class type
Creature, and Creature doesn’t have a method called
SingLikeABird(), so the compiler gets upset. You can fix the situation
by casting, like this:



Creature *plato = new Platypus; 

static_cast <Platypus *>(plato)->SingLikeABird();

If you want to save some work, start by declaring plato as type
Platypus, as shown here:

Platypus *plato = new Platypus; 

plato->SingLikeABird();

You may need to perform a cast at times. For example, you may have a
variable that can hold an instance of an object or its derived object. Then
you have to use polymorphism, as in the following code:

Creature *plato; 

if (HasABeak == true) { 

  plato = new Platypus; 

} else { 

  plato = new Creature; 

}

This code defines a pointer to Creature. That pointer stores the address
of either a Platypus instance or a Creature instance, depending on
what’s in the HasABeak variable.

But if you use an if statement like that, you shouldn’t follow it with a
call to SingLikeABird(), even if you cast it:

static_cast <Platypus *>(plato)->SingLikeABird();

The reason is that if the else clause took place and plato holds an
instance of Creature, not Platypus, the plato object won’t have a
SingLikeABird() method. Either you get some type of error message
when you run the application or you don’t, but the application will mess
up later. And those messing-up-later errors are the worst kind to try to
fix.

Adjusting access
You may have a class that has protected members; and in a derived class,
you may want to make these members public. You transition the
members to public by adjusting the access. You have two ways to do
this: One is the older way, and the other is the newer American National
Standards Institute (ANSI) way, which is the method supported by the



current version of the GNU Compiler Collection (GCC). If your
compiler supports the newer way, the creators of the ANSI standard ask
that you use the ANSI way.

In the following classes, Secret has a member, X, that is protected. The
derived class, Revealed, makes the member X public. Here’s the older
way:

class Secret { 

protected: 

  int X; 

}; 

  

class Revealed : public Secret { 

public: 

  Secret::X; 

};

The code declares the member X public by providing the base class
name, two colons, and then the member name. It didn’t include any type
information; that was implied. So in the class Secret, the member X is
protected. But in Revealed, it’s public.

Here’s the ANSI way, which requires the word using. Otherwise, it’s the
same:

class Secret { 

protected: 

  int X; 

}; 

  

class Revealed : public Secret { 

public: 

  using Secret::X; 

};

Now, when you use the Revealed class, the inherited member X is
public, but X is still protected in the base class, Secret.

Avoiding variable naming conflicts
If you want to make a protected member public in a derived class, don’t
just redeclare the member. If you do, you end up with two properties of



the same name within the class; and needless to say, that can be
confusing! Look at the following two classes:

class Secret { 

protected: 

  int X; 

public: 

  void SetX() { 

    X = 10; 

  } 

  void GetX() { 

    cout << "Secret X is " << X << endl; 

  } 

}; 

  

class Revealed : public Secret { 

public: 

  int X; 

};

The Revealed class has two int X members! Suppose you try this code
with it:

Revealed me; 

me.SetX(); 

me.X = 30; 

me.GetX();

The first line declares the variable. The second line calls SetX(), which
stores 10 in the inherited X, because SetX() is part of the base class. The
third line stores 30 in the new X declared in the derived class. GetX() is
part of the base class, so it prints 10.

Having two properties of the same name is confusing. It would be best if
the compiler didn’t allow you to have two variables of the same name.
But just because the compiler allows it doesn’t mean you should do it.
Having two variables of the same name is a perfect way to increase the
chances of bugs creeping into your application.

Using class-based access adjustment
Suppose you have a class that has several public members, and when
you derive a new class, you want all the public members to become
protected, except for one. You can do this task in a couple of ways. You



can adjust the access of all the members except for the one you want left
public. Or, if you have lots of members, you can take the opposite
approach. Look at this code:

class Secret { 

public: 

  int Code, Number, SkeletonKey, System, Magic; 

}; 

  

class AddedSecurity : protected Secret { 

public: 

  using Secret::Magic; 

};

The derived class inherits the base class as protected, as you can see in
the header line for AddedSecurity. That means that all the inherited
public members of Secret are protected in the derived class. But then
the code promotes Magic back to public by adjusting its member access.
Thus, Magic is the only public member of AddedSecurity. All the rest
are protected.

 If you have a member that is private and you try to adjust its
access to protected or public in a derived class, you quickly
discover that the compiler won’t let you do it. The reason is that the
derived class doesn’t even know about the member because the
member is private. And because the derived class doesn’t know
about the member, you can’t adjust its access.

Returning something different, virtually speaking
Two words that sound similar and have similar meanings in computer
programming are overload and override. To overload means to take a
function and write another function of the same name that takes a
different set of parameters. To override means to take an existing
function in a base class and give the function new code in a derived
class. The function in the derived class has the same prototype as the
base class: It takes the same parameters and returns the same type.



An overloaded function can optionally return a different type, but the
parameters must be different from the original function, whether in
number or type or both. The overloaded function can live in the same
class or in a derived class. The idea here is to create what appears to be a
single function that can take several types of parameters. For example,
you may have a function called Append() that works on strings. By
using Append(), you’d be able to append a string to the end of the string
represented by the instance, or you could append a single character to
the end of the string represented by the instance. Now, although it feels
like one function called Append(), really you would implement it as two
separate functions: one that takes a string parameter and one that takes a
character parameter.

This section discusses one particular issue dealing with overriding
functions (that is, replacing a function in a derived class). Generally, the
overriding function must have the same parameter types and must return
the same type as the original function. A situation exists under which
you can violate this rule, although only slightly. You can violate the rule
of an overriding function returning the same type as the original function
if all three of the following are true:

The overriding function returns an instance of a class derived from
the type returned by the original function.
You return either a pointer or a reference, not an object.
If you return a pointer, the pointer doesn’t refer to yet another
pointer.

 Typically, you want to use this approach when you have a
container class that holds multiple instances of another class. For
example, you may have a class called Peripheral. You may also
have a container class called PeripheralList, which holds
instances of Peripheral. You may later derive a new class from
Peripheral, called Printer, and a new class from



PeripheralList, called PrinterList. If PeripheralList has a
function that returns an instance of Peripheral, you would
override that function in PrinterList. But instead of having it
return an instance of Peripheral, you would have it return an
instance of Printer. The OverridingDerived example, shown in
Listing 4-1, shows how to perform this task.

LISTING 4-1: Overriding and Returning a Derived
Class
#include <iostream> 

#include <map> 

  

using namespace std; 

  

class Peripheral { 

public: 

  string Name; 

  int Price; 

  int SerialNumber; 

  Peripheral(string aname, int aprice, int aserial) : 

    Name(aname), Price(aprice), 

    SerialNumber(aserial) {} 

}; 

  

class Printer : public Peripheral { 

public: 

  enum PrinterType {laser, inkjet}; 

  PrinterType Type; 

  Printer(string aname, PrinterType atype, int aprice, 

    int aserial) : 

    Peripheral(aname, aprice, aserial), Type(atype) {} 

}; 

  

typedef map<string, Peripheral *> PeripheralMap; 

  

class PeripheralList { 

public: 

  PeripheralMap list; 

  virtual Peripheral *GetPeripheralByName(string name); 

  void AddPeripheral(string name, Peripheral *per); 

}; 

  

class PrinterList : public PeripheralList { 



public: 

  Printer *GetPeripheralByName(string name); 

}; 

  

Peripheral *PeripheralList::GetPeripheralByName 

 (string name){ 

  return list[name]; 

} 

  

void PeripheralList::AddPeripheral( 

string name, Peripheral *per) { 

  list[name] = per; 

} 

  

Printer *PrinterList::GetPeripheralByName(string name) { 

  return static_cast<Printer *>( 

    PeripheralList::GetPeripheralByName(name)); 

} 

  

int main(int argc, char *argv[]) { 

  PrinterList list; 

  list.AddPeripheral(string("Koala"), 

    new Printer("Koala", Printer::laser, 

    150, 105483932) 

  ); 

  list.AddPeripheral(string("Bear"), 

    new Printer("Bear", Printer::inkjet, 

    80, 5427892) 

  ); 

  

  Printer *myprinter = list.GetPeripheralByName("Bear"); 

  if (myprinter != 0) { 

    cout << myprinter->Price << endl; 

  } 

  return 0; 

}

This example uses a special type called map, which is simply a container
or list that holds items in pairs. The first item in the pair is called a key,
and the second item is called a value. You can retrieve values from the
map based on the key. This example stores a Peripheral (the value)
based on a name, which is a string (the key). The example uses a
typedef to create the map by specifying the two types involved: first the
key and then the value. The typedef, then, looks like this:



typedef map<string, Peripheral *> PeripheralMap;

This line creates a type of a map that stores a set of Peripheral instances
and you can look them up based on a name. The code uses a notation
similar to that of an array to put an item in the map, where list is the
map, name is a string, and per is a pointer to Peripheral. The key goes
inside square brackets, like this:

list[name] = per;

To retrieve the item, you refer to the map entry using brackets again, as in
this line from the listing:

return list[name];

Listing 4-1 shows a Printer class derived from a Peripheral class. It
also has a container class called PrinterList derived from
PeripheralList. The idea is that the PrinterList holds only instances
of the class called Printer. So the code overrides the
GetPeripheralByName() function. The version inside PrinterList casts
the item to a Printer because the items in the list are instances of
Peripheral. If you were to leave this function as is, every time you want
to retrieve a Printer, you’d get back a pointer to a Peripheral instead,
and you’d have to cast it to a (Printer *) type. Overriding the
GetPeripheralByName() function and performing the cast there is easier
and more efficient.

 The code in Listing 4-1 has a small bug: Nothing is stopping you
from putting an instance of Peripheral in the PrinterList
container. Or, for that matter, you could add an instance of any
other class derived from Peripheral if there were more. But when
you retrieve the instance in the GetPeripheralByName(), it’s
automatically cast to a Printer. That would be a problem if
somebody had stuffed something else in there other than a Printer
instance. To prevent a wrongful addition, create a special



AddPeripheral() function for the PrinterList class that takes,
specifically, a Printer. To do that, you would make the
AddPeripheral() function in PeripheralList virtual and then
override it, modifying the parameter to take a Printer rather than a
Peripheral. When you do so, you hide the function in the base
class. But that’s okay: You don’t want people calling the base class
version because it can accept any Peripheral, not just a Printer
instance. When you run this application, you should get an output
value of 80 (the price of the printer named Bear).

Multiple inheritance
In C++, having a single base class from which your class inherits is
generally best. However, it is possible to inherit from multiple base
classes, a process called multiple inheritance.

Employing multiple inheritance
One class may have some features that you want in a derived class, and
another class may have other features that you want in the same derived
class. If that’s the case, you can inherit from both through multiple
inheritance.

 Multiple inheritance is messy and difficult to pull off properly.
But when you use it with care, you can make it work. The
DerivingTwoDiff example, shown in Listing 4-2, shows how to
perform this task.

LISTING 4-2: Deriving from Two Different Classes
#include <iostream> 

  

using namespace std; 

  

class Mom { 

public: 

  void Brains() { 

    cout << "I'm smart!" << endl; 



  } 

}; 

  

class Dad { 

public: 

  void Beauty() { 

    cout << "I'm beautiful!" << endl; 

  } 

}; 

  

class Derived : public Mom, public Dad { 

}; 

  

int main(int argc, char *argv[]) { 

  Derived child; 

  child.Brains(); 

  child.Beauty(); 

  return 0; 

}

When you run this code, you see the following output:
I'm smart! 

I'm beautiful!

In the preceding code, the class Derived inherited the functions of both
classes Mom and Dad. Because it did, the compiler allows a Derived
instance, child, to call both functions. You use this approach to derive
from multiple classes:

class Derived : public Mom, public Dad

You start with the base classes to the right of the single colon, as with a
single inheritance, and separate the classes with a comma. You also
precede each class with the type of inheritance, public.

Setting access in multiple inheritance
As with single inheritance, you can use inheritance other than public.
But you don’t have to use the same access for all the classes. For
example, the following, although a bit confusing, is acceptable:

class Derived : public Mom, protected Dad

This means that public members derived from Dad are now protected in
the Derived class, which also means that users can’t call the methods



inherited from Dad, nor can they access any properties inherited from
Dad. If you used this type of inheritance in Listing 4-2, this line would no
longer work:

child.Beauty();

If you try to compile it, you see the following error, because the
Beauty() member is protected now:

'void Dad::Beauty()' is inaccessible

 When you work with multiple inheritance, be careful that you
understand what your code is doing. Although it may compile
correctly, it still may not function correctly, leading to the famous
creepy-crawly thing called a bug.

Seeing multiple inheritance go wrong
Strange, bizarre, freaky things can happen with multiple inheritance. If
both base classes have a property called Bagel, the compiler gets
confused. Suppose you enhance the two base classes with a Bagel effect
(as seen in the DerivingTwoDiff2 example):

class Mom { 

public: 

  int Bagel; 

  void Brains() { 

      cout << "I'm smart!" << endl; 

  } 

}; 

  

class Dad { 

public: 

  int Bagel; 

  void Beauty() { 

      cout << "I'm beautiful!" << endl; 

  } 

}; 

  

class Derived : public Mom, public Dad { 

};



In the preceding code, each of the two base classes, Mom and Dad, has a
Bagel member. The compiler will let you do this. But if you try to access
the member, as in the following code, you get an error:

Derived child; 

child.Bagel = 42;

Here’s the error message we see in Code::Blocks:
error: request for member 'Bagel' is ambiguous

The message means that the compiler isn’t sure which Bagel the code
refers to: The one inherited from Mom or the one inherited from Dad. If
you write code like this, make sure you know which inherited member
you’re referring to so you can fix the problem.

 Now this is going to look bizarre, but it’s correct. Suppose
you’re referring to the Bagel inherited from Mom. You can put the
name Mom before the word Bagel, separated by two colons:

child.Mom::Bagel = 42;

Yes, that really is correct, even though it seems a little strange. And if
you want to refer to the one by Dad, you do this:

child.Dad::Bagel = 17;

Both lines compile properly because you removed any ambiguities. In
addition, you can access them individually by using the same technique:

cout << child.Mom::Bagel << endl; 

cout << child.Dad::Bagel << endl;

Virtual inheritance
At times, you may see the word virtual thrown in when deriving a new
class, as in the following:

class Diamond : virtual public Rock



This inclusion of virtual is to fix a strange problem that can arise.
When you use multiple inheritance, you can run into a crazy situation in
which you have a diamond-shaped inheritance, as in Figure 4-1.

In Figure 4-1, you can see that the base class is Rock. The Diamond and
Jade classes derive from Rock. At this point, the code uses multiple
inheritance to derive the class MeltedMess from Diamond and Jade. Yes,
you can do this. But you have to be careful.

FIGURE 4-1: Using diamond inheritance can be hard.



Understanding the diamond-shaped inheritance problem
Think about this: Suppose Rock has a public member called Weight.
Then both Diamond and Jade inherit that member. Now when you derive
MeltedMess and try to access its Weight member, the compiler claims
that it doesn’t know which Weight you’re referring to — the one
inherited from Diamond or the one inherited from Jade. You know that
there should only be one instance of Weight, because it came from a
single base class, Rock. But the compiler sees only one level up, not two.

To understand how to fix the problem, recognize what happens when
you create an instance of a class derived from another class: Deep down
inside the computer, the instance has a portion that is itself an instance of
the base class. When you derive a class from multiple base classes,
instances of the derived class have one portion for each base class. Thus
an instance of MeltedMess has a portion that is a Diamond and a portion
that is a Jade, as well as a portion that wasn’t directly inherited from
Rock.

Digging deeper, MeltedMess has both a Diamond in it and a Jade in it,
and each of those in turn has a Rock in them, which means that the
compiler sees two Rocks in MeltedMess. With each Rock comes a
separate Weight instance. The CrackingDiamonds example, shown in
Listing 4-3, demonstrates the problem. This listing declares the classes
Rock, Diamond, Jade, and MeltedMess.

LISTING 4-3: Cracking Diamonds
#include <iostream> 

  

using namespace std; 

  

class Rock { 

public: 

  int Weight; 

}; 

  

class Diamond : public Rock { 

public: 

  void SetDiamondWeight(int newweight) { 



    Weight = newweight; 

  } 

  

  int GetDiamondWeight() { 

    return Weight; 

  } 

}; 

  

class Jade : public Rock { 

public: 

  void SetJadeWeight(int newweight) { 

    Weight = newweight; 

  } 

  

  int GetJadeWeight() { 

    return Weight; 

  } 

}; 

  

class MeltedMess : public Diamond, public Jade { 

}; 

  

int main(int argc, char *argv[]) 

{ 

  MeltedMess mymess; 

  mymess.SetDiamondWeight(10); 

  mymess.SetJadeWeight(20); 

  

  cout << mymess.GetDiamondWeight() << endl; 

  cout << mymess.GetJadeWeight() << endl; 

  return 0; 

}

One member is called Weight, and it’s part of Rock. The Jade and
Diamond classes include two accessor methods, one to set the value of
Weight and one to get it.

The MeltedMess class derives from both Diamond and Jade. The code
creates an instance of MeltedMess and calls the four methods that access
the supposedly single Weight member in Rock. The code calls the
accessor for Diamond, setting Weight to 10. Then it calls the one for
Jade, setting Weight to 20.

In a perfect world, in which each object only has one Weight, this would
have first set the Weight to 10 and then to 20. When you print it, you



should see 20 both times. But you don’t:

10 

20

Repairing the diamond-shaped inheritance problem
When you print the Diamond portion of the MeltedMess instance Weight
in Listing 4-3, shown previously, you see 10. The Jade portion displays
20 instead. Therefore, mymess has two different Weight members. That’s
not a good thing.

To fix it, add the word virtual when you inherit from Rock. According
to the ANSI standard, you put virtual in the two middle classes (as
shown in the CrackingDiamonds2 example provided with the
downloadable source and explained in this section). This means Diamond
and Jade in this case. Thus, you need to modify the class headers in
Listing 4-3 to look like this:

class Diamond : virtual public Rock {

and this:
class Jade : virtual public Rock {

When you make these modifications and then run the application, you
find that you have only one instance of Weight in the final MeltedMess
class instance, mymess. It’s not such a mess after all! Here’s the output
after making the change:

20 

20

Now this makes sense: Only one instance of Weight is in the mymess
object, so the following line changes the Weight to 10:

mymess.SetDiamondWeight(10);

Then the following line changes the same Weight to 20:

mymess.SetJadeWeight(20);

You can also access Weight directly now without error, so the accessor
methods aren’t strictly needed:



mymess.Weight = 30;

POLYMORPHISM WITH MULTIPLE
INHERITANCES

If you have multiple inheritance, you can safely treat your object as any of the base
classes. In the case of the diamond example, you can treat an instance of MeltedMess
as a Diamond instance or as a Jade instance. For example, if you have a function that
takes a pointer to a Diamond instance as a parameter, you can safely pass a pointer to a
MeltedMess instance. Casting also works: You can cast a MeltedMess instance to a
Diamond, Jade, or Rock instance. However, if you do, use the static_cast method like
this to ensure the best outcome:

Rock casted = static_cast<Rock>(mymess); 

cout << casted.Weight << endl;

Then the following lines print the value of the one Weight instance, 30:

cout << mymess.GetDiamondWeight() << endl; 

cout << mymess.GetJadeWeight() << endl; 

cout << mymess.Weight << endl;

 With a diamond inheritance, use virtual inheritance in the middle
classes to ensure that they point to the correct type. Although you
can also add the word virtual to the final class (in the example’s
case, that’s MeltedClass), you don’t need to.

Friend classes and functions
You may encounter a situation in which you want one class to access the
private and protected members of another class. Normally, doing so isn’t
allowed. But it is if you make the two classes friends. C++ provides the
friend keyword to override the normal class protections.

Use friend only when you really need to. If you have a class, say
Square, that needs access to the private and protected members of a



class called DrawingBoard, you can add a line inside the class
DrawingBoard that looks like this:

friend class Square;

This code allows the code in Square to access the private and protected
members of any instance of type DrawingBoard.

 In many cases, allowing complete access of one class by another
class opens too many possibilities for bugs and security issues
(among other things). Friend functions are a more limited form of
the friend keyword because they limit access to a global function
or a single method within a class. If you need to provide friend
access for some reason, using a friend function is better. Listing 4-4
shows the BestFriends example that demonstrates both friend
classes and friend functions.

LISTING 4-4: Working with Friends
#include <iostream> 

  

using namespace std; 

  

class PAndP; 

  

class Limited { 

public: 

  void ShowProtected(PAndP &); 

}; 

  

class PAndP { 

public: 

  friend class Peeks; 

  friend void Limited::ShowProtected(PAndP &X); 

  friend void FriendFunction(PAndP &X); 

protected: 

  void IsProtected() {cout << "Protected" << endl;} 

private: 

  string var = "Var"; 

  void IsPrivate() {cout << "Private " << var << endl;} 



}; 

  

class Peeks { 

public: 

  void ShowProtected(PAndP &X) {X.IsProtected();} 

  void ShowPrivate(PAndP &X) { 

    X.var = "From Peeks"; 

    X.IsPrivate(); 

  } 

}; 

  

void Limited::ShowProtected(PAndP &X){ 

  X.IsProtected(); 

} 

  

void FriendFunction(PAndP &X) { 

  X.IsProtected(); 

  X.var = "From FriendFunction"; 

  X.IsPrivate(); 

} 

  

int main() { 

  PAndP Hidden; 

  Peeks ShowMe; 

  Limited ShowMeAgain; 

  

  ShowMe.ShowProtected(Hidden); 

  ShowMe.ShowPrivate(Hidden); 

  

  ShowMeAgain.ShowProtected(Hidden); 

  

  FriendFunction(Hidden); 

  return 0; 

}

The private and protected (PAndP) class contains protected and private
members that Peeks, Limited::ShowProtected(), and
FriendFunction() access. Each of these entities takes a different route,
and that route isn’t always as obvious as it might be.

When working with the Limited class, coding order is important. You
begin by creating a forward reference to class PAndP and then define the
Limited class. However, you can’t define Limited::ShowProtected()
yet because the members of PAndP aren’t known to the compiler and
there isn’t a way to create a forward declaration of them. Consequently,



the actual code for Limited::ShowProtected() comes later, which is
the only method in Limited that has access to PAndP. If you were to try
accessing PAndP from any other member, the compiler would complain.

 Creating the friend entries for Peeks and FriendFunction() is
easier because you aren’t dealing with just a part of the element. All
you need are the friend entries in the PAndP class. Note that every
method or function that interacts with PAndP receives a pointer to a
PAndP instance to do so. The code in main() creates the required
objects and accesses the PAndP protected and private members. You
see the following output when you run this application:

Protected 

Private From Peeks 

Protected 

Protected 

Private From FriendFunction

FRIENDS OF A SAME CLASS
An instance of a class can access the private and protected members of other
instances of the same class. The compiler allows you to do it. However, you normally
want objects to remain isolated from each other for all sorts of reasons, including
keeping bugs at bay and reducing security risks. It helps to think of the only situation in
which this kind of activity is actually useful as a host and client, when one instance acts
as a host to a client instance for something like creating a container for an object of the
same type. To make this sort of access happen, you provide a pointer to another
instance of the same class (the client) inside the host class, perhaps passed in as a
parameter. The host class is free to modify any of the passed class members.

Using Classes and Types within
Classes



Sometimes an application needs a fairly complex internal structure to get
its work done. Three ways to accomplish this goal with relatively few
headaches are nesting classes, embedding classes, and declaring types
within classes. The following sections discuss the two most common
goals: nesting classes and declaring types within classes. The “Nesting a
class” section also discusses protection for embedded classes.

Nesting a class
You may have times when you create a set of classes with one class
acting as the primary class while all the other classes function as
supporting classes. For example, you may be a member of a team of
programmers, and your job is to write a set of classes that log on to a
competitor’s computer at night and lower all the prices on the products.
Other members of your team will use your classes in their applications.
You’re just writing a set of classes; the teammates are writing the rest of
the application. The following sections consider the issues involved in
performing this task, as well as a potential solution in the form of nested
classes.

Considering the nesting scenario issues
In the classes you’re creating, you want to make the task easy on your
coworkers. In doing so, you may make a primary class, such as
EthicalCompetition, that they will instantiate to use your set of classes.
This primary class will include the methods for using the system. In
other words, it serves as an interface to the set of classes.

In addition to the main EthicalCompetition class, you might create
additional auxiliary classes that the EthicalCompetition class will use,
but your coworkers won’t interact with directly. One might be a class
called Connection that handles the tasks of connecting to the
competitor’s computer. However, the Connection class may present
these problems:

Potential conflicts: The class Connection may be something you
write, but your organization may support another Connection class,
and your coworkers might need to use that class.



Privacy: You may not want your coworkers using this special
Connection class. Perhaps it has special functionality that would
reveal too many organizational secrets, or you just want them using
the main interface, the EthicalCompetition class.

To solve the unique name problem, you have several choices. For one,
you can just rename the class something different, such as
EthicalCompetitionConnection. But that’s a bit long for a class used
exclusively for internal needs. However, you could shorten the class
name and call it something that’s likely to be unique, such as
ECConnection.

Yet at the same time, if the users of your classes look at the header file
and see a whole set of classes, which classes they should be using may
not be clear. (Of course, you would write some documentation to clear
this up, but you do want the code to be at least somewhat self-
explanatory.)

Understanding the nested class solution
One solution for dealing with both naming conflict and privacy issues
for support classes is to use nested classes. With a nested class, you write
the declaration for the main class, EthicalCompetition, and then, inside
the class, you write the supporting classes, as in the following:

class EthicalCompetition { 

private: 

  class Connection { 

  public: 

      void Connect(); 

  }; 

public: 

  void HardWork(); 

};

Note that this shows a class inside a class. Here’s the code for the
functions:

void EthicalCompetition::HardWork() { 

  Connection c; 

  c.Connect(); 

  cout << "Connected" << endl; 



} 

  

void EthicalCompetition::Connection::Connect() { 

  cout << "Connecting…" << endl; 

}

The header for the Connect function in the Connection class requires
first the outer class name, then two colons, then the inner class name,
then two colons again, and finally the function name. This follows the
pattern you normally use where you put the class name first, then two
colons, and then the function name. But in this case, you have two class
names separated with two colons.

When you want to declare an instance of the Connection class, you do it
differently, depending on where you are in the code when you declare it:

Inside a method of the outer EthicalCompetition class: You
simply refer to the class by its name, Connection. Look at the
method HardWork, with this line:

Connection c;

Outside the methods: You can declare an instance of the inner class,
Connection, without an instance of the outer class,
EthicalCompetition. To do this, you fully qualify the class name,
like this:

EthicalCompetition::Connection myconnect;

This line would go, for instance, in the main() function of your
application if you want to create an instance of the inner class,
Connection.

However, you may recall that one of the reasons for putting the class
inside the other was to shield it from the outside world, to keep your
nosy coworkers from creating an instance of it. But so far, what you’ve
done doesn’t really stop them from using the class. They can just use it
by referring to its fully qualified name,
EthicalCompetition::Connection.

Creating an inner class definition



So far, you’ve created a handy grouping of the class, and you also set up
your grouping so that you can use a simpler name that won’t conflict
with other classes. If you just want to group your classes, you can use a
nested class. If you want to add higher security to a class so that others
can’t use your inner class, however, you have to create an inner class
definition.

Here’s a series of three tricks devoted to showing you how you create
that inner class definition. For the first trick, you declare the class with a
forward definition but put the class definition outside the outer class.
Never put the inner class definition inside a private or protected section
of the outer class definition; it doesn’t work. The following code takes
care of that declaration for you:

class EthicalCompetition { 

private: 

  class Connection; 

public: 

    void HardWork(); 

}; 

  

class EthicalCompetition::Connection { 

public: 

  void Connect(); 

};

Here, inside the outer class, is a header for the inner class and a
semicolon that you use instead of writing the whole inner class; that’s a
forward declaration. The rest of the inner class appears after the outer
class. To make this code work, you must fully qualify the class name,
like this:

class EthicalCompetition::Connection

 If you skip the word EthicalCompetition and two colons, the
compiler compiles this class as though it’s a different class. Later,
the compiler will complain it can’t find the rest of the Connection
class declaration. The error is



error: aggregate 'EthicalCompetition::Connection c' has incomplete type and 

cannot be defined

Remember that message so that you know how to correct it when you
forget the outer class name.

By declaring the inner class after the outer class, you can now employ
the second trick. The idea is to write the inner class so that only the outer
class can access the members. To accomplish this task, you make all the
members of the inner class either private or protected and then make the
outer class, EthicalCompetition, a friend of the inner class,
Connection. Here’s the modified version of the Connection class:

class EthicalCompetition::Connection { 

protected: 

  friend class EthicalCompetition; 

  void Connect(); 

};

Only the outer class can access most of the Connection members now.
However, even though the members are protected, nothing stops users
outside EthicalConnection from creating an instance of the
Connection class. To add this security, you employ the third trick, which
is to create a constructor for the class that is either private or protected.
When you change the constructor’s access, following suit with a
destructor is a good idea. Make the destructor private or protected, too.
Even if the constructor and destructor don’t do anything, making them
private or protected prevents others from creating an instance of the
class — others, that is, except any friends to the class. So here’s yet one
more version of the class:

class EthicalCompetition::Connection { 

protected: 

  friend class EthicalCompetition; 

  void Connect(); 

  Connection() {} 

  ~Connection() {} 

};

This third trick completes the process. When someone tries to make an
instance of the class outside EthicalCompetition (such as in main()),
as in this:



EthicalCompetition::Connection myconnect;

you see the following message:
EthicalCompetition::Connection::~Connection()' is protected

You can still create an instance from within the methods of
EthicalCompetition. The ProtectingEmbedded example, shown in
Listing 4-5, contains the final application.

LISTING 4-5: Protecting Embedded Classes
#include <iostream> 

  

using namespace std; 

  

class EthicalCompetition { 

private: 

  class Connection; 

public: 

  void HardWork(); 

}; 

  

class EthicalCompetition::Connection { 

protected: 

  friend class EthicalCompetition; 

  void Connect(); 

  Connection() {} 

  ~Connection() {} 

}; 

  

void EthicalCompetition::HardWork() { 

  Connection c; 

  c.Connect(); 

  cout << "Connected" << endl; 

} 

  

void EthicalCompetition::Connection::Connect() { 

  cout << "Connecting…" << endl; 

} 

  

int main(int argc, char *argv[]) { 

  // Uncomment this line to see the access error. 

  // EthicalCompetition::Connection myconnect; 

  EthicalCompetition comp; 

  comp.HardWork(); 



  return 0; 

}

Here’s the output from this example:
Connecting… 

Connected

Types within classes
When you declare a type, such as an enum, associating it with a class can
be convenient. For example, you may have a class called Cheesecake. In
this class, you may have the SelectedFlavor property, which can be an
enumerated type, such as Flavor:

enum Flavor { 

  ChocolateSuicide, 

  SquishyStrawberry, 

  BrokenBanana, 

  PrettyPlainVanilla, 

  CoolLuah, 

  BizarrePurple 

};

Use this code to associate Flavor with a class:

class Cheesecake { 

public: 

  enum Flavor 

  { 

    ChocolateSuicide, SquishyStrawberry, BrokenBanana, 

    PrettyPlainVanilla, CoolLuah, BizarrePurple 

  }; 

  Flavor SelectedFlavor; 

  

  int AmountLeft; 

  void Eat() { 

    AmountLeft = 0; 

  } 

};

You can use the Flavor type anywhere in your application, but to use it
outside the Cheesecake class, you must fully qualify its name by lining
up the class name, two colons, and then the type name, like this:

Cheesecake::Flavor myflavor = Cheesecake::CoolLuah;



An enum requires that you also fully qualify the enumeration. Using just
CoolLuah on the right side of the equals sign will cause the compiler to
complain and say that CoolLuah is undeclared. The Cheesecake
example, shown in Listing 4-6, demonstrates how we can use the
Cheesecake class.

LISTING 4-6: Using Types within a Class
#include <iostream> 

  

using namespace std; 

  

class Cheesecake { 

public: 

  enum Flavor { 

    ChocolateSuicide, SquishyStrawberry, BrokenBanana, 

    PrettyPlainVanilla, CoolLuah, BizarrePurple 

  }; 

  Flavor SelectedFlavor; 

  

  int AmountLeft; 

  void Eat() { 

    AmountLeft = 0; 

  } 

}; 

  

int main() { 

  Cheesecake yum; 

  yum.SelectedFlavor = Cheesecake::SquishyStrawberry; 

  yum.AmountLeft = 100; 

  yum.Eat(); 

  cout << yum.AmountLeft << endl; 

  return 0; 

}

 When you declare a type (using a typedef or an enum) inside a
class, you don’t need an instance of the class present to use the
type. But you must fully qualify the name when you are using it
from outside of the class. Thus, you can set up a variable of type



Cheesecake::Flavor and use it in your application without
creating an instance of Cheesecake.

In contrast to nested classes, you can make a type within a class private
or protected. If you do so, you can use the type only within the class
members. If you try to use the type outside the class (including setting a
property, as in yum.SelectedFlavor =
Cheesecake::SquishyStrawberry;), you get a compiler error.

 You can also put a typedef inside your class in the same way
you’d put an enum inside the class, as in the following example:

class Spongecake { 

public: 

  typedef int SpongeNumber; 

  SpongeNumber weight; 

  SpongeNumber diameter; 

}; 

  

int main() { 

  Spongecake::SpongeNumber myweight = 30; 

  Spongecake fluff; 

  fluff.weight = myweight; 

  return 0; 

}
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Chapter 5

Creating Classes with
Templates

IN THIS CHAPTER
 Creating class templates
 Using parameters in templates
 Deriving with templates
 Creating function templates

If C++ programming has any big secret, it would have to be templates,
which are entities that define either a family of functions or a family of
classes. Templates seem to be the topic that beginning programmers
strive to understand because they’ve heard about them and seem to think
that templates are the big wall over which they must climb to ultimately
become The C++ Guru. This chapter begins by showing you that
creating and using basic templates need not be difficult.

The one thing you can be certain of is that knowing how to work with
templates will open your abilities to a whole new world, primarily
because the entire Standard C++ Library is built around templates.
Further, understanding templates can help you understand all that cryptic
code that you see other people posting on the Internet. This chapter also
helps you understand how to access, use, and extend standard templates.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookV\Chapter05



folder of the downloadable source. See the Introduction for details
on how to find these source files.

Templatizing a Class
This section begins by showing you just how simple templates are to
understand. It begins with a discussion of type, which you can skip if
you already understand the concept fully. The next section deals with the
need for creating templates based on a type.

Considering types
This section begins with the OldGasStation class. Remember, a class is
a type. You can declare variables of the type. Thus you can declare a
variable of type OldGasStation called, for example HanksGetGas. You
can also create another variable of type OldGasStation; maybe this one
would be called FillerUp. And, of course, you can create a third one;
this one might be called GotGasWeCanFillIt. Each of these variables,
HanksGetGas, FillerUp, and GotGasWeCanFillIt, are each instances of
the type (or class) OldGasStation.

In the same way, you can make some instances of an existing type, say
int. You can name one CheckingAccountBalance and another
BuriedTreasuresFound. Each of these is an instance of the type int
Although int isn’t a class, it is a type.

Think about this so far: You have the two different types available to
you. One is called OldGasStation and the other is called int. One of
these is a type you make; the other is built into C++.

Focus on the one you create, OldGasStation. This is a type that you
create by declaring it in your application when you write the code. The
compiler takes your declaration and builds some data inside the resulting
application that represents this type. After the application starts, the type
is created, and it doesn’t change throughout the course of the application.



 The variables in your application may change at runtime; you
can create new instances of a type and delete them and change their
contents. But the type itself is created at compile time and doesn’t
change at runtime. Remember this as one property of types in
general. You need to keep this in mind when dealing with
templates.

Defining the need for templates
Suppose that you have a class called MyHolder. This class will hold
some integers. Nothing special, but it looks like this:

class MyHolder { 

public: 

  int first; 

  int second; 

  int third; 

  int sum() { 

    return first + second + third; 

  } 

};

This class is easy to use; you just create an instance of it and set the
values of its members. But remember: After the application is running,
the class is a done deal. But at runtime, you’re free to create new
instances of this class. For example, the following code creates ten
instances of the class, calls sum(), and prints the return value of sum():

MyHolder *hold; 

int loop; 

for (loop = 0; loop < 10; loop++) { 

  hold = new MyHolder; 

  hold->first = loop * 100; 

  hold->second = loop * 110; 

  hold->third = loop * 120; 

  cout << hold->sum() << endl; 

  delete hold; 

}

This code creates an instance at runtime, does some work with it, and
then deletes the instance. It then repeats this process for a total of ten



times. Instances (or variables) are created, changed, and deleted — all at
runtime. But the class is created at compile time.

Suppose you’re coding away and you discover that this class MyHolder
is handy, except it would be nice if you had a version of it that holds
floats instead of ints. You could create a second class just like the first
that uses the word float instead of int, like this:

class AnotherHolder { 

public: 

  float first; 

  float second; 

  float third; 

  float sum() { 

    return first + second + third; 

  } 

};

This class works the same way as the previous class, but it stores three
float types instead of int types. But you can see, if you have a really
big class, that this method would essentially require a lot of copying and
pasting followed by some search-and-replacing — in other words,
busywork. But you can minimize this busywork by using templates.
Instead of typing two different versions of the class, type one version of
the class that you can, effectively, modify when you need different
versions of the class. Look at this code:

template <typename T> 

class CoolHolder { 

public: 

  T first; 

  T second; 

  T third; 

  T sum() { 

    return first + second + third; 

  } 

};

Think of this templated class as a rule for a single class that does exactly
what the previous two classes did. (Ignore the template declaration,
template <typename T>, for now; it’s explained in the “Understanding
the template keyword” section of the chapter.) In this rule is a



placeholder called T that is a placeholder for a type. Imagine this set of
code; then remove the first line and replace all the remaining T’s with the
word int. If you did that, you would end up with this:

class CoolHolder { 

public: 

  int first; 

  int second; 

  int third; 

  int sum() { 

    return first + second + third; 

  } 

};

This is, of course, the same as the earlier class called MyHolder, just with
a different name. Now imagine doing the same thing but replacing each
T with the word float. You can probably see where we’re going with
this. Here it is:

class CoolHolder { 

public: 

  float first; 

  float second; 

  float third; 

  float sum() { 

    return first + second + third; 

  } 

};

Again, this is the same as the earlier class called AnotherHolder, but
with a different name. That’s what a template does: It specifies a
placeholder for a class. But it doesn’t actually create a class … yet. You
have to do one more thing to tell the compiler to use this template to
create a class. You accomplish this task by writing code to create a
variable or by using the class somehow. Look at this code:

CoolHolder<int> IntHolder; 

IntHolder.first = 10; 

IntHolder.second = 20; 

IntHolder.third = 30;

This code tells the compiler to create a class by replacing every instance
of T with int in the CoolHolder template. In other words, the compiler



creates a class named CoolHolder<int>. These four lines of code create
an instance of CoolHolder<int> called IntHolder and set its properties.
The computer creates this class at compile time. Remember, types are
created at compile time, and this example code is no exception to this
rule.

 Here’s an easy way to look at a template. When you see a line
like CoolHolder<int> IntHolder; you can think of it as being like
CoolHolderint IntHolder. Although that’s not really what the
template is called, you are telling the compiler to create a new class.
In your mind, you may think of the class as being called
CoolHolderint, that is, a name without the angle brackets. (But
remember that the name really isn’t CoolHolderint. It’s
CoolHolder<int>.)

Creating and using a template
The previous section tells how to put a template together based on your
requirements, so now it’s time to put that template into action. The
CoolHolder example, shown in Listing 5-1, contains a complete
application that uses the CoolHolder template.

LISTING 5-1: Using Templates to Create Several
Versions of a Class
#include <iostream> 

  

using namespace std; 

  

template <typename T> 

class CoolHolder { 

public: 

  T first; 

  T second; 

  T third; 

  T sum() { 

    return first + second + third; 

  } 



}; 

  

int main() { 

  CoolHolder<int> IntHolder; 

  IntHolder.first = 10; 

  IntHolder.second = 20; 

  IntHolder.third = 30; 

  

  CoolHolder<int> AnotherIntHolder; 

  AnotherIntHolder.first = 100; 

  AnotherIntHolder.second = 200; 

  AnotherIntHolder.third = 300; 

  

  CoolHolder<float> FloatHolder; 

  FloatHolder.first = 3.1415; 

  FloatHolder.second = 4.1415; 

  FloatHolder.third = 5.1415; 

  

  cout << IntHolder.first << endl; 

  cout << AnotherIntHolder.first << endl; 

  cout << FloatHolder.first << endl; 

  

  CoolHolder<int> *hold; 

  for (int loop = 0; loop < 10; loop++) { 

    hold = new CoolHolder<int>; 

    hold->first = loop * 100; 

    hold->second = loop * 110; 

    hold->third = loop * 120; 

    cout << hold->sum() << endl; 

    delete hold; 

  } 

  return 0; 

}

When you run this application, you see a bunch of results from calls to
sum():

10 

100 

3.1415 

0 

330 

660 

990 

1320 

1650 

1980 



2310 

2640 

2970

Look closely at the code. Near the beginning is the same template shown
previously. Remember that the compiler doesn’t create a type for this
template. Instead, the compiler uses it as a rule to follow to create
additional types. That is, the code indeed serves as a template for other
types, thus its name.

Understanding the template keyword
It’s time to consider the template keyword in the template definition.
Here’s the first line of the template shown in Listing 5-1:

template <typename T>

All this means is that a template class follows and it has a type with a
placeholder called T. Inside the class, anywhere a T appears, the compiler
replaces it with the typename defined by T, such as int or float.

 The T is stand-alone; if you have it as part of a word, it won’t be
replaced. The standard practice is for people to use T for the
placeholder, but you can use any identifier (starting with a letter or
underscore, followed by any combination of letters, numbers, or
underscores). In some cases, templates have more than one
replaceable placeholder, each of which is unique.

To use the template, you declare several variables of types based on this
template. Here’s one such line:

CoolHolder<int> IntHolder;

This line declares a variable called IntHolder. For this variable, the
compiler creates a type called CoolHolder<int>, which is a type based
on the CoolHolder template, where T is replaced by int. Here’s another
line where the code declares a variable:

CoolHolder<int> AnotherIntHolder;



This time, the compiler doesn’t have to create another type because it
just created the CoolHolder<int> type earlier. But again, this line uses
the same type based on the template, where T is replaced by int.

The example in Listing 5-1 creates another class based on the
CoolHolder template. It’s instantiated at FloatHolder:

CoolHolder<float> FloatHolder;

When the compiler sees this line, it creates another type by using the
template, and it replaces T with the word float. So in this case, the
first, second, and third properties of FloatHolder each hold a
floating-point number. Also, the sum() method returns a floating-point
number.

The following line uses the CoolHolder<int> type created earlier to
declare a pointer to CoolHolder<int>, hold. Yes, you can do that;
pointers are allowed:

CoolHolder<int> *hold;

Then the code that follows cycles through a loop to create new instances
of type CoolHolder<int> by using the line

hold = new CoolHolder<int>;

The code accesses the members using the pointer notation, ->, like so:

hold->first = loop * 100;

 These are the basics of templates. They’re really not as bad as
people make them out to be. Just remember that when you see an
identifier followed by angle brackets containing a type or class, it’s
a template.

Going Beyond the Basics



The previous section discusses template basics. However, templates are
more flexible and powerful than you might imagine. The following
sections discuss how you can move beyond the basics to add flexibility
to your code.

Separating a template from the function code
In the earlier days of templates and C++, the rule was that you had to put
the method code for a class template inside the template itself; you
couldn’t put a forward declaration in the template and then put the
function code outside the template, as you could do with classes.
However, the ANSI standard changed this situation and made putting the
code outside the template legal. (It’s important to know this fact because
you may encounter convoluted-looking code that puts everything
inside.) The ImFree example, shown in Listing 5-2, shows you how to
separate the methods from the template.

LISTING 5-2: Separating a Template from Function
Code
#include <iostream> 

  

using namespace std; 

  

template <typename T> 

class ImFree { 

protected: 

  T x; 

public: 

  T& getx(); 

  void setx(T); 

}; 

  

template <typename T> 

T &ImFree<T>::getx() { 

  return x; 

} 

  

template <typename T> 

void ImFree<T>::setx(T newx) { 

  x = newx; 

} 

  



int main() { 

  ImFree<int> separate; 

  separate.setx(10); 

  cout << separate.getx() << endl; 

  return 0; 

}

Look closely at one of the methods:
template <typename T> 

T &ImFree<T>::getx() { 

    return x; 

}

The first line is the same as the first line of the template definition. It’s
just the word template followed by the parameter in angle brackets.

The next line looks almost like you might expect it to. With classes, you
put the function prototype, adding the class name and two colons before
the function name itself, but after the return type. Here you do that, too;
the sticky part is how you write the template name. You don’t just give
the name; instead, you follow the name with two angle brackets, with the
parameter inside, like this: T &ImFree<T>::getx(). Note the <T> part.

 Note that the getx() method returns a reference instead of a
variable of type T. There’s a good reason for doing it. In the main()
function of Listing 5-2, you create the class based on the template
with an integer parameter:

ImFree<int> separate;

However, you can create the class with some other class:
ImFree<SomeOtherClass> separate;

When you do that, you don’t really want to return just an instance from
the function, as in

T& getx() { 

    return x; 

}



Returning an instance copies the existing instance rather than return the
existing instance. Using a reference means that the class user doesn’t
have to do any bizarre coding. For example, displaying the output using
a cout is rather straightforward:

cout << separate.getx() << endl;

Including static members in a template
You can include static members in a template, but you need to be careful
when you do so. Remember that all instances of a class share a single
static member of the class. You can think of the static member as being a
member of the class itself, whereas the nonstatic members are members
of the instances.

Now, from a single template, you can potentially create multiple classes.
This means that to maintain the notion of static members, you need to
either get creative with your rules or make life easy by just assuming
that each class based on the template gets its own static members. The
easy way is exactly how this process works.

 When you include a static member in a template, each class that
you create based on the template gets its own static member.
Further, you need to tell the compiler how to store the static
member just as you do with static members of classes that aren’t
created from templates. The StaticMembers example, shown in
Listing 5-3, contains an example of static members in a template.

LISTING 5-3: Using Static Members in a Template
#include <iostream> 

  

using namespace std; 

  

template <typename T> 

class Electricity { 

public: 

    static T charge; 



}; 

  

template <typename T> 

T Electricity<T>::charge; 

  

int main() { 

  Electricity<int>::charge = 10; 

  Electricity<float>::charge = 98.6; 

  Electricity<int> inst; 

  inst.charge = 22; 

  

  cout << Electricity<int>::charge << endl; 

  cout << Electricity<float>::charge << endl; 

  cout << inst.charge << endl; 

  

  return 0; 

}

Note how you declare storage for the static member; it’s the two lines in
between the template and main(). You supply the same template header
you would for the class and then specify the static member type (in this
case, T, which is the template parameter). Next, you refer to the static
member by using the usual classname::member name syntax. But
remember that the class name gets the template parameter in angle
brackets after it.

This code creates two classes based on the templates Electricity
<int> and Electricity <float>. Each of these classes has its own
instance of the static member; the <int> version contains 10 and the
<float> version contains 98.6. Then, just to show that there’s only a
single static member per class, the code creates an instance of
Electricity<int> and sets its static member to 22. Using a cout
statement, you can see that the output for the two Electricity<int>
lines are the same and the Electricity<float> output is different.

Parameterizing a Template
A template consists of a template name followed by one or more
parameters inside angle brackets. Then comes the class definition. When
you create a new class based on this template, the compiler obliges by



making a substitution for whatever you supply as the parameter. Focus
your eyes on this template:

template <typename T> 

class SomethingForEveryone { 

public: 

    T member; 

};

Not much to it: It’s just a simple template with one member called,
conveniently enough, member. However, notice in particular what’s
inside the angle brackets. This is the parameter: typename T. As with
parameters in a function, the first is the type of the parameter
(typename), and the second is the name of the parameter (T). Previous
sections have illustrated how this all works. However, you don’t always
use typename; you can use other types, as described in the sections that
follow.

Putting different types in the parameter
It turns out there’s more to using parameters than meets the computer
screen. You can put many more keywords inside the parameter beyond
just the boring word typename. For example, suppose you have a class
that does some comparisons to make sure that a product isn’t too
expensive for a person’s budget. Each person would have several
instances of this class, one for each product. This class would have a
constant in it that represents the maximum price the person is willing to
spend.

But there’s a twist: Although you would have multiple instances of this
class, one for each product the person wants to buy, the maximum price
would be different for each person. You can create such a situation with
or without templates. Here’s a way you can do it with a template:

template <int MaxPrice> 

class PriceController { 

public: 

  int Price; 

  void TestPrice() 

  { 

    if (Price > MaxPrice) 



    { 

      cout << "Too expensive" << endl; 

    } 

  } 

};

In this case, the template parameter isn’t a type at all — it’s an integer
value, an actual number. Then, inside the class, you use that number as a
constant. As you can see in the TestPrice function, the code compares
Price to the MaxPrice constant. So this time, instead of using T for the
name of the template parameter, the code views it as a value, not a type.
The PriceController example, shown in Listing 5-4, contains a
complete example that uses this template.

LISTING 5-4: Using Different Types for a Template
Parameter
#include <iostream> 

  

using namespace std; 

  

template <typename T> 

class SomethingForEveryone { 

public: 

  T member; 

}; 

  

template <int MaxPrice> 

class PriceController { 

public: 

  int Price; 

  void TestPrice(string Name) 

  { 

    if (Price > MaxPrice) 

    { 

      cout << Name << " too expensive!" << endl; 

    } 

  } 

}; 

  

int main() { 

  SomethingForEveryone<int> JustForMe; 

  JustForMe.member = 2; 

  cout << JustForMe.member << endl; 



  

  const int FredMaxPrice = 30; 

  PriceController<FredMaxPrice> FredsToaster; 

  FredsToaster.Price = 15; 

  FredsToaster.TestPrice("Toaster"); 

  PriceController<FredMaxPrice> FredsDrawingSet; 

  FredsDrawingSet.Price = 45; 

  FredsDrawingSet.TestPrice("Drawing set"); 

  

  const int JulieMaxPrice = 60; 

  PriceController<JulieMaxPrice> JuliesCar; 

  JuliesCar.Price = 80; 

  JuliesCar.TestPrice("Car"); 

  return 0; 

}

Each person gets a different class that reflects the maximum price
they’re willing to pay. You can see that Fred gets a class called
PriceController <FredMaxPrice>. Julie, however, gets a class called
PriceController <JulieMaxPrice>. And remember, these really are
different classes. The compiler created two different classes, one for
each item passed in as a template parameter. Also notice that the
parameters are constant integer values. FredMaxPrice is a constant
integer holding 30. JulieMaxPrice is a constant integer holding 60.

For the first one, PriceController <FredMaxPrice>, the code creates
two instances. For the second one, PriceController <JulieMaxPrice>,
the code creates one instance. In all instances, the code sets the price of
the item and then calls TestPrice() with the item name. If the item is
too expensive, the PriceController outputs a special message. Here’s
the output from this example:

2 

Drawing set too expensive! 

Car too expensive!

 When working with some older versions of C++, you can’t use
certain types, such as float, for your template. Doing so can cause
the build process to fail with all sorts of odd messages. However,



you also see the following message, which tells you precisely
where the problem lies:

error: 'float' is not a valid type for a template non-type parameter

 Starting with C++ 11, you can use std::nullptr_t; as a
parameter type, as in template <std::nullptr_t N>. When
working with C++ 20, you gain access to these types as well:

Floating-point type
Literal class type with the following properties:

All base classes and nonstatic data members are public and
non-mutable.
The types of all base classes and non-static data members are
structural types. Depending on the compiler, you might also
be able to use a multidimensional array of the structural type.

 A null pointer represents a special case that differentiates
between 0 and an actual null (missing) value. Its actual
representation is (void *)0, which makes it different from the
C/C++ NULL value. You can see the null pointer discussed at
https://hackernoon.com/what-exactly-is-nullptr-in-c-

94d63y6t and
https://stackoverflow.com/questions/13665349/what-is-a-

proper-use-case-of-stdnullptr-t-template-parameters.

PARAMETERIZING WITH A CLASS
When your template is expecting a class for its parameter (remember, a class, not an
instance of a class), you can use the word typename in the template parameter. You then
instruct the compiler to create a class based on the template by passing a class name

https://hackernoon.com/what-exactly-is-nullptr-in-c-94d63y6t
https://stackoverflow.com/questions/13665349/what-is-a-proper-use-case-of-stdnullptr-t-template-parameters


into the template, as in MyContainer<MyClass>inst;. Typically, you use a container class
as a template parameter if you have a template that you intend to hold instances of a
class. However, instead of using typename, you use class, like so:

template <class T> 

class MyContainer { 

public: 

    T member; 

};

Including multiple parameters
You’re not limited to only one parameter when you create a template.
For example, the Standard C++ Library has a template called map. The
map template works like an array, but instead of storing things based on
an index as you would in an array, you store them based on a key and
value pair. To retrieve an item from map, you specify the key, and you get
back the value. When you create a class based on the map template, you
specify the two types map will hold, one for the key and one for the
value. These are types, rather than objects or instances. After you specify
the types, the compiler creates a class, and inside that class you can put
the instances.

To show how this works, instead of using the actual map template, the
following example creates a template that works similarly to a map.
Instances of classes based on this template will hold only as many items
as you specify when you create the class, whereas a real map doesn’t
have any limitations beyond the size of the computer’s memory. The
MultipleParameters example, shown in Listing 5-5, demonstrates an
alternative map template.

LISTING 5-5: Using Multiple Parameters with
Templates
#include <iostream> 

  

using namespace std; 

  

template<typename K, typename V, int S> 



class MyMap { 

protected: 

  K key[S]; 

  V value[S]; 

  bool used[S]; 

  int Count; 

  

  int Find(K akey) { 

    int i; 

    for (i=0; i<S; i++) { 

      if (used[i] == false) 

        continue; 

      if (key[i] == akey) { 

        return i; 

      } 

    } 

    return -1; 

  } 

  

  int FindNextAvailable() { 

    int i; 

    for (i=0; i<S; i++) { 

      if (used[i] == false) 

        return i; 

    } 

    return -1; 

  } 

  

public: 

  MyMap() { 

    int i; 

    for (i=0; i<S; i++) { 

      used[i] = false; 

    } 

  } 

  

  void Set(K akey, V avalue) { 

    int i = Find(akey); 

  

    if (i > -1) { 

      value[i] = avalue; 

    } 

    else { 

      i = FindNextAvailable(); 

  

      if (i > -1) { 

        key[i] = akey; 

        value[i] = avalue; 



        used[i] = true; 

      } 

      else 

          cout << "Sorry, full!" << endl; 

    } 

  } 

  

  V Get(K akey) { 

    int i = Find(akey); 

  

    if (i == -1) 

      return 0; 

    else 

      return value[i]; 

  } 

}; 

  

int main() { 

  MyMap<char,int,10> mymap; 

  

  mymap.Set('X',5); 

  mymap.Set('Q',6); 

  mymap.Set('X',10); 

  

  cout << mymap.Get('X') << endl; 

  cout << mymap.Get('Q') << endl; 

  return 0; 

}

When you run this application, you see this output:
10 

6

This listing is a good exercise — not just for your fingers as you type it
in, but for understanding templates. Notice the first line of the template
definition:

template<typename K, typename V, int S>

This template takes three parameters. The first is a type, K, used as the
key for map. The second is a type, V, used as the value for map. The final
is S, and it’s not a type. Instead, S is an integer value; it represents the
maximum number of pairs that map can hold.



The methods that follow allow the user of any class based on this map to
add items to map and retrieve items from map. The example currently
lacks functions for removing items; you might think about ways you
could add such functions. You might even look at the header files for the
map template in the Standard C++ Library to see how the designers of
the library implemented a removal system.

Working with non-type parameters
Starting with C++ 11, you can use non-type parameters to define a
template. The use of non-type parameters makes it possible to create
templates that accept some interesting types of input, yet are more
specific in some ways than general template types. Previous sections
have shown how to use types for templates; here are some common non-
types used for templates:

lvalue reference
nullptr
pointer
enumeration
integral
auto (some functionality provided starting with C++ 17 and
enhanced with deduction of the class type in C++ 20)

One of the more interesting non-type parameters is an enumeration. You
can use the enumeration to enforce things like kind selection or for
verifying that a particular kind is in use. It also comes in handy for
comparisons. The NonTypeParm example, shown in Listing 5-6,
demonstrates techniques you can use when working with templates that
rely on an enumeration.

LISTING 5-6: Using an Enumeration in a Template
#include <iostream> 

  

using namespace std; 



  

enum StoreType { 

  Red, 

  Blue, 

  Green 

}; 

  

template <typename V> 

struct StoreOut { 

  V Value; 

  StoreType Kind; 

}; 

  

template <StoreType K, typename V> 

class StoreIt { 

protected: 

  V Value; 

  StoreType Kind = K; 

public: 

  StoreIt() { 

    Value = 0; 

  } 

  

  StoreIt(V value) { 

    Value = value; 

  } 

  

  StoreOut<V>& getx(); 

  void setx(StoreType, V); 

  string KindToString(); 

}; 

  

template <StoreType K, typename V> 

StoreOut<V>& StoreIt<K, V>::getx() { 

  StoreOut<V>* Out = new StoreOut<V>(); 

  Out->Value = Value; 

  Out->Kind = Kind; 

  return *Out; 

} 

  

template <StoreType K, typename V> 

void StoreIt<K, V>::setx(StoreType newT, V newV) { 

  Value = newV; 

  Kind = newT; 

} 

  

template <StoreType K, typename V> 

string StoreIt<K, V>::KindToString(){ 



  switch (Kind) { 

    case Blue: return "Blue"; 

    case Green: return "Green"; 

    case Red: return "Red"; 

  } 

  return "Not Found"; 

} 

  

int main() { 

  StoreIt<StoreType::Blue, int> Test; 

  Test.setx(StoreType::Red, 5); 

  

  StoreIt<StoreType::Red, int> Test2(6); 

  

  cout << Test1.KindToString() << "\t" << 

    Test1.getx().Value << endl; 

  if (Test1.KindToString() != "Blue") 

    cout << "Test1 storage type changed." << endl; 

  if (Test1.KindToString() == Test2.KindToString()) 

    cout << "Test1 and Test2 are of equal types." << endl; 

  return 0; 

}

This example stores two values: a storage type and a value. The
StoreType enumeration contains the only values you can use as input:
Red, Blue, and Green. You provide one of these values when creating the
initial object and again when setting a value using setx(). Using this
approach limits the number of object types that a caller can create to
those that you expect.

 The type could be anything. For example, if you create a car
object and your company only supports certain paint colors, you
could limit selection to those colors programmatically. This
example simplifies the enumeration selection so that you can more
easily see how it works.

Because the example stores two values, it needs a method for returning
two values, which is the purpose of the StoreOut structure. The getx()
method uses it to return data to the caller.



The actual StoreIt class declaration protects the two variables: Value,
which can be of any type; and Kind, which must be a StoreType
enumeration value. It also provides three methods: getx(), which
returns a StoreOut structure;, setx(), which accepts the StoreType and
value used to set the object values; and KindToString(), which provides
the utility service of changing a StoreType value to a string for output.
The setx() and getx() methods work much the same as their
counterparts in Listing 5-2. The KindToString() method uses a simple
switch statement to perform the required translation.

The code in main() creates a StoreIt object, Test1, stores data in it,
and then displays the values onscreen. The main() code also
demonstrates some of the ways in which you might use this template
class. For example, you could determine whether the Kind of Test1 has
changed. You could also determine whether Test1 and Test2 are the
same Kind of object. Notice that Test1 and Test2 use different
constructor types so that the Kind is created as part of the template, but
Value is either a default value of 0 or a specific value of 6 in this case.
Here’s what you see as output:

Red     5 

Test1 storage type changed. 

Test1 and Test2 are of equal types.

Typedefing a Template
If there’s a template that you use with particular parameters repeatedly,
often just using typedef is the easiest way to go. For example, if you
have a template like this

template <typename T> 

class Cluck { 

public: 

  T Chicken; 

};

and you use Cluck <int> repeatedly, employ the following:



typedef Cluck<int> CluckNum;

Then, anytime you need to use Cluck<int>, you can use CluckNum
instead. Here’s how:

int main() { 

  CluckNum foghorn; 

  foghorn.Chicken = 1; 

  return 0; 

}

 Using typedef for templates makes the resulting class name
look like a regular old class name, rather than a template name. In
the preceding example, you use CluckNum instead of the somewhat
cryptic Cluck<int>. And interestingly, if you’re working as part of
a team of programmers and the other programmers aren’t as
knowledgeable about templates as you are, they tend to be less
intimidated if you typedef the template.

 When the compiler creates a class based on a template, people
say that the compiler is instantiating the template. Even though
most people use the word instantiate to mean creating an object
based on a class, you can see how the template itself is a type from
which you can create other types. Thus, a class based on a template
is actually an instance of a template, and the process of creating a
class based on a template is called template instantiation.

Deriving Templates
If you think about it, you can involve a class template in a derivation in
at least three ways. You can:

Derive a class from a class template



Derive a class template from a class
Derive a class template from a class template

If you want to find out about these techniques, read the following
sections.

Deriving classes from a class template
You can derive a class from a template, and in doing so, specify the
parameters for the template. In other words, think of the process like
this:

1. From a template, you create a class.
2. From that created class, you derive your final class.

Suppose you have a template called MediaHolder, and the first two lines
of its declaration look like this:

template <typename T> 

class MediaHolder

Then you could derive a class from a particular case of this template, as
in this header for a class:

class BookHolder : public MediaHolder<Book>

Here you create a new class (based on MediaHolder) called
MediaHolder<Book>. From that class, you derive a final class,
BookHolder. The ClassFromTemplate example, shown in Listing 5-7, is
an example of the class MediaHolder.

LISTING 5-7: Deriving a Class from a Class Template
#include <iostream> 

  

using namespace std; 

  

class Book { 

public: 

  string Name; 

  string Author; 



  string Publisher; 

  Book(string aname, string anauthor, string apublisher) : 

    Name(aname), Author(anauthor), Publisher(apublisher){} 

}; 

  

class Magazine { 

public: 

  string Name; 

  string Issue; 

  string Publisher; 

  Magazine(string aname, string anissue, 

    string apublisher) : 

    Name(aname), Issue(anissue), Publisher(apublisher){} 

}; 

  

template <typename T> 

class MediaHolder { 

public: 

  T *array[100]; 

  int Count; 

  void Add(T *item) 

  { 

    array[Count] = item; 

    Count++; 

  } 

  MediaHolder() : Count(0) {} 

}; 

  

class BookHolder : public MediaHolder<Book> { 

public: 

  enum GenreEnum 

    {childrens, scifi, romance, 

     horror, mainstream, hownotto}; 

  GenreEnum GenreOfAllBooks; 

}; 

  

class MagazineHolder : public MediaHolder<Magazine> { 

public: 

  bool CompleteSet; 

}; 

  

int main() { 

  MagazineHolder dl; 

  dl.Add(new Magazine( 

      "Dummies Life", "Vol 1 No 1", "Wile E.")); 

  dl.Add(new Magazine( 

      "Dummies Life", "Vol 1 No 2", "Wile E.")); 

  dl.Add(new Magazine( 



      "Dummies Life", "Vol 1 No 3", "Wile E.")); 

  dl.CompleteSet = false; 

  cout << dl.Count << endl; 

  

  BookHolder bh; 

  bh.Add(new Book( 

      "Yellow Rose", "Sandy Shore", "Wile E.")); 

  bh.Add(new Book( 

      "Bluebells", "Sandy Shore", "Wile E.")); 

  bh.Add(new Book( 

      "Red Tulip", "Sandy Shore", "Wile E.")); 

  bh.GenreOfAllBooks = BookHolder::childrens; 

  cout << bh.Count << endl; 

  return 0; 

}

When you run this example, you see the magazine count of 3 first, and
the book count of 3 second.

Deriving a class template from a class
A template doesn’t have to be at the absolute top of your hierarchy; a
template can be derived from another class that’s not a template. When
you have a template and the compiler creates a class based on this
template, the resulting class will be derived from another class. For
example, suppose you have a class called SuperMath that isn’t a
template. You could derive a class template from SuperMath. The
TemplateFromClass example, shown in Listing 5-8, demonstrates how
you can do this.

LISTING 5-8: Deriving a Class Template from a Class
#include <iostream> 

  

using namespace std; 

  

class SuperMath { 

public: 

  int IQ; 

}; 

  

template <typename T> 

class SuperNumber : public SuperMath { 

public: 



  T value; 

  

  T &AddTo(T another) { 

    value += another; 

    return value; 

  } 

  

  T &SubtractFrom(T another) { 

    value -= another; 

    return value; 

  } 

}; 

  

void IncreaseIQ(SuperMath &inst) { 

  inst.IQ++; 

} 

  

int main() { 

  SuperNumber<int> First; 

  First.value = 10; 

  First.IQ = 206; 

  cout << First.AddTo(20) << endl; 

  

  SuperNumber<float> Second; 

  Second.value = 20.5; 

  Second.IQ = 201; 

  cout << Second.SubtractFrom(1.3) << endl; 

  

  IncreaseIQ(First); 

  IncreaseIQ(Second); 

  cout << First.IQ << endl; 

  cout << Second.IQ << endl; 

  return 0; 

}

The base class is called SuperMath, and it has a member called IQ. From
SuperMath, the example derives a class template called SuperNumber
that does some arithmetic. Later, the example adds an Incredible IQ-
Inflating Polymorphism to use in this function:

void IncreaseIQ(SuperMath &inst) { 

    inst.IQ++; 

}

Note what this function takes as a parameter: A reference to SuperMath.
Because the SuperNumber class template is derived from SuperMath, any



class you create based on the template is, in turn, derived from
SuperMath. That means that if you create an instance of a class based on
the template, you can pass the instance into the IncreaseIQ() function.
(Remember, when a function takes a pointer or reference to a class, you
can instead pass an instance of a derived class.)

Deriving a class template from a class template
If you have a class template and you want to derive another class
template from it, first you need to think about exactly what you’re doing;
the process takes place when you attempt to derive a class template from
another class template. Remember that a class template isn’t a class: A
class template is a cookie-cutter that the compiler uses to build a class.
If, in a derivation, the base class and the derived classes are both
templates, what you really have is the following:

1. The first class is a template from which the compiler builds classes.
2. The second class is a template from which the compiler will build

classes that are derived from classes built from the first template.

Now think about this: You create a class based on the base class
template. Then you create a second class based on the second template.
This process doesn’t automatically mean that the second class derives
from the first class. Here’s why: From the first template, you can create
many classes. When you create a class from the second template, which
of those classes will it derive from?

To understand what’s happening here, look at the
TemplateFromTemplate example, shown in Listing 5-9. To keep the
code simple, the example uses basic names for the identifiers. (Notice
that we commented out one of the lines. If you’re typing this, type that
line in, too, with the comment slashes, because you’ll try something in a
moment.)

LISTING 5-9: Deriving a Class Template from a Class
Template



#include <iostream> 

  

using namespace std; 

  

template <typename T> 

class Base { 

public: 

  T a; 

}; 

  

template <typename T> 

class Derived : public Base<T> { 

public: 

  T b; 

}; 

  

void TestInt(Base<int> *inst) { 

  cout << inst->a << endl; 

} 

  

void TestDouble(Base<double> *inst) { 

  cout << inst->a << endl; 

} 

  

int main() { 

  Base<int> base_int; 

  Base<double> base_double; 

  

  Derived<int> derived_int; 

  Derived<double> derived_double; 

  

  TestInt(&base_int); 

  TestInt(&derived_int); 

  TestDouble(&base_double); 

  TestDouble(&derived_double); 

  

  //TestDouble(&derived_int); 

  return 0; 

}

 The example has two functions, each taking a different class —
and each class based on the first template, called Base. The first
takes Base<int> * as a parameter, and the second takes



Base<double> * as a parameter. When a function, such as
TestInt() or TestDouble(), takes a pointer to a class, it can
legally pass a pointer to an instance of a derived class, which means
that you can create this variable:

Derived<int> derived_int;

You pass this variable to the function that takes a Base<int> and it
compiles. That means that Derived<int> is derived from Base<int>. In
the same way, Derived<double> is derived from Base<double>. When
you run this code, it outputs four numbers: two int values and two
double values.

To see how Derived<int> relies on Base<int>, uncomment the line
TestDouble(&derived_int). When you do this, and you try to compile
the listing, you see this message:

error: cannot convert 'Derived<int>*' to 'Base<double>*' for argument '1' to 

'void TestDouble(Base<double>*)'

The error message says you can’t pass a pointer to Derived<int> to a
function that takes a pointer to Base<double>. That’s because
Derived<int> isn’t derived from Base<double>.

 Templates aren’t derived from other templates. You can’t derive
from templates because templates aren’t classes. Rather, templates
are cookie cutters for classes, and the class resulting from a
template can be derived from a class resulting from another
template. Look closely at the declaration of the second template
class. Its header looks like this:

template <typename T> 

class Derived : public Base<T>

The clue here is that the Derived template takes a template parameter
called T. Then the class based on the template is derived from a class
called Base<T>. But in this case, T is the parameter for the Derived



template. See what happens if you create a class based on Derived, such
as this one:

Derived<int> x;

This line creates a class called Derived<int>; then, in this case, the
parameter is int. Thus the compiler replaces the Ts so that Base<T> in
this case becomes Base<int>. So Derived<int> is derived from
Base<int>.

Templatizing a Function
A function template is a function that allows the user to essentially
modify the types used by a function as needed. For example, look at
these two functions:

int AbsoluteValueInt(int x) { 

    if (x >= 0) 

        return x; 

    else 

        return -x; 

} 

  

float AbsoluteValueFloat(float x) { 

    if (x >= 0) 

        return x; 

    else 

        return -x; 

}

To take the absolute value of an integer, you use the
AbsoluteValueInt() function. But to take the absolute value of a float,
you instead use the AbsoluteValueFloat() function. Of course, you
need yet another function to support double or other types. Instead of
having a separate function for double and a separate function for every
other type, you can use a template like this:

template <typename T> T AbsoluteValue(T x) { 

    if (x >= 0) 

        return x; 

    else 



        return -x; 

}

Now you need only one version of the function, which handles any
numeric type, including double. The users of the function can,
effectively, create their own versions of the function as needed. For
example, to use an integer version of this function, you put the
typename, int, inside angle brackets after the function name when
calling the function:

int n = -3; 

cout << AbsoluteValue<int>(n) << endl;

If you want to use the function for a float, you do this:
float x = -4.5; 

cout << AbsoluteValue<float>(x) << endl;

Note the function template declaration. The real difference between the
function template and a standard function is in the header:

template <typename T> T AbsoluteValue(T x)

Begin with the word template, a space, and an open angle bracket (that
is, a less-than sign). These characters are followed by the word
typename, a closing angle bracket (that is, a greater-than sign), and then
an identifier name. Most people like to use the name T (because it’s the
first letter in type). At this point, you add the rest of the function header,
which, taken by itself, looks like this:

T AbsoluteValue(T x)

 T represents a type. Therefore, this portion of the function header
shows a function called AbsoluteValue that takes T as a parameter
and returns T. Creating a function based on this template by using
an integer, means that the function takes an integer parameter and
returns an integer. When the compiler encounters a line like this:

cout << AbsoluteValue<float>(x) << endl;



it creates a function based on the template, substituting float anywhere
it sees T. However, if you have two lines that use the same type, as in
this:

cout << AbsoluteValue<float>(x) << endl; 

cout << AbsoluteValue<float>(10.0) << endl;

the compiler creates only a single function for both lines.

Overloading and function templates
If you really want to go out on a limb and create flexibility in your
application, you can use overloading with a function template.
Remember, overloading a function means that you create two different
versions of a single function. What you’re doing is creating two separate
functions that have different parameters (that is, either a different
number of parameters or different types of parameters), but they share
the same name. Look at these two functions found in the
FunctionOverloadingAndTemplates example:

int AbsoluteValue(int x) { 

  if (x >= 0) 

    return x; 

  else 

    return -x; 

} 

  

float AbsoluteValue(float x) { 

  if (x >= 0) 

    return x; 

  else 

    return -x; 

}

These functions are an example of overloading. They take different types
as parameters. (One takes an int; the other takes a float.) Of course,
you could combine these functions into a template:

template <typename T> T AbsoluteValue(T x) { 

  if (x >= 0) 

    return x; 

  else 

    return -x; 

}



There really isn’t any difference between the two examples. After all,
you can use the following two lines of code either after the overloaded
functions (without the type parameters) or after the function template:

cout << AbsoluteValue<int>(n) << endl; 

cout << AbsoluteValue<float>(x) << endl;

In this case, n is an int and x is a float. However, the template is a
better choice. If you use the overloaded form and try this code, you see
an error:

cout << AbsoluteValue(10.5) << endl;

Even though 10.5 is a float you see an error message like this:

error: call of overloaded 'AbsoluteValue(double)' is ambiguous

The message contains AbsoluteValue(double), which means that the
compiler thinks that 10.5 is a double, not a float. You can pass a
double into either a function that takes an int or a function that takes a
float. The compiler will just convert it to an int or a float, whichever
it needs. Because the compiler thinks that 10.5 is a double, it can pass
the value to either overloaded function version. So that leaves you with a
choice: You can cast it to a float using (float)10.5; declare it a float
using 10.5f; or create a third overloaded version of the function, one
that takes a double.

Creating a template is easier than overcoming these sorts of errors. The
second reason the template version is better: If you want a new type of
the function, you don’t need to write another version of the function.

However, you can also overload a function template. The
OverloadedFunctionTemplate example, shown in Listing 5-10, contains
an overloaded function template.

LISTING 5-10: Overloading a Function Template
#include <iostream> 

  

using namespace std; 

  

template <typename T> T AbsoluteValue(T x) { 



  cout << "(using first)" << endl; 

  if (x >= 0) 

    return x; 

  else 

    return -x; 

} 

  

template <typename T> T AbsoluteValue(T *x) { 

  cout << "(using second)" << endl; 

  if (*x >= 0) 

    return *x; 

  else 

    return -(*x); 

} 

  

int main() { 

  int n = -3; 

  cout << AbsoluteValue<int>(n) << endl; 

  

  float *xptr = new float(-4.5); 

  cout << AbsoluteValue<float>(xptr) << endl; 

  cout << AbsoluteValue<float>(10.5) << endl; 

  return 0; 

}

Passing a pointer (as in the second call to AbsoluteValue() in main()),
uses the second version of the template. And just to be sure which
version gets used and at what time during application execution, the
example contains a cout line at the beginning of each function template.
Here’s what you see as output:

(using first) 

3 

(using second) 

4.5 

(using first) 

10.5

From the middle two lines, you can see that the computer did indeed call
the second version of the template.

 You can make life a little easier by using a small trick. Most
compilers let you leave out the type in angle brackets in the



function template call itself. The compiler deduces what type of
function to build from the template, based on the types that you
pass into the function call. Here’s an example main() that you can
substitute for the main() in Listing 5-10:

int main() { 

  int n = -3; 

  cout << AbsoluteValue(n) << endl; 

  float *xptr = new float(-4.5); 

  cout << AbsoluteValue(xptr) << endl; 

  cout << AbsoluteValue(10.5) << endl; 

  return 0; 

}

This code replaces AbsoluteValue<int>(n) with AbsoluteValue(n).
When you run the modified code, you see the same output as when you
run Listing 5-10.

Templatizing a method
When you write a template for a class, you can put function templates
inside the class template. You simply declare a function template inside a
class, as in the following found in the MemberFunctionTemplate
example:

class MyMath { 

public: 

  string name; 

  MyMath(string aname) : name(aname) {} 

  

  template <typename T> void WriteAbsoluteValue(T x) { 

    cout << "Hello " << name << endl; 

    if (x >= 0) 

      cout << x << endl; 

    else 

      cout << -x << endl; 

  } 

};

The WriteAbsoluteValue() method is a template. It’s preceded by the
word template and a template parameter in angle brackets. Then it has
a return type, void, the function name, and the function parameter.



When you create an instance of the class, you can call the method,
providing a type as need be, as in the following:

int main() { 

  MyMath inst = string("George"); 

  inst.WriteAbsoluteValue(-50.5); 

  inst.WriteAbsoluteValue(-35); 

  return 0; 

}

In the first call, the function takes a double (because, by default, the
C++ compiler considers -50.5 a double). In the second call, the function
takes an integer. The compiler then generates two different forms of the
function, and they both become members of the class.

 Although you can use function templates as class members, you
cannot make them virtual. The compiler won’t allow it, and the
ANSI standard forbids you from doing it. If you try to make the
function template virtual, you get an error message that looks
similar to this one:

'virtual' can only be specified for functions
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Chapter 6

Programming with the Standard
Library

IN THIS CHAPTER
 Architecting the Standard C++ Library
 Managing data in vector, map, list, or set
 Stacking and queuing
 Interacting with dynamic arrays and unordered data

When you get around in the world of C++ programming, you encounter
two different libraries that people use to make their lives easier. These
two libraries are:

Standard C++ Library
Standard Template Library (STL)

In this case, library means a set of classes that you can use in your
applications. These libraries include handy classes, such as string and
vector (which is like an array — it’s a list you use to store objects).

The difference between the Standard C++ Library and STL is that STL
came first. STL was used by so many developers that the American
National Standards Institute (ANSI) decided to standardize it. The result
is the similar Standard C++ Library that is part of the official ANSI
standard and now part of most modern C++ compilers. This chapter uses
the Standard C++ Library, or simply the Standard Library. The concepts
presented here also apply to STL, so if you’re using STL, you can use
this chapter.



 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookV\Chapter06
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Architecting the Standard Library
When people start using the Standard Library, they often ask about the
source code. They see the header files, but no .cpp files. There are no
.cpp files. ANSI architected the Standard Library for ease of use and
reliability.

The classes contain their functions inside the class definitions; there are
no forward declarations. You don’t add source files to your project or
link in compiled libraries. Just add an include line for the libraries you
want.

To see how this works for yourself, open any project file you’re worked
on to date that has #include <iostream> and relies on a cout/endl
combination to output text. Right-click endl and choose Find
Implementation of: ’endl’ from the context menu. Code::Blocks will
open the ostream file and take you to the implementation of endl, which
basically outputs ’\n’ to the output stream, amid some other confusing
code. When you scroll to the beginning of that file, you see:

/** @file include/ostream 

 *  This is a Standard C++ Library header. 

 */

There is no .cpp file involved. All of the code appears in the header.

Containing Your Classes



Computers need a place to store objects, so the Standard Library
includes containers in which you can put objects. These special
containers are called container classes, and the Standard Library
implements them as templates. When you create an instance of a
container class, you specify what class it holds.

 When you specify the class in a container, you are saying that
the container will contain instances of your specified class or of
classes derived from your specified class. You must decide whether
the container will hold instances of the class, pointers to the
instances, or references to the instances.

Storing in a vector
The Vectors example, shown in Listing 6-1, demonstrates how to use a
container class. This particular container is a data type called a vector,
and it works much like an array.

LISTING 6-1: Using Vectors as Examples of
Container Classes
#include <iostream> 

#include <vector> 

  

using namespace std; 

  

int main() { 

  vector<string> names; 

  

  names.push_back("Tom"); 

  names.push_back("Dick"); 

  names.push_back("Harry"); 

  names.push_back("April"); 

  names.push_back("May"); 

  names.push_back("June"); 

  

  cout << names[0] << endl; 

  cout << names[5] << endl; 

  return 0; 

}



You use vector as a template. That means that it’s going to have a
template parameter, which is string in this case. Note also the included
header files. Among them are <vector> (with no .h after the filename).
In general, you include the header file that matches the name of the
container you are using. Thus, if there were such a thing as a container
called rimbucklebock, you would type #include <rimbucklebock>. Or,
if you use the container called set, you type #include <set>. When
you run this example, you see two names as output:

Tom 

June

 There are a number of advantages to using a vector instead of a
regular, plain old, no-frills array:

You don’t need to know up front how many items will be going in it.
With an array, you need to know the size when you declare it.
You don’t need to specifically deallocate a vector, as you do with a
dynamically defined array.
You can obtain the precise size of a vector, so you don’t need to
pass the size of the vector to a function.

When a vector is filled, the underlying code allocates additional
memory automatically.
You can return a vector from a function. To return an array, you
must dynamically define it first.
You can add and remove items from the middle of a vector,
something that you can’t easily do with an array.
You can copy or assign a vector directly.

Here are some things you can do with vector:

Add items to the end of it.



Access its members by using bracket notation.
Iterate through it, either from beginning to end or from the end back
to the beginning.

The Vectors2 example, shown in Listing 6-2, demonstrates how to use
multiple vectors in a single application. You can see that each one holds
a different type, specified in the template parameter. This example
requires C++ 11 or above to use.

LISTING 6-2: Creating More Advanced Vectors
#include <iostream> 

#include <vector> 

  

using namespace std; 

  

class Employee { 

public: 

  string Name; 

  string FireDate; 

  int GoofoffDays; 

  Employee(string aname, string afiredate, 

    int agoofdays) : Name(aname), FireDate(afiredate), 

    GoofoffDays(agoofdays) {} 

}; 

  

int main() { 

  // A vector that holds strings 

  vector<string> MyAliases; 

  MyAliases.push_back(string("Bud The Sailor")); 

  MyAliases.push_back(string("Rick Fixit")); 

  MyAliases.push_back(string("Bobalou Billow")); 

  for (auto entry : MyAliases) 

    cout << entry << endl; 

  

  // A vector that holds integers 

  vector<int> LuckyNumbers; 

  LuckyNumbers.push_back(13); 

  LuckyNumbers.push_back(26); 

  LuckyNumbers.push_back(52); 

  for (auto entry : LuckyNumbers) 

    cout << entry << endl; 

  

  // A vector of default constructed ints. 



  vector<int> Default(5); 

  int i = 0; 

  vector<int>::reverse_iterator rentry = Default.rbegin(); 

  for (; rentry != Default.rend(); rentry++) 

    *rentry = ++i; 

  for (auto entry : Default) 

    cout << entry << endl; 

  

  // A vector that holds Employee instances 

  vector<Employee> GreatWorkers; 

  GreatWorkers.push_back(Employee("George","123100", 50)); 

  GreatWorkers.push_back(Employee("Tom","052002", 40)); 

  for (auto entry : GreatWorkers) 

    cout << entry.Name << endl; 

  return 0; 

}

After you compile and run this application, you see the following output
from the cout statements:

Bud The Sailor 

Rick Fixit 

Bobalou Billow 

13 

26 

52 

5 

4 

3 

2 

1 

George 

Tom

 Notice that this example relies on an iterated for loop for each
of the vectors. Using an iterated for loop greatly reduces the
amount of code you write. Plus, you don’t have to worry about the
size of the vector you’re processing. All you concern yourself with
are the individual entries.

The Default portion of the example is also interesting in that it declares
a vector of a specific size and reverse-fills the vector from the end to



the beginning. Consequently, Default[0] contains the value 5, rather
than 1, as you might expect. To work backward, you must use a standard
for loop.

Working with std::array
Sometimes you need a fixed-size array, but without the limitations of the
built-in array. In this case, std::array may do the trick for you. It
provides built-in functionality, such as knowing its own size, supporting
assignment, and providing random access iterators. The StdArray
example, shown in Listing 6-3, demonstrates two interesting ways that
you can use std::array. You need C++ 17 or above to use this example.

LISTING 6-3: Working with std::array to Overcome
array Limitations
#include <iostream> 

#include <array> 

#include <algorithm> 

#include <iterator> 

  

using namespace std; 

  

int main() { 

  array<char, 5> Letters = {'a', 'b', 'c', 'd', 'e'}; 

  

  for (entry: Letters) 

    cout << entry << endl; 

  

  reverse_copy(Letters.begin(), Letters.end(), 

               ostream:iterator<char>(cout, " ")); 

  return 0; 

}

Notice that the declaration begins by providing the array type, char, and
the number of array elements, 5, as template parameters. Letters
contains five char values from ’a’ through ’e’.

As shown in the example, you can use a standard iterated for loop to
display the individual entries. However, you can also output the Letter
content in other ways, such as by performing a reverse_copy() to the



console with the ostream:iterator<char>(). The point is to avoid
limiting yourself to one coding style when another will do the job better
with fewer lines. Here’s the output you see from the example:

a 

b 

c 

d 

e 

e d c b a

Mapping your data
The Maps example, shown in Listing 6-4, demonstrates a type of
container called a map. A map works much the same as a vector, except
for one main difference: You look up items in vector by putting a
number inside brackets, like this:

cout << names[0] << endl;

But with a map, you can use any class or type you want for the index
(called a key), not just numbers. To create an entry, you use a key (the
index) and a value (the data) as a pair.

LISTING 6-4: Associating Objects with map
#include <iostream> 

#include <map> 

  

using namespace std; 

  

int main() { 

  map<string, string> marriages; 

  marriages["Tom"] = "Suzy"; 

  marriages["Harry"] = "Harriet"; 

  

  cout << marriages["Tom"] << endl; 

  cout << marriages["Harry"] << endl; 

  return 0; 

}

To use map, you declare a variable of class map, supplying two template
parameters, the key class and the value class, which are both string in



the example. To store a map value, you place a key inside brackets and
set it equal to a value:

marriages["Tom"] = "Suzy";

To retrieve that particular item, you supply the key in brackets:
cout << marriages["Tom"] << endl;

When you run this example, you see the following two strings as output:
Suzy 

Harriet

 Even though the keys can be any type or class, you must specify
the type or class you’re using when you set up map. After you do
that, you can use only that type for the particular map. Thus, if you
say that the keys will be strings, you cannot then use an integer for
a key, as in marriages[3] = "Suzy";.

Containing instances, pointers, or references
One of the most common discussions you encounter when people start
talking about how to use the container templates is whether to put
instances in the containers, pointers, or references. For example, which
of the following should you type?

vector<MyClass> 

vector<MyClass *> 

vector<MyClass &>

In other words, do you want your container to store the actual instance
(whatever that might mean), a reference to the actual instance, or a
pointer to the instance? To explore this idea, look at the Maps2 example
in Listing 6-5. Here, you’re trying out the different ways of storing
things in map: instances, pointers, and references.

LISTING 6-5: Making Decisions: Oh, What to Store?



#include <iostream> 

#include <map> 

  

using namespace std; 

  

class StoreMe { 

public: 

  int Item; 

}; 

  

bool operator < (const StoreMe & first, 

const StoreMe & second) { 

  return first.Item < second.Item; 

} 

  

int main() { 

  // First try storing the instances 

  map<StoreMe, StoreMe> instances; 

  StoreMe key1 = {10}; // braces notation! 

  StoreMe value1 = {20}; 

  StoreMe key2 = {30}; 

  StoreMe value2 = {40}; 

  instances[key1] = value1; 

  instances[key2] = value2; 

  

  value1.Item = 12345; 

  cout << instances[key1].Item << endl; 

  instances[key1].Item = 34567; 

  cout << instances[key1].Item << endl; 

  

  // Next try storing pointers to the instances 

  map<StoreMe*, StoreMe*> pointers; 

  StoreMe key10 = {10}; 

  StoreMe value10 = {20}; 

  StoreMe key11 = {30}; 

  StoreMe value11 = {40}; 

  pointers[&key10] = &value10; 

  pointers[&key11] = &value11; 

  

  value10.Item = 12345; 

  cout << (*pointers[&key10]).Item << endl; 

  

  // Finally try storing references to the instances. 

  // Commented out because it causes an error.) 

//  map<StoreMe&, StoreMe&> pointers; 

  return 0; 

}



To create the instances of StoreMe, you use the braces notation. You can
do that when you have no constructors. So the line

StoreMe key1 = {10};

creates an instance of StoreMe and puts 10 in the Item property. To
create an individual instances entry, you need both a key and a value
instance of StoreMe. You then use the key to provide a name for the
value stored in the map. Consequently, instances contains two entries
consisting of two StoreMe objects each. Here’s what you see when you
run the application:

20 

34567 

12345

This output doesn’t precisely match expectations because the code
changes the Item property in value1:

value1.Item = 12345;

When the code outputs the value of instances[key1].Item, you see an
output of 20, not 12345. That means that the value stored in map is a
copy, not the original. However, when the code changes the value in
instances like this:

instances[key1].Item = 34567;

 the value portion of the instances entry does change. You see
34567 as output. Consequently, when working with map instances,
you must modify the map entry directly.

Now that you’ve figured out that map is storing copies of what you put in
it, the idea of storing a pointer should be clear: If you have a pointer
variable and then you make a copy of it, although you have a separate
pointer variable, the original and the copy both point to the same
memory location. That’s the idea behind the second part of Listing 6-5.
You create pointers like this:



map<StoreMe*, StoreMe*> pointers;

Now this map stores pointer variables. Remember that a pointer variable
just holds a number that represents an address. If two separate pointer
variables hold the same number, it means that they point to the same
object at the same address. Furthermore, because this map is holding
pointers, it’s holding numbers, not instances — something to think
about. To store a value when using pointers, you need to use code like
this:

pointers[&key10] = &value10;

Note the use of the ampersand (&) used as a reference operator to store
addresses in map. It’s now possible to change the Item member of one
the value objects:

value10.Item = 12345;

that you print using this carefully parenthesized line:
cout << (*pointers[&key10]).Item << endl;

and you see this:
12345

 When working with map pointers, you modify the original
variable to make a change because the map entries point to the
original variable, rather than make a copy of it. However, as you
can see, using map pointers also makes your code harder to read.

Don’t worry just now about the bool operator < (const StoreMe &
first, const StoreMe & second) function. This function is explained
in the “Performing comparisons” section, later in this chapter.

Note that the following line is commented out:
// map<StoreMe&, StoreMe&> pointers;



It attempts to declare a map that holds references, but the code generates
a compiler error instead. Try uncommenting the commented line and see
the error message. Here’s an example of what you might see (make sure
to add the comment back in when you’re done):

error: conflicting declaration 'std::map<StoreMe&, 

  StoreMe&> pointers' 

error: 'pointers' has a previous declaration as 

  'std::map<StoreMe*, StoreMe*> pointers'

 References are out of the question because the map is making a
copy of everything you put in it.

Working with copies
All C++ containers, not just maps, generally make copies of whatever
you stick inside them as shown in the previous section. The Vectors3
example, shown in Listing 6-6, replicates the essential functionality of
the Maps2 example shown in Listing 6-5.

LISTING 6-6: The vector Version of the Maps2
Example
#include <iostream> 

#include <vector> 

  

using namespace std; 

  

class StoreMe { 

public: 

  int Item; 

}; 

  

int main() { 

  vector<StoreMe> instances; 

  StoreMe value1 = {20}; 

  StoreMe value2 = {40}; 

  instances.push_back(value1); 

  instances.push_back(value2); 

  

  value1.Item = 12345; 



  cout << instances[0].Item << endl; 

  instances[0].Item = 34567; 

  cout << instances[0].Item << endl; 

  

  vector<StoreMe*> pointers; 

  StoreMe value10 = {20}; 

  StoreMe value11 = {40}; 

  pointers.push_back(& value10); 

  pointers.push_back(& value11); 

  

  value10.Item = 12345; 

  cout << (*pointers[0]).Item << endl; 

  return 0; 

}

Oddly enough, the output from this example is precisely the same as the
Maps2 example and for the same reason. Whether the container is a
vector or a map doesn’t matter; both of them hold copies of the objects
or pointers you provide. Consequently, you can remember these two
rules about deleting your original objects:

When the container holds instances: If you’re putting instances in
the container, you can delete the original instances after they’re
added. This is okay because the container has its own copies of the
instances.
When the container holds pointers: If you’re putting pointers in
the container, you don’t want to delete the original instances because
the pointers in the container still point to these instances.

It’s up to you to decide which method is better. But here are a couple of
things to consider:

Keeping instances around: If you don’t want to keep instances
lying around, you can put the instances in the container, and it will
make copies.
Copyability: Some classes, such as classes filled with pointers to
other classes or classes that are enormous, don’t copy well. In that
case, you may want to put pointers in the container.



Comparing instances
When you work with classes that contain other classes (such as vector),
you need to provide the class with a way to compare two things. The
following sections describe how to provide comparison capability when
working with containers.

Considering comparison issues
For humans comparing is easy, but it’s not that easy for a computer. For
example, suppose you have two pointers to string objects. The first
points to a string containing abc. The second points to another string
containing abc. When writing code, you must consider whether the two
variables are equal:

Value: When considering the value alone, the two string objects are
equal.
Memory location: When considering the pointer instead of the
value, the two string objects aren’t equal.

Now look at this code:
string *pointer3 = new string("abc"); 

string *pointer4 = pointer3;

These two pointers point to the same object, which means that the
memory locations are equal. Because they point to the same object, they
also contain the same string of characters. So, from a value perspective,
they’re also equal.

 You need to know this distinction because when you create a
container class that holds instances of your object, often the class
needs to know how to compare objects. This is particularly true in
the case of map, which holds pairs of items, and you locate the items
based on the first element of the pair — the key element. When you
tell map to find an item based on a key, map must search through its
list of pairs until it finds one such that the key in the pair is equal to



the search term (key) you passed in to the search. However, you
need to consider these essentials when working with the keys:

When using the pointer approach, two keys could contain the same
value but point to different memory locations. So, you must consider
whether the key search is based on value or memory location.
When sorting the keys to make them easier to access in order, you
must consider whether value is the only criterion by which to make
the sort order correct.

Here’s an example. You create a class called Employee that contains
these properties: FirstName, LastName, and SocialSecurityNumber.
Next, you create a Salary class that contains payroll information for an
employee. This class has properties MonthlySalary and Deductions.

With these two objects in place, you create a map instance, where each
key/value pair contains an Employee instance for the key and a Salary
instance for the value. To look up an employee, you would make an
instance of Employee and fill in the FirstName, LastName, and
SocialSecurityNumber properties. You then retrieve the value based on
this key. There are two issues here:

You’d create an instance and allow map to find the key that matches
the instance. It’s essential to know whether map is looking for the
exact same instance or one identical to it. When looking for the exact
same instance, you need a pointer to the original object, not a new
object that you fill in with values.
If map is looking for an instance identical to the object you create, the
search will fail if the employee changed names (such as during a
marriage). In this case, your code needs logic to tell map to make the
match based on the SocialSecurityNumber, without worrying about
the other properties.



 The bottom line is that you need code within your classes to
determine how to make comparisons. The comparisons are made
based on what you see as essential data traits. These traits vary by
dataset because how you use the dataset varies. Consequently, you
can’t create a one-size-fits-all solution; you must consider each
dataset individually.

Performing comparisons
The previous section provides details on two issues you must resolve
when comparing objects. Here’s how to resolve these two issues: If
you’re dealing with your own classes, in addition to setting up a
container class, you also provide a function that compares two instances
of your own class. Your comparison function can determine whether two
classes are equal, the first is less than the second, or the first is greater
than the second.

 At first, how less than and greater than can apply to things like
an Employee class may not seem apparent. But the idea behind less
than and greater than is to give the container class a way to
determine a sort order. For example, you might choose to sort an
Employee class in one of these ways:

Social Security number
Last name, first name
First name, last name
Employee ID
Address
Organizational department



The point is that the computer can’t make this decision; you need to
choose how you want the data to appear. After you decide how you want
them sorted, you’d create a function that determines when one record is
less than, equal to, or greater than the other. If you want the list to sort
by name, you would make your function look strictly at the names. But
if you want your list to sort by Social Security number, you would write
your function to compare the Social Security numbers.

The Maps3 example, shown in Listing 6-7, contains a map class with a
comparison function that determines whether two keys are equal.

LISTING 6-7: Containing Instances and Needing
Functions That Compare Them
#include <iostream> 

#include <map> 

  

using namespace std; 

  

class Emp { 

public: 

  string Nickname; 

  string SSN; 

  

  Emp(string anickname, string asocial) : 

    Nickname(anickname), 

    SSN(asocial) {} 

  

  Emp() : Nickname(""), SSN("") {} 

}; 

  

class Salary { 

public: 

  int YearlyInc; 

  int Taxes; 

  

  Salary(int aannual, int adeductions) : 

      YearlyInc(aannual), 

      Taxes(adeductions) {} 

  

  Salary() : YearlyInc(0), Taxes(0) {} 

}; 

  

bool operator < (const Emp& first, const Emp& second) { 



  return first.Nickname < second.Nickname; 

} 

  

int main() { 

  map<Emp, Salary> employees; 

  

  Emp emp1("sparky", "123-22-8572"); 

  Salary sal1(135000, 18); 

  employees[emp1] = sal1; 

  

  Emp emp2("buzz", "234-33-5784"); 

  Salary sal2(150000, 23); 

  employees[emp2] = sal2; 

  

  // Now test it out! 

  Emp emptest("sparky", ""); 

  cout << employees[emptest].YearlyInc << endl; 

  return 0; 

}

When you run this application, you see the YearlyInc member of the
Salary value, where the key is an Employee with the name sparky:

135000

Now notice a couple things about this code. First, to locate the salary for
Sparky, you don’t need the Employee instance for Sparky. Instead, you
create an instance of Employee and set up the Nickname member without
worrying about the SSN member. Then you retrieve the value by using
the bracket notation for map:

cout << employees[emptest].YearlyInc << endl;

The map code uses the less-than function to perform this task. The <
function compares only the Nickname members, not the SSN member.
Notice that this function must return a bool value and that you precede
the < with the operator keyword, defining this as an operator function
— one that defines an operation between operands. You could change
things around a bit by comparing the SSN members like so:

bool operator < (const Emp& first, const Emp& second) { 

  return first.SSN < second.SSN; 

}



Then you can locate Sparky’s salary based on the SSN:
Employee emptest("", "123-22-8572"); 

cout << employees[emptest].SSN << endl;

 A single < function may not seem like enough to perform all the
required comparisons, such as equality. However, the code calls the
less-than function twice, the second time flip-flopping the order of
the parameters; and if the function returns false both times, the
computer determines that they are equal. Using this approach
makes life easier because you need to provide only a single
comparison function.

UNDERSTANDING THE DEFAULT <
FUNCTION

Containers in the Standard Library have a default < function. If you don’t supply a <
function of your own, the container supplies this default < function for you. This default
function relies on a template class called less. This template is simple: It includes a
single method that returns the Boolean value:

x < y

For most basic types, the default works fine. For example, the compiler can easily use
the default when you’re working with integers. However, the compiler doesn’t
understand the < operator when working with custom classes unless you provide your
own < operator function, as you see everywhere else in this chapter. However, because
the container takes a class in its parameter that defaults to the class less, you can put
together your own class and use that instead of writing your own < operator function.
Here’s a sample:

class MyLess { 

public: 

  bool operator()(const MyClass &x, const MyClass &y) const { 

    return x.Name < y.Name; 

  } 

};

Then when you create, for example, a map, you pass this class as a third parameter,
rather than relying on the default:



map<MyClass, MyClass, MyLess> mymap;

Then you don’t need your own less-than function. The advantage of this approach is
that you now have a standardized < function implementation to use everywhere, and it’s
especially helpful when working within a team environment.

Iterating through a container
Containers in the Standard Library provide an overview of the
container’s content. If you have a container filled with objects ,you
normally get an overview of what’s there, but being able to drill down
into the details would be nice. You use an iterator to drill down into the
container. An iterator works with a container to let you step object by
object through the container. The following sections tell you about
iterators and how to work with them.

Working with iterators
Each container class contains an embedded type called iterator. You
use the fully qualified name to create an iterator instance. For example,
if you have a map that holds integers and strings, as in map<int,
string>, you create an iterator instance like this:

map<string, int>::iterator loopy

Although loopy is an instance of iterator, some serious typedefing is
going on, and, in fact, loopy is a pointer to an item stored inside the
container. To initialize loopy to point to the first item in the container,
you call the container’s begin() method, storing the results in loopy.
Then loopy will point to the first item in the container. You can access
the item by dereferencing loopy; then, when you’re finished, you can
move to the next item by incrementing loopy like this:

loopy++;

You can use this technique in various ways, such as by using the call to
reverse_copy() shown previously in Listing 6-3. You can tell whether
you’re finished by checking to see whether loopy points to the last item
in the container. To do this, you call the container’s end() method and



compare loopy to the end() value. If it’s equal, you’re done. The
following few lines of code perform these steps:

vector<string>::iterator vectorloop = Words.begin(); 

while (vectorloop != Words.end()) 

{ 

    cout << *vectorloop << endl; 

    vectorloop++; 

}

You can see the type used for the iterator, in this case called vectorloop,
which is initialized by calling begin(). vectorloop is dereferenced to
access the data, and is then incremented to get to the next item. The
while loop tests vectorloop against the results of end() to determine
when the processing is complete. The Iterators example code, shown
in Listing 6-8, shows a more complete example of how to use an
iterator.

LISTING 6-8: Iterating
#include <iostream> 

#include <map> 

#include <vector> 

  

using namespace std; 

  

int main() { 

  // Iterating through a map 

  map<string, int> NumberWords; 

  NumberWords["ten"] = 10; 

  NumberWords["twenty"] = 20; 

  NumberWords["thirty"] = 30; 

  

  map<string, int>::iterator loopy = NumberWords.begin(); 

  while (loopy != NumberWords.end()) { 

    cout << loopy->first << " "; 

    cout << loopy->second << endl; 

    loopy++; 

  } 

  

  // Iterating through a vector 

  vector<string> Words; 

  Words.push_back("hello"); 

  Words.push_back("there"); 



  Words.push_back("ladies"); 

  Words.push_back("and"); 

  Words.push_back("aliens"); 

  

  vector<string>::iterator vectorloop = Words.begin(); 

  while (vectorloop != Words.end()) { 

    cout << *vectorloop << endl; 

    vectorloop++; 

  } 

  return 0; 

}

When you compile and run this application, you see the following
output:

ten 10 

thirty 30 

twenty 20 

hello 

there 

ladies 

and 

aliens

Avoiding pointer problems
When you create a vector, it allocates some space for the data you put
in it. When the memory fills with data, the vector resizes itself, adding
more space. To perform this task, vector uses the old memory-shuffle
trick where it first allocates a bigger chunk of memory; then it copies the
existing data into the beginning of that bigger chunk of memory, and
finally it frees the original chunk of memory.

 Saving the pointer you receive when you use the various iterator
functions to access a certain vector item (giving you a pointer to
the item) is a bad idea because, after vector allocates more
memory, that pointer will no longer be valid. It will point to
somewhere in the original memory block that’s no longer being
used. The IteratorPointer example, shown in Listing 6-9, helps
you understand the ramifications of this problem.



LISTING 6-9: Seeing the Pointer Problem in Action
#include <iostream> 

#include <vector> 

  

using namespace std; 

  

int main() { 

  vector<int> test{1, 2, 3}; 

  

  vector<int>::iterator i1 = test.begin(); 

  i1++; 

  cout << &i1 << endl; 

  

  test.push_back(4); 

  

  vector<int>::iterator i2 = test.begin(); 

  i2++; 

  cout << &i2 << endl; 

}

When you run this example, the code creates test with space for three
items. The code then prints the address of the second item. Adding just
one item means that test has to resize. The code then prints the address
for the second item. The outputs won’t match because the pointer to the
second item changed during the resizing process.

A map of pairs in your hand
When you iterate through map, you get back not just the value of each
item nor do you get just the key of each item. Instead, you get back a
pair of things — the key and the value together. These objects live inside
an instance of a template class called Pair, which has two properties,
first and second.

The first member refers to the key in the pair, and the second member
refers to the value in the pair. When you iterate through map, the iterator
points to an instance of Pair, so you can grab the key by looking at
first and the value by looking at second. Be careful: Pair is the
internal storage bin inside map. You’re not looking at copies; you’re
looking at the actual data in map. If you change the data, as in this code



while (loopy != NumberWords.end()) 

{ 

    loopy->second = loopy->second * 2; 

    loopy++; 

}

you change the value stored in map — not a copy of it.

The Great Container Showdown
The sections that follow provide a rundown of containers available in the
Standard Library. Each container has a different purpose. In the
following sections, you see where you can use each of them.

Associating and storing with a set
First things first: set is not a mathematical set. If you have any
background in mathematics, you’ve likely come across the notion of a
set. In math, a set doesn’t have an order to it. It’s a group of well-defined
distinct objects stored in a collection.

In the Standard Library, set has an order to it. However, like a math set,
set doesn’t allow duplicates. If you try to put an item in set that’s
already there, set will ignore your attempt to do so. The Sets example,
shown in Listing 6-10, demonstrates how to use set.

LISTING 6-10: Using set to Look up Items
#include <iostream> 

#include <set> 

  

using namespace std; 

  

class Emp { 

public: 

  string Nickname; 

  string SSN; 

  

  Emp(string anickname, string asocial) : 

    Nickname(anickname), 

    SSN(asocial) {} 

  



  Emp() : Nickname(""), SSN("") {} 

}; 

  

bool operator < (const Emp& first, const Emp& second) { 

  return first.SSN < second.SSN; 

} 

  

ostream& operator << (ostream &out, const Emp &emp) { 

  cout << "(" << emp.Nickname; 

  cout << "," << emp.SSN; 

  cout << ")"; 

  return out; 

} 

  

int main() { 

  set<Emp> employees; 

  

  Emp emp1("sparky", "123-22-8572"); 

  employees.insert(emp1); 

  Emp emp2("buzz", "234-33-5784"); 

  employees.insert(emp2); 

  Emp emp3("albert", "123-22-8572"); 

  employees.insert(emp3); 

  Emp emp4("sputz", "199-19-0000"); 

  employees.insert(emp4); 

  

  // List the items 

  set<Emp>::iterator iter = employees.begin(); 

  while (iter != employees.end()) 

  { 

    cout << *iter << endl; 

    iter++; 

  } 

  

  // Find an item 

  cout << "Finding…" << endl; 

  Emp findemp("", "123-22-8572"); 

  iter = employees.find(findemp); 

  cout << *iter << endl; 

  return 0; 

}

When you compile and run this example, you see the following output:
(sparky,123-22-8572) 

(sputz,199-19-0000) 

(buzz,234-33-5784) 



Finding… 

(sparky,123-22-8572)

Listing 6-10 includes an Employee class along with a < operator that
compares the SSN member of two Employee instances. This comparison
results in two things:

Ordering: The items in set are in Social Security number order.
This isn’t true with all containers, but it’s the way a set works.

Duplicates: The set ignores any attempt to add two employees with
matching SSN values (even if other properties differ).

You can see in this listing that the code tries to add two employees with
the same SSN values:

Employee emp1("sparky", "123-22-8572"); 

employees.insert(emp1);

and
Employee emp3("albert", "123-22-8572"); 

employees.insert(emp3);

Later, when the code prints all the items in set, you see only the one for
"sparky", not the one for "albert". set ignored the second employee.

Finding an item in set is interesting. You create an instance of Employee
and fill in only the SSN value, because that’s the only property that the <
function looks at. Call find() to perform the search. The find()
function returns an iterator because the iterator type is really a
typedef for a pointer to an item inside set. To access the item, you
dereference the pointer.

 Listing 6-7 shows a handy function that lets you use the
Employee instance with cout by overloading the insertion (<<)
operator function. This function’s header looks like this:

ostream& operator << (ostream &out, const Employee &emp) {



The first parameter represents cout, and the second is the output value.
Inside this function, you write to cout the individual members of the
Employee. It also helps to know that you can perform map comparisons
as needed using the same technique found in the “Understanding the
default < function” sidebar. This same technique works with a class, but
it requires more coding to implement.

SHOWDOWN: MAPS VERSUS SETS
It’s important to realize the difference between map and set. map lets you store
information based on a key, through which you can retrieve a value. Listing 6-7,
presented earlier in the “Performing comparisons” section, shows an example in which
the key is an Emp instance and the value is a Salary instance. But with set, you can
achieve something similar: Listing 6-10 could use a single class containing both Emp and
Salary information. Also, you can see in Listing 6-10 that it’s possible to look up the Emp
instance based on nothing but a Social Security number. So in this sense, the Listing 6-
10 example shows a map in which the key is a Social Security number and the value is
the rest of the employee information. The fact is, you can often accomplish associations
with set, as you can with map. The advantage to set is that you need to store only one
instance for each item, whereas with map, you must have two instances, both a key and
a value. The advantage to map is that you can use the nice bracket notation. The choice
is yours.

Unionizing and intersecting sets
When you work with sets, you commonly do the following:

Combine two sets to get the union (all the elements in both sets
without any duplicates).
Find the common elements to get the intersection (those unique
elements that appear in both sets).

When you #include <set>, you automatically get a couple of handy
functions for finding the union and intersection of some sets. The Sets2
example, shown in Listing 6-11, demonstrates how you can find the
intersection and union of two sets.



LISTING 6-11: Finding an Intersection and a Union Is
Easy!
#include <iostream> 

#include <set> 

#include <algorithm> 

  

using namespace std; 

  

void DumpClass(set<string> *myset) { 

  set<string>::iterator iter = myset->begin(); 

  while (iter != myset->end()) 

  { 

    cout << *iter << endl; 

    iter++; 

  } 

} 

  

int main() { 

  set<string> English; 

  English.insert("Zeus"); 

  English.insert("Magellan"); 

  English.insert("Vulcan"); 

  English.insert("Ulysses"); 

  English.insert("Columbus"); 

  

  set<string> History; 

  History.insert("Vulcan"); 

  History.insert("Ulysses"); 

  History.insert("Ra"); 

  History.insert("Odin"); 

  

  set<string> Intersect; 

  insert_iterator<set<string> > 

    IntersectIterate(Intersect, Intersect.begin()); 

  set_intersection(English.begin(), English.end(), 

    History.begin(), History.end(), IntersectIterate); 

  cout << "===Intersection===" << endl; 

  DumpClass(&Intersect); 

  

  set<string> Union; 

  insert_iterator<set<string> > 

    UnionIterate(Union, Union.begin()); 

  set_union(English.begin(), English.end(), 

    History.begin(), History.end(), UnionIterate); 

  cout << endl << "===Union===" << endl; 

  DumpClass(&Union); 



  return 0; 

}

When you run the code in Listing 6-11, you see this output:
===Intersection=== 

Ulysses 

Vulcan 

  

===Union=== 

Columbus 

Magellan 

Odin 

Ra 

Ulysses 

Vulcan 

Zeus

But as you can see, something a little bizarre is in the code. Specifically,
this part isn’t exactly simple:

insert_iterator<set<string> > 

   IntersectIterate(Intersect, Intersect.begin());

This code is used in the call to set_intersection(). It’s a variable
declaration. The first line is the type of the variable, a template called
insert_iterator. The template parameter is the type of set, in this case
set<string>.

The next line is the instance name, IntersectIterate, and the
constructor requires two things: the set that will hold the intersection
(called Intersect) and an iterator pointing to the beginning of the set,
which is Intersect.begin().

The variable that these two lines create is an iterator, which is a helper
object that another function can use to insert multiple items into a list. In
this case, the function is set_intersection(). The
set_intersection() function doesn’t take the sets as input; instead, it
takes the beginning and ending iterators of the two sets, along with the
IntersectIterate iterator declared earlier. You can see in Listing 6-11
that those are the five items passed to the set_intersection() function.
After calling set_intersection(), the Intersect object contains the



intersection of the two sets. set_union() works precisely the same way
as set_intersection(), except it figures out the union of the two sets,
not the intersection.

 To use set_intersection() and set_union(), you need to add
#include <algorithm> to the top of your listing. This is one of the
header files in the Standard Library.

 If you find the code in Listing 6-11 particularly ugly, a slightly
easier way to call set_intersection(), one that doesn’t require
you to directly create an instance of insert_iterator, is available.
It turns out that a function exists that will do it for you. To use this
function, you can remove the declarations for IntersectIterate
and UnionIterate, and then instead call set_intersection(), like
this:

set_intersection(English.begin(), English.end(), 

  History.begin(), History.end(), 

  inserter(Intersect, Intersect.begin()));

The third line simply calls inserter(), which creates an instance of
insert_iterator for you. Then you can do the same for set_union():

set_union(English.begin(), English.end(), 

  History.begin(), History.end(), 

  inserter(Union, Union.begin()));

Listing with list
A list is a simple container similar to an array, except you can’t access
the members of list by using a bracket notation as you can in vector or
with an array. You don’t use list when you need to access only one
item in the list; you use it when you plan to traverse through the list,
item by item.



To add items to a list, use the list’s push_front() method or its
push_back() method. The push_front() function inserts the item in the
beginning of the list, in front of all the others that are presently in the
list. If you use push_front() several times in a row, the items will be in
the reverse order from which you put them in. The push_back()
function adds the item to the end of the list. So if you put items in a list
by using push_back(), their order will be the same as the order in which
you added them. Using insert() and splice() enables you to place
items in other locations in the list. You use an iterator to find the location
you want and then splice the new item at that location.

 For operations in which you need a pointer to an item in the list,
you need to use an iterator. An iterator is simply a typedef for a
pointer to an item in the list; however, it points to the item in the
list, not the original item you added to the list. Remember, the
containers hold copies. Thus, if you do an insert() into a list and
point to an original item, that item won’t be a member of the list,
and the insert() won’t work.

 Although the list template includes an insert() function, this
function has only very special uses. To use insert(), you must
have a pointer to an item in the list — that is, you need to have an
iterator that you obtain by traversing the list. It has no find()
function, and so really the only time you would use the insert()
function is if you’re already working your way through the list. But
if you do need to do an insert and you’re willing to use iterators to
move through the list to find the location where you want to put the
new item, insert() will do the job.

The Lists example, shown in Listing 6-12, demonstrates lists by using a
duck metaphor (as in, getting all your ducks in a row). This example



creates a list, adds ducks, and then reverses it. Next, the code creates a
second list and splices its members into the first list.

LISTING 6-12: Handling Items in a List Template
#include <iostream> 

#include <list> 

  

using namespace std; 

  

class Duck { 

public: 

  string name; 

  int weight; 

  int length; 

}; 

  

ostream& operator << (ostream &out, const Duck &duck) { 

  cout << "(" << duck.name; 

  cout << "," << duck.weight; 

  cout << "," << duck.length; 

  cout << ")"; 

  return out; 

} 

  

void Dump(list<Duck> *mylist) { 

  list<Duck>::iterator iter = mylist->begin(); 

  while (iter != mylist->end()) 

  { 

    cout << *iter << endl; 

    iter++; 

  } 

} 

  

list<Duck>::iterator Move(list<Duck> *mylist, int pos) { 

  list<Duck>::iterator res = mylist->begin(); 

  for (int loop = 1; loop <= pos; loop++) 

  { 

    res++; 

  } 

  return res; 

} 

  

bool operator < (const Duck& first, const Duck& second) { 

  return first.name < second.name; 

} 



  

int main() { 

  list<Duck> Inarow; 

  

  // Push some at the beginning 

  Duck d1 = {"Jim", 20, 15}; // Braces notation! 

  Inarow.push_front(d1); 

  Duck d2 = {"Sally", 15, 12}; 

  Inarow.push_front(d2); 

  

  // Push some at the end 

  Duck d3 = {"Betty", 18, 25}; 

  Inarow.push_front(d3); 

  Duck d4 = {"Arnold", 19, 26}; 

  Inarow.push_front(d4); 

  

  // Display the ducks 

  cout << "===Ducks===" << endl; 

  Dump(&Inarow); 

  

  // Reverse 

  Inarow.reverse(); 

  cout << "\n==Reversed==" << endl; 

  Dump(&Inarow); 

  

  // Create the second list. 

  list<Duck> extras; 

  Duck d5 = {"Grumpy", 8, 8}; 

  extras.push_back(d5); 

  Duck d6 = {"Sleepy", 8, 8}; 

  extras.push_back(d6); 

  

  // Display the extras list. 

  cout << "\n===Extras===" << endl; 

  Dump(&extras); 

  

  // Determine the positions. 

  list<Duck>::iterator first = Move(&extras, 0); 

  list<Duck>::iterator last = Move(&extras, 2); 

  list<Duck>::iterator into = Move(&Inarow, 2); 

  

  // Perform the splicing. 

  Inarow.splice(into, extras, first, last); 

  cout << "\n==Extras After Splice==" << endl; 

  Dump(&extras); 

  cout << "\n==Inarow After Splice==" << endl; 

  Dump(&Inarow); 

  



  // Sort the list. 

  Inarow.sort(); 

  cout << "\n===Sorted===" << endl; 

  Dump(&Inarow); 

  return 0; 

}

Move() moves to a position in the list. This function may seem
counterproductive because the list template doesn’t allow random
access. But you need three iterators to perform the splice: two to target
the start and end position of the second list (the source list) and one to
target the position in the first list used to hold the spliced members.
Move() locates the target position.

 Move() is a template function. However, when calling the
function, you don’t provide the type name in angle brackets; the
compiler determines which class version to use based on the object
type passed into the function as a parameter.

To use sort(), you must provide a < operator function, as described in
earlier examples. Here’s the application output:

===Ducks=== 

(Arnold,19,26) 

(Betty,18,25) 

(Sally,15,12) 

(Jim,20,15) 

  

==Reversed== 

(Jim,20,15) 

(Sally,15,12) 

(Betty,18,25) 

(Arnold,19,26) 

  

===Extras=== 

(Grumpy,8,8) 

(Sleepy,8,8) 

  

==Extras After Splice== 

  

==Inarow After Splice== 



(Jim,20,15) 

(Sally,15,12) 

(Grumpy,8,8) 

(Sleepy,8,8) 

(Betty,18,25) 

(Arnold,19,26) 

  

===Sorted=== 

(Arnold,19,26) 

(Betty,18,25) 

(Grumpy,8,8) 

(Jim,20,15) 

(Sally,15,12) 

(Sleepy,8,8)

You can see the elements that were inside the two lists before and after
the splice; the ducks moved from one list to another.

SHOWDOWN: LISTS VERSUS VECTORS
Lists provide sequential access, which means that you can’t drop into the middle of the
list and look at whatever item is stored there (as you can with a vector). If you want to
look at the items in the list, you must start at the beginning or the end and work your
way through it one item at a time. A vector allows random access using brackets, as in
MyVector[3]. This requirement may seem like a disadvantage for the list, but the ANSI
document says that “many algorithms only need sequential access anyway.” Lists have
definite advantages. The list template allows you to splice together multiple lists, and it
has good support for sorting the list, for splicing members out of one list and into
another, and for merging multiple lists.

Stacking the deque
A double-ended queue, deque (pronounced “deck”), container is a
sequential list of items like vector and list. Like vectors and unlike
lists, deques allow random access using bracket notation. Unlike
vector, deque lets you push (insert) items at the beginning or end and
pop (remove) items off the beginning or end. To create a deque that
holds integers, do something like this:

deque<int> mydek; 

mydek.push_front(10); 

mydek.push_front(20); 



mydek.push_back(30); 

mydek.push_back(40);

Then you can loop through the deque, accessing its members with a
bracket, as if it’s an array:

int loop; 

for (loop = 0; loop < mydek.size(); loop++) { 

    cout << mydek[loop] << endl; 

}

You can also grab items off the front or back of the deque. Here’s an
example from the front:

while (mydek.size() > 0) { 

    cout << mydek.front() << endl; 

    mydek.pop_front(); 

}

SHOWDOWN: DEQUES VERSUS
VECTORS

If you go online to any discussion board and use a search phrase like C++ deque
vector, you see a lot of discussion, arguments, and confusion over when to use deque
and when to use vector. To know which to use when, you need to understand the
differences between the two. Under the hood, vector usually stores all its data in a
regular array, making it easy to directly access the members. But that also means that,
to insert items, vector must slide everything over to make room for the inserted items.
deque doesn’t use the contiguous approach that vector does. Inserting is easier for
deque because it doesn’t need to shuffle things around. Also, deque doesn’t have to add
new elements to perform a resize, whereas vector does when it runs out of space. And
finally, deque includes a push_front() method that allows adding an item at the
beginning.

Two functions show up here, front() and pop_front(). The front()
function returns a reference to the item at the front of the deque. The
pop_front() function removes the item that’s at the front of the deque.

Waiting in line with stacks and queues
Two common programming data structures are in the Standard Library:



Stack: You put items on top of a stack one by one — and you take
items off the top of the stack one by one. You can add several items,
one after the other, before taking an item off the top. This process is
sometimes called a Last In, First Out (LIFO) algorithm.
Queue: A queue is like waiting in line at the post office — the line
gets longer as people arrive. Each new person goes to the back of the
line. People leave from the front of the line. Like the stack, the queue
also has an alternate name: it’s a First In, First Out (FIFO) algorithm.

To use the Standard Library to make a stack, you can use a deque, a
list, or a vector as the underlying storage bin. Then you declare the
stack, as in the following example:

stack<int, vector<int> > MyStack;

Or you can optionally use the default, which is deque:

stack<int> MyStack;

For a queue, you can’t use vector because vectors don’t include
operations for dealing with the front of an item list. So, you can use
either deque or list. Here’s a line of code that uses list:

queue<int, list<int> > MyQueue;

Or here’s a line of code that uses deque by default:

queue<int> MyQueue;

You normally perform three operations with a stack and a queue:

push: When you add an item to a stack or queue, you push the item.
This action puts the item on top of the stack or at the back of the
queue.
peek: When you look at the top of the stack or the front of the queue,
you peek. The peek operation doesn’t remove the item.
pop: When you remove an item from the top of a stack or from the
front of the queue, you pop it off.



To peek at the front of a queue, you call the front() method. For a
stack, you call the top() method. For pushing and popping, the queue
and stack each include a push() function and a pop() function. The
StackAndQueue example, shown in Listing 6-13, demonstrates both a
stack and a queue.

LISTING 6-13: Creating a Stack and a Queue
#include <iostream> 

#include <stack> 

#include <queue> 

  

using namespace std; 

  

void StackDemo() { 

  cout << "===Stack Demo===" << endl; 

  stack<int, vector<int> > MyStack; 

  MyStack.push(5); 

  MyStack.push(10); 

  MyStack.push(15); 

  

  cout << MyStack.top() << endl; 

  MyStack.pop(); 

  cout << MyStack.top() << endl; 

  MyStack.pop(); 

  

  MyStack.push(40); 

  cout << MyStack.top() << endl; 

  MyStack.pop(); 

} 

  

void QueueDemo() { 

  cout << "===Queue Demo===" << endl; 

  queue<int> MyQueue; 

  MyQueue.push(5); 

  MyQueue.push(10); 

  MyQueue.push(15); 

  

  cout << MyQueue.front() << endl; 

  MyQueue.pop(); 

  cout << MyQueue.front() << endl; 

  MyQueue.pop(); 

  

  MyQueue.push(40); 

  cout << MyQueue.front() << endl; 



  MyQueue.pop(); 

} 

  

int main() { 

  StackDemo(); 

  QueueDemo(); 

  return 0; 

}

 When you specify a container to use inside the stack or queue,
remember to put a space between the closing angle brackets.
Otherwise, the compiler reads it as a single insertion operator, >>,
and gets confused. Here is the output from this example:

===Stack Demo=== 

15 

10 

40 

===Queue Demo=== 

5 

10 

15

Copying Containers
Structures are easy to copy when using well-designed class libraries —
meaning that each container class contains both a copy constructor and
an equal operator. To copy a container, you either set one equal to the
other or pass the first container into the constructor of the second. The
CopyContainer example shown in Listing 6-14 demonstrates how to
perform this task.

LISTING 6-14: Copying Containers Couldn’t Be
Easier
#include <iostream> 

#include <map> 

  

using namespace std; 



  

class Tasty { 

public: 

  string Dessert; 

}; 

  

bool operator < (const Tasty & One, const Tasty & Two) { 

  return One.Dessert < Two.Dessert; 

} 

  

class Nutrition { 

public: 

  int VitaminC; 

  int Potassium; 

}; 

  

int main() { 

  map<Tasty, Nutrition> ItsGoodForMe; 

  Tasty ap = {"Apple Pie"}; // Braces notation! 

  Nutrition apn = {7249, 9722}; 

  Tasty ic = {"Ice Cream"}; 

  Nutrition icn = {2459, 19754}; 

  Tasty cc = {"Chocolate Cake"}; 

  Nutrition ccn = {9653, 24905}; 

  Tasty ms = {"Milk Shake"}; 

  Nutrition msn = {46022, 5425}; 

  

  ItsGoodForMe[ap] = apn; 

  ItsGoodForMe[ic] = icn; 

  ItsGoodForMe[cc] = ccn; 

  ItsGoodForMe[ms] = msn; 

  

  map<Tasty,Nutrition> Duplicate1 = ItsGoodForMe; 

  map<Tasty,Nutrition> Duplicate2(ItsGoodForMe); 

  ItsGoodForMe[ap].Potassium = 20; 

  Duplicate1[ap].Potassium =40; 

  

  cout << ItsGoodForMe[ap].Potassium << endl; 

  cout << Duplicate1[ap].Potassium << endl; 

  cout << Duplicate2[ap].Potassium << endl; 

  return 0; 

}

You can see that Listing 11-14 contains two classes, Tasty and
Nutrition. A map called ItsGoodForMe associates Tasty instances with



Nutrition instances. The code copies map twice, using both an equals
sign and a copy constructor:

map<Tasty,Nutrition> Duplicate1 = ItsGoodForMe; 

map<Tasty,Nutrition> Duplicate2(ItsGoodForMe);

The code changes one of the elements in the original map to see what
happens and prints that element, as well as the corresponding element in
the two copies (one of which is also changed). Here’s the output:

20 

40 

9722

The output implies that the maps each have their own copies of the
instances — that there’s no sharing of instances between the maps.

 Containers hold copies, not originals. That’s true when you copy
containers, too. If you put a structure in a container and copy the
container, the latter container has its own copy of the structure. To
change the structure, you must change all copies of it. The way
around this is to put pointers inside the containers. Then each
container has its own copy of the pointer, but all these pointers
point to the same one-and-only object.

Creating and Using Dynamic Arrays
Sometimes you don’t know the array size you need until runtime. The
default arrays provided with C++ rely on static sizes. In other words,
you need to know what size array you need at the time you write the
code. Unfortunately, the real world is dynamic — it changes. The earlier
sections of this chapter discuss a number of array alternatives, such as
stacks, queues, and deques. However, these solutions all require that you
use a library. They also tend to increase the memory requirements of
your application and slow it down as well. You have another alternative
in the form of dynamic arrays. The following sections describe dynamic



arrays and show how to use them. You need a minimum of C++ 11 to
use these examples.

A dynamic array relies on the heap, the common area of memory that
your application allocates for use by your application’s functions. (See
the “Heaping and Stacking the Variables” section of Book 1 Chapter 8
for more details.) You create a pointer to a variable of the correct type
and then allocate memory for the resulting array. The functionality for
performing this task is found in the new header file, so you need to
include it as part of your application. The DynamicArray example,
shown in Listing 6-15, demonstrates the use of a dynamic array.

LISTING 6-15: Creating and Using Dynamic Arrays
#include <iostream> 

#include <new> 

  

using namespace std; 

  

int main() { 

  int HowMany; 

  int* DynArray; 

  cout << "How many numbers would you like?" << endl; 

  cin >> HowMany; 

  DynArray = new (nothrow) int[HowMany]; 

  

  if (DynArray == nullptr) 

    cout << "Error: Could not allocate memory!"; 

  else { 

    for(int i = 0; i < HowMany; i++) 

      DynArray[i] = i; 

  

    cout << "Displaying entries:" << endl; 

    for (int i = 0; i < HowMany; i++) 

      cout << DynArray[i] << endl; 

  

    delete[] DynArray; 

  } 

  return 0; 

}

The example begins by creating variables to hold the number of array
elements and the array itself, which is a pointer to an array of int



elements. The application asks you how many array elements to create.
It then uses the new operator to create the dynamic array, DynArray.
Notice the technique used to do this. The new operator is followed by
(nothrow). This tells the application that if there isn’t enough memory
to create the array, it should return a nullptr value, which is simply a
pointer that doesn’t point to anything.

 The (nothrow) method may not work with certain compiler
versions, especially when using the GNU Compiler Collection
(GCC). The (nothrow) still works for low memory conditions, but
it doesn’t work for conditions created explicitly as part of the
application execution. In this case, you see a
std::bad_array_new_length exception under these conditions:

The array length is negative
The total size of the new array would exceed implementation-
defined maximum value
The number of initializer-clauses exceeds the number of elements to
initialize

 Normally, the application would display an incomprehensible
error message that only geeks could love if there wasn’t enough
memory. Using the (nothrow) approach gives you the opportunity
to handle the error differently. The application handles the error by
displaying a human-readable error message if (DynArray ==
nullptr).

You work with a dynamic array just as you do any other array. The
example shows how to fill the array with data and to display the data
onscreen. The array has the same capabilities, advantages, and
disadvantages of any other array. However, when you get done using the



array, you need to use the delete[] operator to delete the dynamic array
and free the memory it uses for some other purpose. The output from
this example looks like this if you request four array elements:

How many numbers would you like? 

4 

Displaying entries: 

0 

1 

2 

3

Working with Unordered Data
Creating data that has a particular order is appealing because it’s a)
easier to search and b) it makes certain tasks, such as removing old
elements, easier. However, creating an ordered set of information is also
problematic because you need to spend time keeping it in order. Newer
versions of C++ provide access to an unordered set that is both
searchable and easy to maintain. It has the advantage of adding the data
in any order in which it comes. Minimal overhead is associated with
trying to keep the data in a particular order. The following sections
provide an overview of using unordered data. You need a minimum of
C++ 11 to use these examples.

Using std::unordered_set to create an unordered
set
Like the other containers discussed in this chapter, an unordered_set
provides a particular method for storing data in a manner that makes it
easy to access later. In this case, you have access to functions that
insert() and erase() elements from the container. A special function,
emplace() enables you to add new elements only if the element doesn’t
exist. Otherwise, the unordered set will allow as many duplicates as you
want (and you can easily count them using count()). You can also use
the find() function to track down elements that you want. Special
functions tell you when you’re at the beginning or end of the set.



Manipulating unordered sets
The easiest way to see how an unordered set works is to create one. The
UnorderedSet example, shown in Listing 6-16, demonstrates how to use
the various unordered_set features to maintain a listing of colors.

LISTING 6-16: Creating and Using Dynamic Arrays
#include <iostream> 

#include <unordered_set> 

  

using namespace std; 

  

int main() { 

  unordered_set<string> Colors; 

  Colors.insert("Red"); 

  Colors.insert("Green"); 

  Colors.insert("Blue"); 

  

  if(Colors.find("Red")!= Colors.end()) 

    cout << "Found Red!" << endl; 

  

  auto ReturnValue = Colors.emplace("Red"); 

  if(!ReturnValue.second) 

    cout << "Red is Already in Set!" << endl; 

  

  cout << "There are " << Colors.count("Red") 

      << " Red entries." << endl; 

  

  ReturnValue = Colors.emplace("Orange"); 

  if(!ReturnValue.second) 

    cout << "Orange is Already in Set!" << endl; 

  else 

    cout << "Orange Added to Set!" << endl; 

  

  Colors.erase("Red"); 

  if(Colors.find("Red")!= Colors.end()) 

    cout << "Found Red!" << endl; 

  else 

    cout << "Red Missing!" << endl; 

  return 0; 

}

The example begins by creating a new unordered_set, Colors. Notice
that this is a template, so you need to provide a type for the information



that the set will hold. The code uses the insert() function to add three
colors to the set.

The find() function enables you to look for a particular value in the set.
When the value is missing, the find() function returns end(), which
means that the current position within the set is at the end.

This example uses the auto data type. ReturnValue is used to detect
when a value that you want to add to the set using emplace() already
exists. If the value already exists, unordered_set refuses to add it when
you call emplace(). On the other hand, if you call insert(),
unordered_set will add duplicate entries.

To remove entries from a set, you call erase() with the value you want
to remove. In this case, the example removes the color Red. It then
searches for Red using find(). As you might expect, Red isn’t found this
time. The output from this example is as follows:

Found Red! 

Red is Already in Set! 

There are 1 Red entries. 

Orange Added to Set! 

Red Missing!

Working with Ranges
C++ now offers support for ranges, which you can read about at
https://en.cppreference.com/w/cpp/ranges. A range is the set of
objects between a beginning point and an ending point. The concept of
ranges depends on iterators. A view is an iteration that manages data in
some manner, and a range acts on this iteration. The example in this
section requires C++ 20. As mentioned elsewhere in the book, such as
Book 1 Chapter 5, if your compiler doesn’t offer C++ 20 support, you
can use Wandbox (https://wandbox.org/).

The Ranges example, shown in Listing 6-17, gives you a starting point
for working with both ranges and views in C++ 20. In this example, the
code creates a vector, MyList, fills it with data, and then uses the

https://en.cppreference.com/w/cpp/ranges
https://wandbox.org/


ranges::size() method to determine the size MyList. The code then
creates a view that filters MyList and places the result in Filtered. A
for loop prints the result.

LISTING 6-17: Working with Ranges and Views
#include <iostream> 

#include <vector> 

#include <ranges> 

  

using namespace std; 

  

int main() { 

  vector<int> MyList {9, 2, 1, 6, 3, 8, 4}; 

  cout << "There are " << ranges::size(MyList) << 

    " items in MyList" << endl; 

  

  auto Filtered = MyList | views::filter([](int n){ 

    return n % 3 == 0; }); 

  cout << "Items divisible by 3: " << endl; 

  for (int i : Filtered) 

    cout << i << endl; 

  return 0; 

}

Filtered is a range adapter, which is an iterable range. To create this
variable, you specify the list you want to use, such as MyList, a pipe
symbol (|), and the view or views you want to create. This example uses
views::filter(). When you want to create multiple views, you
separate them with addition pipes. You can also find views that will
transform your data, drop certain elements, split ranges, join ranges, and
so on. Whatever the range adapter creates appears in Filtered. As the
code shows, you iterate over the view using a standard for loop.
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Chapter 1

Filing Information with the
Streams Library

IN THIS CHAPTER
 Seeing the need for a streams library
 Opening a file
 Dealing with errors
 Working with flags to customize your file opening

You’ve heard of rivers, lakes, and streams, and it’s interesting just how
many common words are used in computer programming. That’s handy,
because it lets programmers use words they already know with similar
meaning. Using common terms makes it easier to visualize abstract
concepts in a concrete way.

Most programmers think of a stream as a file — the type stored on a
hard drive, Universal Serial Bus (USB) flash drive, or Secure Digital
(SD) card. But streams go beyond just files. A stream is any type of data
structure that you can access as a flow of data, essentially a sequence of
bytes. Streams are used to access all sorts of devices, such as smart
speakers. Rather than just fill a 500MB data structure and then drop it
onto the hard drive, you write your data piece after piece; the
information goes into the file.

Streams go further than a wide variety of devices, however. Opening an
Internet connection and putting data on a remote computer usually
requires a stream-based data structure. You write the data in sequence,
one byte after another, as the data goes over the Internet like a stream of
water, reaching the remote computer. The data you write first gets there
first, followed by the next set of data you write, and so on.



This chapter discusses different kinds of streams available to you, the
C++ programmer. In addition, you discover how to handle errors and use
flags to modify how you open files.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookVI\Chapter01
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Seeing a Need for Streams
When you write an application that deals with files, you must use a
specific order:

1. Open the file.
Before you can use a file, you must open it. In doing so, you specify
a filename.

2. Access the file.
After you open a file, you either store data into it (this is called
writing data to the file) or get data out of it (this is called reading
data from the file).

3. Close the file.
After you have finished reading from and writing to a file, you must
close the file.

For example, an application that tracks your stocks and writes your
portfolio to a file at the end of the day might do these steps:

1. Ask the user for a name of a file.
2. Open the file.
3. For each stock object, write the stock data to the file.



4. Close the file.

The next morning, when the application starts, it might want to read the
information back in. Here’s what it might do:

1. Ask the user for the name of the file.
2. Open the file.
3. While there’s more data in the file, create a new Stock object.
4. Read an individual stock entry from the file.
5. Put the data into the Stock object.
6. Close the file.

 Here are a couple of reasons to close a file after you’ve finished
using it:

Other applications might be waiting to use the file. Some
operating systems allow an application to lock a file, meaning that no
other applications can open the file while the application that locked
the file is using it. In such situations, another application can use the
file after you close it, but not until then.
When you write to a file, the operating system decides whether to
immediately write the information onto the hard drive or flash
drive/SD card or to hold on to it and gather more information,
finally writing it all as a single batch. When you close a file, the
operating system puts all your remaining data into the file. This is
called flushing the file.

You have two ways to write to a file:

Sequential access: In sequential access, you write to a file or read
from a file from beginning to end. With this approach, when you
open the file, you normally specify whether you plan to read from or



write to the file, but not both at the same time. After you open the
file, if you’re writing to the file, the data you write gets added
continually to the end of the file. Or if you’re reading from the file,
you read the data at the beginning, and then you read the data that
follows, and so on, up to the end.
Random access: With random access, you can read and write to any
byte in a file, regardless of which byte you previously read or wrote.
In other words, you can skip around. You can read some bytes and
then move to another portion of the file and write some bytes, and
then move elsewhere and write some more.

Back in the days of the C programming language, several library
functions let you work with files. However, they stunk. They were
cumbersome and made life difficult. So, when C++ came along, people
quickly created a set of classes that made life with files much easier.
These people used the stream metaphor we’ve been raving about. In the
sections that follow, you discover how to open files, write to them, read
from them, and close them.

Programming with the Streams
Library

The libraries you use to work with streams are divided into various
groups, each of which requires its own header. The libraries divide input
and output into separate classes, as shown in Figure 1-1. In addition, the
kind of input and output determines which header you use. The libraries
also support specific commands that include cin and cout — the
commands you have used for so many purposes so far.



FIGURE 1-1: Working with streams requires use of the appropriate headers and
commands.

Now that you have a basic overview of how these various headers and
commands work with the streams library to provide stream output, it’s
time to get the details. The following sections help you understand how
to use code to create streams of data that could go to a file, Internet
connection, or some other location, such as a smart speaker.

Getting the right header file
The streams library includes several classes that make your life much
easier. It also has several classes that can make your life more
complicated, mainly auxiliary classes that you rarely use. Here are three
of the more common classes that you use:



ifstream: This is a stream you instantiate if you want to read from a
file. The if part of the name stands for input file.
ofstream: This is a stream you instantiate if you want to write to a
file. The of part of the name stands for output file.
fstream: This is a stream you instantiate if you want to both read
and write to a file. The f part of the name stands for file (in a general
sense, rather than specifically for input or output).

Before you can use the ifstream, ofstream, or fstream classes, you
#include <fstream>. As with many C++ classes and objects, you find
these classes inside the std namespace. Thus, when you want to use an
item from the streams library, you must either

Prepend its name with std, as in this example:
std::ofstream outfile("MyFile.txt");

Include a using directive before the lines where you use the stream
classes, as in this example:

using namespace std; 

ofstream outfile("MyFile.txt");

Opening a file
Opening a file means to obtain access to a file on disk. The process of
opening a file returns a variable that allows you to do things with that
file, such as read or write it. You have two options for opening a file:

Create a new file: The file doesn’t currently exist, so you must
create a new one.
Open an existing file: The file does exist, so you open the existing
one on disk.

Some operating systems treat these two methods as a single entity. The
reason is that when you create a new file, normally you want to
immediately start using it, which means that you want to create a new



file and then open it. So the process of creating a file is often embedded
right into the process of opening a file.

SEPARATING A PATHNAME
Everybody wants to be different and unique. The people who wrote Microsoft’s MS-
DOS operating system, instead of following in the tradition of using Unix’s / for a
pathname separator, decided to use \, thus adding the word backslash to the
vocabularies of millions of people. So today, on Windows, you see such pathnames as
C:\MyDataFolder\MyMessyPath\DifficultToType\LetterToEditor.doc. But on Unix, you
see forward slashes, as in /usr/something/LetterToEditor.doc. In case you don’t find
this difference bad enough, think about what the backslash means in a string in C++. It
means that another character follows, and the compiler interprets the two characters
together as something else — a process called escaping the character. For example, \t
means a tab, and \n means a newline character. To create a single backslash, you put
two backslashes, which means that the earlier MS-DOS-style string must look like this if
you use it in a C++ application:

"C:\\MyDataFolder\\MyMessyPath\\DifficultToType\\LetterToEditor.doc"

Yes, you must type every backslash twice if you want the compiler to get the correct
string. But instead of doing this, you have a much better solution. Don’t use
backslashes at all, even if you’re programming for Windows. When you write a C++
application on Windows, the libraries are smart enough to know that a forward slash
works instead of a backslash. Therefore, you can use this string:

"C:/MyDataFolder/MyMessyPath/DifficultToType/LetterToEditor.doc"

In this book, you see the examples use the forward slash so that they work on both
Unix and Windows.

When you open an existing file that you want to write to, you have
several choices:

Erase the current contents; then write to the file.
Keep the existing contents:

Write your information to the end of the file. This is called
appending information to a file.
Write your information to the beginning of the file. This is
called prepending information to a file.



Search for a particular location in the file and then add data at
that point.

Overwrite all or part of the existing contents by replacing existing
information with new information.

The FileOutput01 example code, in Listing 1-1, shows you how to open
a brand-new file, write some information to it, and then close it. (But
wait, there’s more: This version works whether you have the newer
ANSI-compliant compilers or the older ones!)

LISTING 1-1: Using Code That Opens a File and
Writes to It
#include <iostream> 

#include <fstream> 

  

using namespace std; 

  

int main() { 

  ofstream outfile("../MyFile.txt"); 

  outfile << "Hi" << endl; 

  outfile.close(); 

  cout << "File Written!" << endl; 

  return 0; 

}

The short application in Listing 1-1 opens a file called MyFile.txt. (The
../ part of the file path places the file in the parent directory for the
example, which is the Chapter01 folder; see the “Finding your files”
sidebar, in this chapter, for details.) The application opens the
MyFile.txt file by creating a new instance of ofstream, which is a class
for writing to a file. The next line of code writes the string "Hi" to the
file. It uses the insertion operator, <<, just as cout does. In fact,
ofstream is derived from the same class as cout, as shown in Figure 1-
1, so anything you can do with cout you can also do with your file.
When you finish writing to the file, you close it by calling the close()
method.



If you want to open an existing file and append to it, you can modify
Listing 1-1 slightly. All you do is change the arguments passed to the
constructor, as follows:

ofstream outfile("MyFile.txt", ios_base::app);

The ios::app item is an enumeration inside a class called ios, and the
ios_base::app item is an enumeration in the class called ios_base. The
ios class is the base class from which the ofstream class is derived. The
ios class also serves as a base class for ifstream, which is for reading
files.

FINDING YOUR FILES
Whenever you open a new file, you must know where the file is, not just what the file is
called. In other words, you need to supply both a path and a filename, not just a
filename. You can obtain a path for your file in different ways, depending on your
application. For example, you may be saving all your files in a particular directory; if so,
you would then precede your filenames with that directory (that is, path) name. The
string class makes this easy, as in this code:

const string MyPath = "c:\\GreatSoftwareInc"; 

string Filename = MyPath + "\\" + "MyFile.txt"; 

ofstream outfile(Filename);

Also, when you use a constant path, as shown in this example, you may, instead, store
the pathname in an initialization file that lives on your user’s computer, rather than
hardcode it in your application as in this example. You may also include an Options
window where your users can change the value of this path.

Paths can take on other forms. You don’t need to create a full path to your file, which
begins at the root directory of the hard drive and provides a complete description of
every folder needed to access files. It’s also possible to create a relative path to your
file, which means using the current location as a starting point, using one or two periods
as the starting point. Using one period (.) refers to the current directory and using two
periods (..) refers to the parent directory. You can also combine periods.

If you use .\MyData\MyFile.txt (with one period) as a path and the current
directory is C:\GreatSoftwareInc\MyApp, the operating system looks for
MyFile.txt in the C:\GreatSoftwareInc\MyApp\MyData folder.

If you use ..\MyData\MyFile.txt (with two periods) as the path and the current
directory is C:\GreatSoftwareInc\MyApp, the operating system looks for
MyFile.txt in the C:\GreatSoftwareInc\MyData folder.



If you use ..\..\MyData\MyFile.txt (with two sets of two periods) as the path
and the current directory is C:\GreatSoftwareInc\MyApp, the operating system
looks for MyFile.txt in the C:\MyData folder because now you’re moving up two
parent positions in the directory hierarchy.

Reading from a file
You can read from an existing file. You perform this task in a manner
similar to using the cin object to read from the keyboard. The
FileRead01 example, shown in Listing 1-2, opens the file created by
Listing 1-1 and reads the string back in. This example uses the parent
directory again as a common place to create, update, and read files.

LISTING 1-2: Using Code to Open a File and Read
from It
#include <iostream> 

#include <fstream> 

  

using namespace std; 

  

int main() { 

  string word; 

  ifstream infile("../MyFile.txt"); 

  infile >> word; 

  cout << word << endl; 

  infile.close(); 

  return 0; 

}

When you run this application, the string written earlier to the file in
Listing 1-1 — Hi — appears onscreen.

Reading and writing a file
You may notice in Figure 1-1 that there is an fstream class that derives
from iostream, which itself derives from both istream and ostream.
Using the fstream class can save a lot of effort when you need to both
read and write a file. The FileReadWrite01 example, shown in Listing
1-3, demonstrates how to both read and write the same file without
closing the file handle first.



LISTING 1-3: Reading and Writing a File Using a
Single Handle
#include <iostream> 

#include <fstream> 

  

using namespace std; 

  

int main() { 

  fstream outfile("../MyFile.txt", 

                  ios::in | ios::out | ios::trunc); 

  outfile << "Hi" << endl; 

  outfile.flush(); 

   

  string Data; 

  outfile.seekg(0, ios::beg); 

  outfile >> Data; 

  outfile.close(); 

   

  cout << "File Written!" << endl; 

  cout << Data << endl; 

  return 0; 

}

The first part of this example works just like the example in Listing 1-1.
You add opening modes to ensure that the handle works as anticipated:
ios::in means that the file is open for input, ios::out means that the
file is open for output, and ios::trunc means that the file is truncated
(the old data is removed) before you add new data. Instead of closing the
file, you call flush(), which ensures that the data actually appears on
disk.

The example then creates an input string, Data, to receive information
from the file. Before you can look at the file data, however, you must
reposition the file pointer to point to the beginning of the file by using
seekg(). A file pointer tells you the place where you will either read or
write in a file. When you initially write to the file, the file pointer is at
the end of the file, so to read the file you must reposition it to the
beginning of the file. Notice that you now read the data just as you did in
Listing 1-2.

Working with containers



You’re not very likely to write single bits of data to a file in most cases.
You usually want to work with something more complicated, like a
container (Book 5, Chapter 6 tells you about various kinds of
containers). The basic idea is to combine the file techniques in this
chapter with the container techniques shown in Book 5, Chapter 6 to
create an application that works with containers. Listing 1-4 shows the
OutputVector example that demonstrates how to perform this task.

LISTING 1-4: Saving a Vector to Disk
#include <iostream> 

#include <fstream> 

#include <vector> 

  

using namespace std; 

  

int main() { 

  vector<string> MyData; 

  MyData.push_back("One"); 

  MyData.push_back("Two"); 

  

  ofstream outfile("../MyData.txt"); 

  for (Element : MyData) 

    outfile << Element << endl; 

  outfile.close(); 

  cout << "File Written!" << endl; 

  return 0; 

}

The example begins by creating a vector, MyData, that stores two
strings. It then opens a file for output and uses a for loop to process the
MyData elements one at a time. Each element appears on a separate line,
which allows you to read the input file one line at a time to recreate the
original vector from the disk file.

Handling Errors When Opening a
File

When you open a file, all kinds of things can go wrong. A file lives on a
physical device — a fixed disk, for example, or perhaps a flash drive or



SD card — and you can run into problems when working with physical
devices. For example:

Part of the disk might be damaged, causing an existing file to
become corrupted.
You might run out of disk space.
The directory doesn’t exist.
Your application doesn’t have the right permissions to create a file.
Removable media is missing.
Network connection is down.
File is locked.
The filename was invalid — that is, it contained characters that the
operating system doesn’t allow in a filename, such as * or ?.

 If you try to open a file for writing by specifying a full path and
filename but the directory does not exist, the computer responds
differently, depending on the operating system you’re using. If
you’re unsure how your particular operating system will respond,
try writing a simple test application that tries to create and open a
nonexistent path like /abc/def/ghi/jkl/abc.txt. Then one of the
following will happen:

The operating system will generate an error (the default for
Windows).
The operating system will create the required path and file.

If you want to determine whether the ostream class was unable to create
a file, you can call its fail() method. This method returns true if the
object couldn’t create the file. That’s what happens when a directory
doesn’t exist. The DirectoryCheck01 example, shown in Listing 1-5,
demonstrates an example of using the fail() method.



LISTING 1-5: Returning True When ostream Cannot
Create a File
#include <iostream> 

#include <fstream> 

using namespace std; 

int main() 

{ 

    ofstream outfile("/abc/def/ghi/MyFile.txt"); 

    if (outfile.fail()) { 

        cout << "Couldn't open the file!" << endl; 

        return 0; 

    } 

    outfile << "Hi" << endl; 

    outfile.close(); 

    return 0; 

}

When you run this code, you should see the message Couldn’t open
the file! when your particular operating system doesn’t create a
directory. If it does, your computer will open the file and write Hi to it.

As an alternative to calling the fail() method, you can use an operator
available in various stream classes. This is !, fondly referred to as the
bang operator, and you would use it in place of calling fail(), as in this
code:

if (!outfile) 

{ 

  cout << "Couldn't open the file!" << endl; 

  return 0; 

}

 Like any good application, your application should do two
things:

1. Check whether a file creation succeeded.
2. If the file creation failed, handle it appropriately. Don’t just print a

horrible message like Oops! Aborting!. Instead, do something



friendlier — such as presenting a message telling users that there’s a
problem and suggesting that they might free more disk space. (There
are other reasons not covered in this book, such as lack of rights to
the area of disk where the file is written — you need to perform
application testing to locate all the possible reasons a file creation
might fail and then provide error handling for each potential issue.)

Flagging the ios Flags
When you open a file by constructing a stream instance, you can modify
the way the file will open by supplying flags. In computer terms, a flag
is simply an indicator whose presence or lack of presence tells a function
how to do something. The flag appears in the constructor when working
with a stream.

A flag looks like ios_base::app. This particular flag means that you
want to write to a file, but you want to append to any existing data that
may already be in a file. You supply this flag as an argument of the
constructor for ofstream, as shown here:

ofstream outfile("AppendableFile.txt", ios_base::app);

You can see the flag as a second parameter to the constructor. Other flags
exist besides app, and you can combine them by using the or operator, |.
Following is a list of the available flags:

ios_base::ate: Use this flag to go to the end of the file after you
open it. Normally, you use this flag when you want to append data to
the end of the file.
ios_base::binary: Use this flag to specify that the file you’re
opening will hold binary data — that is, data that does not represent
character strings.
ios_base::in: Specify this flag when you want to read from a file.

ios_base::out: Include this flag when you want to write to a file.



ios_base::trunc: Include this flag if you want to wipe out the
contents of a file before writing to it.
ios_base::app: Include this flag if you want to append to the
current file pointer position of the file (which is at the beginning
when you first open the file). It’s the opposite of trunc — that is, the
information that’s already in the file when you open it will stay there.

The FileOutput02 example, shown in Listing 1-6, shows how to use a
flag to append information to the output of Listing 1-1.

LISTING 1-6: Appending to an Existing File
#include <iostream> 

#include <fstream> 

  

using namespace std; 

  

int main() { 

  string filename = "../MyFile.txt"; 

  ifstream check(filename); 

  if (!check) { 

    cout << "File doesn't exist."; 

    return -1; 

  } else { 

    check.close(); 

  } 

  

  fstream datafile(filename, ios_base::app); 

  datafile << " There" << endl; 

  datafile.close(); 

  cout << "File Written!" << endl; 

  return 0; 

}

 This example begins by checking for the existence of the file. If
the file doesn’t exist (or you don’t have permission to access it,
making the file invisible to the application), the application won’t
create it to write to it. You can use this technique whenever you
want to ensure that a file exists before you attempt to add data to it.



If the file exists, you want to close the file handle to it before you write
to it by calling check.close(). You can then reopen the file for
appending by adding the ios_base::app flag. The example outputs
some additional text and closes the file.

OceanofPDF.com

https://oceanofpdf.com/


Chapter 2

Writing with Output Streams
IN THIS CHAPTER

 Using the insertion operator
 Formatting your output generally and with flags
 Specifying precision and setting field widths
 Ensuring data safety with locked streams

Years ago, it was possible to have a personal computer with 3,000 bytes
of memory. (Yes, that’s three thousand bytes, not 3MB.) As an option,
this computer came with a floppy disk drive that sat outside it. It didn’t
have a hard drive. Therefore, if you didn’t have a hard drive but you
wanted to use an application, you had to load the application from a
floppy, type its name, and press Enter!

Nowadays, the notion of a computer without permanent storage is
unthinkable. Not only do your applications appear in permanent storage
in the form of files, but your applications also create files to store in
permanent storage. In this chapter, you see the different ways you can
write to a file in any permanent storage location: hard drive, removable
device, network, online, or wherever else permanent storage is found.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookVI\Chapter02
folder of the downloadable source. See the Introduction for details
on how to find these source files.



Inserting with the << Operator
Writing to a file is easy in C++. You’re probably already familiar with
how you can write to the console by using the cout object, like this:

cout << "Hey, I'm on TV!" << endl;

The cout object is a file stream. So, if you want to write to a file, you
can do it the same way you would with cout: You just use the double-
less-than symbol, called the insertion operator, like this: <<.

If you open a file for writing by using the ofstream class, you can write
to it by using the insertion operator. The FileWrite01 example, shown
in Listing 2-1, demonstrates how to perform this task.

LISTING 2-1 Using Code to Open a File and Write to
It
#include <iostream> 

#include <fstream> 

  

using namespace std; 

  

int main() { 

  ofstream outfile("../outfile.txt"); 

  outfile << "Look at me! I'm in a file!" << endl; 

  

  int x = 200; 

  outfile << x << endl; 

  

  outfile.close(); 

  cout << "File Written" << endl; 

  return 0; 

}

OPERATING THE INSERTION OPERATOR
The insertion operator, <<, is an overloaded operator function. Inside the basic_ostream
class, you can find several overloaded forms of the << operator function. Each one
provides input for a basic type as well as for some of the standard C++ classes, such
as string or one of its base classes. (Most libraries that ship with compilers are written



by compiler vendors — who may implement their code slightly differently but get the
same results.)

PLACING DATA IN SPECIFIC FOLDERS
Sometimes you want to place data in a specific common folder, such as the current
working directory — the directory used by the application. C++ provides a method to
obtain this information: getcwd(). This method appears in the <direct.h> header. Using
the getcwd() method is relatively straightforward. You create a place to put the
information, called a buffer, and then ask C++ to provide the information. The
GetWorkingDirectory example demonstrates how to perform this task, as shown here:

#include <iostream> 

#include <direct.h> 

  

using namespace std; 

  

int main() { 

  char CurrentPath[PATH_MAX]; 

  getcwd(CurrentPath, PATH_MAX); 

  cout << CurrentPath << endl; 

  return 0; 

}

As output, you should see the name of the directory that contains the application, such
as C:\CPP_AIO4\BookVI\Chapter02\GetWorkingDirectory. The MAX_PATH constant is the
maximum size that you can make a path. So, what this code is saying is to create a
char array that is the size of MAX_PATH. Use the resulting buffer to hold the current
working directory (which is where the name of the method getcwd() comes from). You
can then display this directory onscreen or use it as part of the path for your output
stream.

The first line inside main() creates an instance of ofstream, passing to it
the name of a file called outfile.txt. The code then writes to the file,
first giving it the string Lookit me! I’m in a file!, then a newline,
then the integer 200, and finally another newline. After that, the code
closes the file.

Formatting Your Output



If you’re saving lists of numbers to a file, you may find that the process
works better if the numbers are formatted in various ways. For example,
you may want them all aligned on the right; or you might want your
floating-point numbers to have a certain number of digits to the right of
the decimal point. There are three elements to setting these formats:

Format flags: A format flag is a general style that you want your
output to appear in. For example, you may want floating-point
numbers to appear in scientific mode, or you may want to be able to
print the words true and false for Boolean values rather than their
underlying numbers. To do these tasks, you specify format flags.
Precision: This refers to how many digits are on the right of the
decimal point when you print floating-point numbers.
Field width: This refers to how much space the numbers take (both
floating point and integer). This feature allows you to align all your
numbers.

 The following sections discuss each of these elements. You can
use format flags, along with precision and width specifiers, when
writing to your files or outputting to the screen using cout. Because
cout is a stream object in the iostream hierarchy, it accepts the
same specifiers as output files.

Formatting with flags
Format flags enable you to tell the compiler how to output data you
provide. To use the format flags, you call the setf() method for the
stream object. (This can be either your own file object or the cout
object.) For example, to turn on scientific notation, you would do this:

cout.setf(ios_base::scientific); 

cout << 987654.321 << endl;

To turn off scientific mode, you call the unsetf() method:



cout.unsetf(ios_base::scientific); 

cout << 987654.321 << endl;

If you’re using your own file, you use code similar to that shown in
Listing 2-2, as found in the FileWrite02 example.

LISTING 2-2: Writing Formatted Output
#include <iostream> 

#include <fstream> 

  

using namespace std; 

  

int main() { 

  ofstream myfile("../numbers.txt"); 

  myfile.setf(ios_base::scientific); 

  myfile << 154272.0 << endl; 

  

  myfile << hex << showbase << 154272 << endl; 

  

  myfile.unsetf(ios_base::hex); 

  myfile << 154272 << endl; 

  myfile.close(); 

  

  cout << "File Written" << endl; 

  return 0; 

}

When you run this code for writing to a file, the numbers.txt file
contains the following output:

1.542720e+005 

0x25aa0 

154272

 Each of the ios_base flags exists both as a format specifier and
as a manipulator. (Don’t worry about the precise differences for
right now; Book 6, Chapter 5 explains manipulators in detail.)

The example begins by opening the file, setting the
ios_base::scientific flag using setf(), and then outputting a
floating-point value. Instead of using setf(), the next line uses the



manipulator form of the hex flag to output an integer value. To see the
hexadecimal value with the required base of 0x, you include the
showbase flag. Finally, the example uses unsetf() to remove the
ios_base::hex flag and outputs the same integer value as before.
Whether you use the format specifier or the manipulator form of a flag,
the flag remains set until you unset it.

 Table 2-1 tells about each of the flags you can use. Note that
some flags affect only text, some affect only integers, and some
affect only floating-point values. Setting a flag that doesn’t affect a
particular value type you want to output means that the value
appears in its default form. However, you can or flags together
using the | symbol to configure the output for multiple types.

TABLE 2-1 ios_base Formatting Flags

Flag Type Description

boolalpha Independent

Setting this flag causes Boolean variables to write with the
words true or false (or the equivalent words for your
particular locale). Clearing this flag causes Boolean variables
to write 0 for false or 1 for true. (The default is for this flag to
be cleared.)

dec
Numerical
Base

When you set this flag, your integers will appear as decimal
numbers. To turn this off, you turn on a different base, either
hex (for hexadecimal) or oct (for octal).

fixed
Float
Format

This flag specifies that, when possible, the output of floating-
point numbers will not appear in scientific notation. (Large
numbers always appear as scientific notation, whether you
specify scientific or fixed.)

hex
Numerical
Base

With this flag, all your integers appear in hexadecimal format.
To turn this off, choose a different base — dec or oct.

internal Adjustment The text is padded to fill an output field using a specific fill
character.



Flag Type Description

left Adjustment
When you turn on this flag, all numbers will be left-aligned
with a width field. (See “Setting the width and creating fields,”
later in this chapter, for information on how to set the width.)

oct
Numerical
Base

When you turn on this flag, your integers will appear in octal
format.

right Adjustment With this flag, all your numbers will be right-aligned with a
width field.

scientific
Float
Format

When you specify this flag, your floating-point numbers
always appear in scientific notation.

showbase Independent

When you turn on this flag and print an integer, the integer
will be preceded with a character that represents the base —
decimal, hexadecimal, or octal. That can be good because
the number 153 can represent 153 in decimal or 153 in
hexadecimal (which is equivalent to 339 in decimal) or 153 in
octal (which is equivalent to 107 in decimal).

showpoint Independent

With this flag, your floating-point numbers have a decimal
point, even if they happen to be whole numbers. (That is, a
floating-point variable that contains 10.0 will print as 10. with
a decimal point after it. Without this flag, it will just print as 10
with no decimal point.)

showpos Independent

Normally, a negative number gets a minus sign before it, and
a positive number gets no sign before it. But when you turn
on this flag, each of your positive numbers will get a plus sign
before it.

skipws Independent Skips the leading white space in some output operations so
that left-aligned text is actually left aligned.

unitbuf Independent

When you turn this on, your output will flush after each output
operation. In other words, the library doesn’t accumulate a
certain amount of output before writing it in batches. Instead,
the library writes all the output out each time you use the
insertion operator, <<.

uppercase Independent

When you write hexadecimal or scientific numbers, the
various letters in the number appear as uppercase. Thus, the
letters A, B, C, D, E, and F will appear in capitals in a
hexadecimal number, and the E representing the exponent in
scientific notation prints as a capital E. When this is not set,
you get lowercase letters for hexadecimal numbers and e for
the exponent in scientific notation.



Table 2-2 shows the manipulator forms of some flags. The table shows
three columns: the flag, the manipulator to turn on the flag, and the
manipulator to turn off the flag.

TABLE 2-2 Using ANSI-Standard Manipulators and
Demanipulators

Flag Manipulator Demanipulator

boolalpha boolalpha noboolalpha

showbase showbase noshowbase

showpoint showpoint noshowpoint

showpos showpos noshowpos

skipws skipws noskipws

uppercase uppercase nouppercase

fixed fixed scientific

scientific scientific fixed

The scientific flag and fixed flag are opposites: fixed turns off
scientific, and scientific turns off fixed. The default if you don’t
specify either is fixed. You don’t use these flags together, such as,
cout.setf(ios_base::scientific | ios_base::fixed);, because
doing so can create some unusual and unusable results.

Six manipulators aren’t in Table 2-2 because they don’t have a
demanipulator. Instead, they are three-way:

Bases: dec, hex, and oct. Only one base can be active at a time.
Activating a base automatically switches off the other bases.
Alignments: internal, left, and right. Only one alignment can be
active at a time. Activating an alignment automatically switches off
the other alignments.

Specifying a precision



When you write floating-point numbers to a file or to cout (that is,
numbers stored in float or double variables), having all the numbers
print with the same number of digits to the right of the decimal point is
often handy. This feature is called the precision.

 Don’t confuse this use of the word precision with the idea that
double variables have a greater precision than float variables. This
use of precision specifies the number of digits printed to either the
file or cout. The value inside the variable doesn’t change, nor does
the precision of the variable’s type.

To set or read the precision, call the stream’s precision() function. If
you call precision() with no parameters, you can find out the current
precision. Or to set the precision, pass a number specifying how many
digits you want to appear to the right of the decimal point. For example,
the following line sets the precision of an output:

cout.precision(4);

The output of cout << 0.33333333 << endl; would take this rounded
off form:

0.3333

 If you don’t set the precision, the stream will have a default
precision, probably six, depending on your particular compiler.
Precision has an interesting effect if you use it with the showpoint
format flag. In the scientific community, these three numbers don’t
have the same precision, even though the first two have the same
number of digits to the right of the decimal point:

3.5672 

8432.2259 

0.55292



Scientists consider precision to mean the same number of total digits, not
counting leftmost 0’s to the left of the decimal (as in the final of the
three). Therefore, a scientist would consider the three following numbers
to have the same precision because they all have four digits. (Again, for
the final one, you don’t count the 0 because it’s to the left of the decimal
point.)

3.567 

8432. 

0.1853

It also doesn’t count rightmost zeros used as placeholders. For example
123,000 normally only has three significant digits: 1, 2, and 3. The three
zeros are placeholders and don’t provide any interesting information.
However, 123,000.0 has seven significant digits because the .0 tells
something about the precision of the number.

Scientific folks call these significant digits. You can accomplish
significant digits with an output stream by combining precision with
the showpoint flag. The PrecisionFunction example, shown in Listing
2-3, contains an example of showpoint and precision() working
together in perfect harmony.

LISTING 2-3: Using the Precision Function to Work
with the showpoint Format Flag
#include <iostream> 

  

using namespace std; 

  

int main() { 

  cout.setf(ios_base::showpoint); 

  cout.precision(4); 

  

  for (int i=1; i<=10; i++) { 

      cout << 1.0 / i << endl; 

  } 

  

  cout << "\n" << 2.0 << endl; 

  cout << 12.0 << endl; 

  cout << 12.5 << endl; 

  cout << 123.5 << endl; 



  cout << 1234.9 << endl; 

  cout << 12348.8 << endl; 

  cout << 123411.5 << endl; 

  cout << 1234111.5 << endl; 

  

  // Precision with zeros on the right. 

  cout << "\n" << 123000 << endl; 

  cout << 123000.0 << endl; 

  cout << 123.0e3 << endl; 

  

  // Only available C++ 17 and above 

  // Use the -fext-numeric-literals switch. 

  cout << 0x1E078p0 << endl; 

  return 0; 

}

When you run this application, here’s the output you see:
1.000 

0.5000 

0.3333 

0.2500 

0.2000 

0.1667 

0.1429 

0.1250 

0.1111 

0.1000 

  

2.000 

12.00 

12.50 

123.5 

1235. 

1.235e+004 

1.234e+005 

1.234e+006 

  

123000 

1.230e+005 

1.230e+005 

1.230e+005

The preceding output has a couple of interesting cases:

The lines that read:



1.235e+004 

1.234e+005 

1.234e+006

of the preceding output are scientific notation to maintain four
significant digits.
The last four lines show how C++ handles int versus float values.
The float values come in three forms: default, scientific notation, and
hexadecimal notation with an exponent (p0). This last form is only
available in C++ 17 and above, and you must include the -fext-
numeric-literals switch on the Other Compiler Options tab of the
Global Compiler Settings dialog to use it. If you wanted to make the
int into a float, you’d need to replace 123000 with (float)123000.

The ninth line from the end, 1235., is rounded up from 1234.9
because of this line:

cout << 1234.9 << endl;

The precision() function has an associated manipulator. Instead of
calling precision() as a function, you can use it as a manipulator. But
the manipulator’s name is slightly different: It’s setprecision(). To use
it, you include this header:

#include <iomanip>

These two lines cause the same thing to happen:
cout.precision(4); 

cout << setprecision(4);

Setting the width and creating fields
This is where you can start making the numbers and data all nice and
neat by aligning them in columns. To align your data, use the width()
method for the stream or cout, passing the width of the field, like this:

cout.width(10);

Then, when you print a number, think of the number as sitting inside a
field 10 spaces wide, with the number wedged against the right side of



these 10 spaces. For example, look at this:
cout.width(10); 

cout << 20 << endl;

This code produces this output:
        20

Although seeing this fact in the printed text is hard, this 20 is pushed to
the right of a field of spaces 10 characters wide. That is, because the 20
takes two character spaces, there are eight spaces to the left of it.

 If you prefer, you can have the numbers pushed to the left of the
field. To do so, set the left format flag by using setf() or use the
left manipulator.)

For the width manipulator, setw(), you can alternatively add #include
<iomanip> and then use the manipulator:

cout << setw(10);

 Because of some oddities in the libraries, when you set the
width, it stays that way only for the next output operation. Call it
forgetful, if you will. Therefore, suppose you have code that looks
like this:

cout.width(10); 

cout << 20 << 30 << endl;

Only the first output, 20, has a field width of 10. The 30 just takes as
much space as it needs. Therefore, these lines of code produce this
output, which is probably not what most people would intend:

        2030

This is why it’s preferable to use the manipulator form: You precede
each output item with a width specification. Try this instead:



cout << setw(10) << 20 << setw(10) << 30 << endl;

which writes this to cout:

        20        30

The WidthFunction example in Listing 2-4 shows the great things you
can do when you set the width.

LISTING 2-4: Setting the Width of a Field Using the
setw Manipulator or Width Function
#include <iostream> 

#include <iomanip> 

#include <fstream> 

  

using namespace std; 

  

int main() { 

  ofstream sals("../salaries.txt"); 

  

  sals << setprecision(2) << fixed << left; 

  sals << setw(20) << "Name" << setw(10) << "Salary"; 

  sals << endl; 

  

  // 19 hyphens, one space 

  sals << "------------------- "; 

  

  // 10 hyphens 

  sals << "----------" << endl; 

  

  sals << setw(20) << "Hank Williams"; 

  sals << setw(10) << 28422.82 << endl; 

  sals << setw(20) << "Buddy Holly"; 

  sals << setw(10) << 39292.22 << endl; 

  sals << setw(20) << "Otis Redding"; 

  sals << setw(10) << 43838.55 << endl; 

  sals.close(); 

  

  cout << "File Written" << endl; 

  return 0; 

}

When you run Listing 2-3, you get a file called salaries.txt, like this:

Name                Salary 

------------------- ---------- 



Hank Williams       28422.82 

Buddy Holly         39292.22 

Otis Redding        43838.55

The first field, Name is 20 characters wide. You use only 19 hyphens to
give the appearance of a space between the two fields. In fact, the two
fields are wedged against each other with no space between them.

 If you wanted to run Listing 2-4 but display each salary in
scientific format, as in 2.8e+04, you need to use
sals.setf(ios::scientific); and sals.setf(ios::left); after
removing the fixed modifier.

 The example uses the left format flag so that the data in each
field is aligned to the left end of the field. By default, each field is
aligned to the right.

 Although you can specify the field width, you’re actually
specifying a minimum. If the characters in the output are less than
the field width, the runtime library will pad them with spaces to
make them that minimum size. If they are bigger than that width,
the library doesn’t chop them off to make them fit. If you add
letters to the Hank Williams line in Listing 2-4 (like this: sals <<
setw(20) << "Hank WilliamsABCDEFGHIJ";), the output looks like
the following example instead. The Hank Williams line runs
beyond the 20 characters into the next field.

Name                Salary 

------------------- ---------- 

Hank WilliamsABCDEFGHIJ28422.82 

Buddy Holly         39292.22 

Otis Redding        43838.55
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Chapter 3

Reading with Input Streams
IN THIS CHAPTER

 Reading with the extraction operators
 Dealing with the end of the file
 Reading various data types
 Reading data that is formatted with text

You have a file that you wrote to, but you need to read from it. After all,
what good is a file if it’s just sitting on your hard drive collecting dust?

In this chapter, you learn how you can read from a file. This task begins
by extracting the data. You can perform this task using extraction
operators, just as you use insertion operators in the previous chapter.

Reading a file is tricky because you can run into some formatting issues.
For example, you may have a line of text in a file with a sequence of 50
digits. You may not know whether those 50 digits correspond to 50 one-
digit numbers, 25 two-digit numbers, or some other combination. When
you create the file, you probably know its format, but the fun part is
getting your C++ application to properly read from files you didn’t
create. The file might contain 25 two-digit numbers, in which case you
make sure that the C++ code doesn’t just try to read one enormous 50-
digit number.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookVI\Chapter03



folder of the downloadable source. See the Introduction for details
on how to find these source files.

Extracting with Operators
When you read from a file, you can use the extraction operator, >>. This
operator is easy to use, as long as you understand that using the
extraction operator does come with some caveats. For example, suppose
you have a file called Numbers.txt with the following text on one line
(you need the Numbers.txt file to work with this chapter’s example
code):

100 50 30 25

You can easily read these numbers into memory using the FileRead01
example code shown in Listing 3-1.

LISTING 3-1: Reading a File Into Memory Using the
Extraction Operator
#include <iostream> 

#include <fstream> 

#include <string.h> 

  

using namespace std; 

  

int main() { 

  string weight; 

  string height; 

  string width; 

  string depth; 

  

  ifstream MyFile("../Numbers.txt"); 

  if (!MyFile) { 

    cerr << "File couldn't be opened!" << endl; 

    cerr << "Error Code: " << strerror(errno) << endl; 

    return -1; 

  } 

  

  MyFile >> weight; 

  MyFile >> height; 

  MyFile >> width; 



  MyFile >> depth; 

  

  cout << "Weight = " << weight << "\r\n"; 

  cout << "Height = " << height << "\r\n"; 

  cout << "Width  = " << width << "\r\n"; 

  cout << "Depth  = " << depth; 

  

  MyFile.close(); 

  return 0; 

}

Each of the variables holds just one string element. To read all four
numbers, you need to extract the data four times. The input file,
Numbers.txt, has its numbers separated with spaces. You can also
separate them with newline characters, like this:

100 

50 

30 

25

The application doesn’t care. It looks for white space, which is any
number of spaces, tabs, and newlines. You could format the data so it
looks like the following example, and the application will still read them
in correctly.

100        50 

                     30 

    25

 When you are dealing with the standard input object, cin, the
same rules about white space apply: If you read in four numbers, as
in the following example, the cin object, like the ifstream object,
will separate the numbers based on the white space.

 Users make common mistakes that can cause your application to
fail or possibly display incorrect information:



If the user accidentally inserts a space into the input stream, whether
from the console or a file, the computer sees the space as the
beginning of a new string.
Sometimes users forget to add white space, which means that two
values mash together and the computer sees them as a single entity.
A user might try to separate values using commas, semi-colons, or
other non-white-space characters.
Missing values, where the user simply leaves the data out, is also a
problem.

Consequently, when you encounter problems with the input data,
looking for additional white space, missing white space, or missing
values is a good place to begin.

 When you read information from a file, make sure that you
clearly define the information order. In other words, make sure that
you have agreed upon a protocol for the information. Otherwise,
you’ll likely end up with errors and mistakes.

This example includes error trapping for opening the file. This error
trapping requires the addition of #include <string.h> (note the
inclusion of the .h). After creating MyFile and opening the file with the
constructor, the code checks for a file handle in MyFile. If MyFile is
empty, the code outputs error information to cerr, the standard error
output, and provides a human-readable output error, such as No such
file or directory.

If the file opening process succeeds, the code reads in each of the data
values using the extraction operator. It then outputs the values in a nicely
formatted form and closes the file. When you run the application, you
see the result of reading the file:

Weight = 100 

Height = 50 



Width  = 30 

Depth  = 25

WHAT’S A PROTOCOL?
You have a list of numbers: 1600 20500 1849 20240. No matter how you look at these
numbers, they don’t mean anything. You need a protocol. As defined in this chapter, a
protocol is simply a rule for how to format and order data. It describes the required
content of a data stream. A protocol in general defines rules for exchanging information
of any sort between computers (think of it as a diplomatic role).The two systems
negotiate the exchange of data based on standardized rules.

As it happens, the first number in the set of numbers is the street address of the White
House in Washington, DC, and the second number is the zip code for the White House.
The third number is the street address of the main office for the National Park Service
headquarters, and the fourth is the National Park Service zip code.

Further, a protocol dictates how you respond after receiving data. You may send back a
single number 1, which means that you received the data properly, and the other party
may send a single 0, which means that you won’t receive further information. That’s a
protocol, and protocols are useful when reading data, whether it’s from a file or over the
Internet.

Encountering the End of File
Files end. The ending creates a condition called the EOF, which stands
for End of File. When you read from a file, you need to know when you
reach the end. If you know the file size, you can write your application
so that it knows exactly when to stop. So here are the cases covered in
this section:

Read to the end of the file by knowing the file size.
Read until the EOF marker without knowing the file size.

You, the programmer, know the format of the file you’re reading.
(Perhaps your application even wrote the file and now you’re writing the
part of the application that reads it.) Your format might start with a size
entry. The application begins by reading this number and configuring
itself to read the specified number of entries. This approach requires the



file creator to start by writing the size before the rest of the data and to
agree to this format.

Using the record count approach
The record count approach has the advantage of letting you know from
the outset how many records to read. The FileRead02 example consists
of three source code files (Book 1, Chapter 7 tells you how to employ
multiple files in a single project. You see main.cpp in Listing 3-2. It
provides the coordination to write two files and then read them back into
memory. Listing 3-3 shows the writedata.cpp code used to write data
to disk. Listing 3-4 shows the readdata.cpp code used to read the data
from disk.

LISTING 3-2: Coordinating the Writing and Reading
Process
#include <iostream> 

  

using namespace std; 

  

int WriteFile(string filename, int count, int start); 

int ReadFile(string filename); 

  

int main() { 

  cout << "Writing the files." << endl; 

  if (WriteFile("../nums.txt", 5, 100) == -1) 

    return -1; 

  cout << "Files written successfully." << endl; 

  

  cout << "\nReading the files.\n" << endl; 

  if (ReadFile("../nums.txt") == -1) 

    return -1; 

  cout << "\nFiles read successfully." << endl; 

  

  return 0; 

}

LISTING 3-3: Writing the Data to Disk with the
Number of Records



#include <iostream> 

#include <fstream> 

#include <string.h> 

  

using namespace std; 

  

int WriteFile(string filename, int count, int start) { 

  ofstream outfile(filename); 

  if (!outfile) { 

    cerr << "File couldn't be opened!" << endl; 

    cerr << "Error Code: " << strerror(errno) << endl; 

    return -1; 

  } 

  

  outfile << count << endl; 

  

  for (int i=0; i<count; i++) { 

    outfile << start + i  << endl; 

  } 

  

  outfile.close(); 

  return 0; 

}

LISTING 3-4: Reading the Data from Disk Using the
Number of Records
#include <iostream> 

#include <fstream> 

#include <string.h> 

  

using namespace std; 

  

int ReadFile(string filename) { 

  ifstream infile(filename); 

  if (!infile) { 

    cerr << "File couldn't be opened!" << endl; 

    cerr << "Error Code: " << strerror(errno) << endl; 

    return -1; 

  } 

  

  int count = 0; 

  infile >> count; 

  cout << "File: " << filename << endl; 

  cout << "This file has " << count << " items." << endl; 

  



  int num = 0; 

  for (int i=0; i<count; i++) { 

    infile >> num; 

    cout << num << endl; 

  } 

  

  infile.close(); 

  return 0; 

}

All three of the code files include rudimentary error handling. It’s
important to consider what errors might happen (even those that seem
impossible) and then add code to deal with them. The manner in which
this application is written ensures that the data files are at least
accessible, but not much else. A production application would also
ensure that the data is in the correct format, order, and range (among
other application-specific checks).

The data writing process begins by writing the number of records as the
first entry in nums.txt. It then uses a for loop to write the specified
number of values to disk. The values start at the point specified by start
and end after reaching count.

The data reading process begins by opening the file and reading the first
record, which should be the number of items in the file. The code
outputs the filename and record count for you. This part of the example
uses a for loop to read the individual values and display them on screen.
When you run this application, you’ll see the following output.

Writing the files. 

Files written successfully. 

  

Reading the files. 

  

File: ../nums.txt 

This file has 5 items. 

100 

101 

102 

103 

104 

  

Files read successfully.



Using the EOF check approach
Another possibility for reading and writing a file is that you continue
reading data from the file until you reach the end of the file. You do this
by testing the istream or ifstream object for the EOF. The FileRead03
example uses the same approach as the one in the previous section for
breaking the code into three parts. Listing 3-2 has main.cpp (yes, this
example uses precisely the same main() as before), Listing 3-5 contains
writedata.cpp, and Listing 3-5 contains readdata.cpp.

LISTING 3-5: Writing the Data to Disk without the
Number of Records
#include <iostream> 

#include <fstream> 

#include <string.h> 

  

using namespace std; 

  

int WriteFile(string filename, int count, int start) { 

  ofstream outfile(filename); 

  if (!outfile) { 

    cerr << "File couldn't be opened!" << endl; 

    cerr << "Error Code: " << strerror(errno) << endl; 

    return -1; 

  } 

  

  for (int i=0; i<count; i++) { 

    outfile << start + i  << endl; 

  } 

  

  outfile.close(); 

  return 0; 

}

 By comparing Listing 3-3 with Listing 3-5, and Listing 3-4 with
Listing 3-6, you can see that this approach uses fewer lines of code
and is somewhat simpler to read. Of course, you don’t get the
number of records as an immediate output either. Whether the extra
coding needed to accommodate the number of records is



worthwhile depends on how you use the data. For example, you
might need the number of records to create an array to store the
data.

LISTING 3-6: Reading the Data from Disk Using EOF
#include <iostream> 

#include <fstream> 

#include <string.h> 

  

using namespace std; 

  

int ReadFile(string filename) { 

  ifstream infile(filename); 

  if (!infile) { 

    cerr << "File couldn't be opened!" << endl; 

    cerr << "Error Code: " << strerror(errno) << endl; 

    return -1; 

  } 

  

  int num; 

  cout << "File: " << filename << endl; 

  

  do { 

      infile >> num; 

      cout << num << endl; 

  } while (!infile.eof()); 

  

  infile.close(); 

  return 0; 

}

The data writing process is about the same in both cases. The only thing
that Listing 3-5 is missing is the number of records output, which
amounts to two lines of code.

However, the data reading process is different. When working with a file
that contains the number of records, you can rely on a for loop and
extract the data a precise number of times. Listing 3-6 shows that you
use a do…while loop to accomplish the same thing when you don’t know
the number of records. The reason you use a do…while loop is to allow
processing of a record, and then immediately check for the EOF marker
using eof() before attempting to process the next record.



 You often see files processed using a while loop. The problem
with this approach is that you now have to track a logical variable
that specifies when the processing completes. Using a do…while
loop is simpler and less error prone.

Reading Various Types
Reading files may not always be as straightforward for the computer as
it is for humans. The computer needs specific rules for reading a file.
The following sections discuss this issue and provide a demonstration
for you to consider.

Understanding data reading issues
Reading a file can get complicated when you want to read spaces.
Suppose you have two strings that you want to write to a file:

"I'll have a steak for dinner." 

"I will have the Smiths for dinner, too."

Now suppose you wrote these to a file as one big, long, line to get “I’ll
have a steak for dinner. I will have the Smiths for dinner, too.” Later,
you want to read back in these two strings, but you can’t follow this
process:

string first, second; 

infile >> first; 

infile >> second;

If you do this, the variable first will hold I’ll, and the variable second
will hold have because, when you read in strings, the ifstream and
istream classes use spaces to break (or delimit) the strings.

Even if you could somehow use the ifstream class to go past the spaces,
it wouldn’t know when it has reached the end of the first string because
it doesn’t view a period as anything special. You must write your
application to follow this protocol: A string ends with a period. That



protocol is fine, because ending with a period is the case with these two
strings. However, you may need to process just sequences of words, like
this:

"poodle steak eat puddle" 

"dinner Smiths yummy"

And then, when you write these two strings to a file, you end up with
this text inside the file:

poodle steak eat puddle dinner Smiths yummy

Or worse, you may get this text, which contains no space between the
two strings:

poodle steak eat puddledinner Smiths yummy

 When working with data that doesn’t form sentences, you may
not be limited to strings. You could be processing numbers, vectors,
special classes, and so on. So, even though you see words strung
together here, you need to think outside the box. Here’s what you
need to do to solve the problem of reading complex data in various
forms:

1. Create a protocol. Here are some choices for your protocols:
You can write each string on a separate line, and when you
read the file, you will know that each line is a separate string.
You can delimit each data element with a particular character.
Then you would split your strings based on those delimiters.

2. Develop code to implement the same protocol for both reading and
writing.

Writing and reading string-type data
When working with strings that form sentences or that you can separate
into groups, your best bet is to work with them as strings separated by
newline characters. The WriteReadString example, shown in Listings 3-



7 (main.cpp), 3-8 (WriteString.cpp), and 3-9 (ReadString.cpp), writes
and reads data (not just sentences) as elements separated by newline
characters and read back in the same way. This represents the easiest
method for writing complex data to disk.

LISTING 3-7: Coordinating the Writing and Reading
of Complex Data
#include <iostream> 

  

using namespace std; 

  

void ClearFile(string Filename); 

int WriteData(string Filename, string Text); 

int ReadData(string Filename); 

  

int main() { 

  string const file = "../strings.txt"; 

  

  ClearFile(file); 

  cout << "Data file cleared." << endl; 

  

  int Result = WriteData(file, "Some data to write."); 

  Result = WriteData(file, "Some more data to write."); 

  Result = WriteData(file, "Third time's a charm."); 

  if (Result == 0) 

    cout << "Data written successfully!\n" << endl; 

  

  if (ReadData(file) == 0) 

    cout << "\nData read successfully!" << endl; 

  

  return 0; 

}

LISTING 3-8: Clearing the Data File and Writing
Complex Data to It
#include <iostream> 

#include <fstream> 

  

using namespace std; 

  

void ClearFile(string Filename) { 

  ofstream DataFile; 



  DataFile.open(Filename, ios_base::trunc); 

  DataFile.close(); 

} 

  

int WriteData(string Filename, string Text) { 

  ofstream DataFile(Filename, ios_base::app); 

  

  if (DataFile.is_open()) { 

    DataFile << Text << endl; 

  } else { 

    cerr << "Unable to open file." << endl; 

    return -1; 

  } 

  

  DataFile.close(); 

  return 0; 

}

LISTING 3-9: Reading the Complex Data
#include <iostream> 

#include <fstream> 

#include <string.h> 

  

using namespace std; 

  

int ReadData(string Filename) { 

  ifstream DataFile(Filename); 

  if (!DataFile) { 

    cerr << "File couldn't be opened!" << endl; 

    cerr << "Error Code: " << strerror(errno) << endl; 

    return -1; 

  } 

  

  string Data = ""; 

  while (getline(DataFile, Data)) { 

    cout << Data << endl; 

  } 

  

  DataFile.close(); 

  return 0; 

}

Many of the techniques you see in these code listings also appear in the
previous examples of this chapter. However, instead of treating the data



as separate elements, this example works with strings. This difference in
data complexity requires a few changes.

Because the WriteData() function writes data and closes the file each
time, appending the new data to the end of the file (using
ios_base::app), you need a method of clearing the data file as needed.
The ClearFile() function performs this task by opening the file,
truncating it using ios_base::trunc, and closing it without writing
anything to it.

The ReadData() function can’t depend on an EOF check as was used in
previous examples to determine the end of file. This example uses a
while loop that checks the return value from the getline() function.
When getline() reaches the EOF, the eof bit is set (meaning that
getline() returns false) and the while loop ends. Compare this
approach to the do…while loop used in Listing 3-6.

Writing and reading structured data
Structured data can appear in quite a few forms, but most of these
structured forms require use of delimiters. A common type of delimited
data file is the Comma Separated Value (CSV). It has a number of
protocols to consider, but for the purpose of the example, the data file
uses commas between fields and newline characters between rows. The
WriteReadStucture example, shown in Listing 3-10, provides you with
a simple view of how to work with this type of data.

LISTING 3-10: Writing and Reading Structured Data
#include <iostream> 

#include <fstream> 

#include <sstream> 

  

using namespace std; 

  

struct Box { 

  string Name; 

  int Height; 

  int Width; 

  int Depth; 



  double Weight; 

  

  friend ostream& operator << (ostream& Out, Box Data); 

}; 

  

ostream& operator << (ostream& Out, Box Data) { 

  Out << Data.Name << ","; 

  Out << Data.Height << ","; 

  Out << Data.Width << ","; 

  Out << Data.Depth << ","; 

  Out << Data.Weight << "\n"; 

  return Out; 

} 

  

int main() { 

  string const file = "../boxes.txt"; 

  

  Box SamBox; 

  SamBox.Name = "Sam's Box"; 

  SamBox.Height = 4; 

  SamBox.Width = 5; 

  SamBox.Depth = 6; 

  SamBox.Weight = 7.8; 

  

  ofstream OutFile(file, ios_base::app); 

  OutFile << SamBox << endl; 

  OutFile.close(); 

  

  Box InData; 

  int Field = 0; 

  string InString; 

  stringstream ISS; 

  ifstream InFile(file); 

  

  while(getline(InFile, InString, ',')){ 

    switch (Field) { 

    case 0: 

      InData.Name = InString; 

      break; 

    case 1: 

      ISS << InString; 

      break; 

    default: 

      ISS << " " << InString; 

      break; 

    } 

  

    Field++; 



  } 

  InFile.close(); 

  

  ISS >> InData.Height >> InData.Width >> InData.Depth 

      >> InData.Weight; 

  

  cout << "Name: " << InData.Name << endl; 

  cout << "Height: " << InData.Height << endl; 

  cout << "Width: " << InData.Width << endl; 

  cout << "Depth: " << InData.Depth << endl; 

  cout << "Weight: " << InData.Weight << endl; 

  

  return 0; 

}

This example begins by creating a Box structure that contains a number
of data types (making it harder to work with). It then defines an <<
operator function to allow easy output of the data to a file. You may see
other methods of creating output for structured data, but this is the
simplest approach in most cases. The main() code begins by opening the
file and using the << operator to output the data to it.

Getting the data read back into a new Box structure, InData, is a little
more difficult. This example makes use of a stringstream, ISS, to
allow for easy conversion from string form to numeric form.

 The magic in the approach used in this example is that it relies
on getline() to use a delimited approach to reading the file. Each
read stops at either a comma or a newline. Consequently, each read
represents a single field within the data file, whether that field is
part of a new row or not.

When the field is a Name, you can input the data directly into the InData
structure. However, for other fields, the InString input data is actually
placed within ISS. Spaces between entries make it possible for ISS to
keep each of the data values separate. Field keeps track of the current
field number so that the switch processes each field properly.



After the processing is complete (there is only one record, in this case),
the code uses another form of streaming to send the numeric values from
ISS to each of the InData numeric fields in the correct type. Now that
InData contains the original information, the code produces this output:

Name: Sam's Box 

Height: 4 

Width: 5 

Depth: 6 

Weight: 7.8
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Chapter 4

Building Directories and
Contents

IN THIS CHAPTER
 Creating and deleting directories
 Getting the contents of a directory
 Copying and moving, and why they are related
 Moving and renaming files and why they are similar

Native C++ versions before version 17 provide no functions for creating
directories and getting the contents of a directory. (C++ 17 and above
provides access to the filesystem library, but it isn’t implemented in
most compilers yet.)You need to know two points about this situation:

There really is a good reason for this lack. C++ is a general-purpose
language. Issues that deal with directories are specific to individual
operating systems. Thus it doesn’t make sense to include such
features in C++.
Some brave rebels have added some functions — and these functions
exist in most C++ implementations. These additions are important;
otherwise, you’d have to call in to the operating system to create or
modify a directory.

C++ has a holdover from the C programming language in the header file
stdio.h that includes functions for renaming and removing files and
directories. In addition, it supports a function used to create a temporary
file.



 This chapter presents you with ways to manipulate directories
and files. (I tested these routines only for the GNU GCC compiler
that comes with the Code::Blocks product for OS X, Linux, and
Windows. If you’re working with a different compiler or operating
system, try the examples out. They probably will work.)

 For the examples in this chapter, you need to add both #include
<stdio.h> and #include <io.h> to the beginning of the source
code file. (Please don’t confuse this file with ios.h. That’s not the
right one to use just now.) If you’re working with a compiler other
than Code::Blocks, you’re not guaranteed to find io.h in your
include directory, but you should look for it.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookVI\Chapter04
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Manipulating Directories
You have a couple functions to use for creating and deleting directories.
These functions are in the io.h header file.

Creating a directory
If you want to create a directory, you can call the mkdir() function. If
the function can create the directory for you, it returns a 0. Otherwise, it



returns a nonzero value, such as 1. Here’s some sample code (found in
the MakeDirectory example) that uses this function:

#include <iostream> 

#include <stdio.h> 

#include <io.h> 

  

using namespace std; 

  

int main() { 

  if (mkdir("../abc") != 0) 

    cout << "Directory not created." << endl; 

  else 

    cout << "Directory created." << endl; 

  

  return 0; 

}

USING THE FILESYSTEM LIBRARY
Most compilers today don’t support the filesystem library, even if you have C++ 17 or
above installed. However, Wandbox (https://wandbox.org/) does provide marginal
support for the filesystem library, so you can begin experimenting with it using the
documentation found at https://en.cppreference.com/w/cpp/filesystem. The
filesystem::path (https://en.cppreference.com/w/cpp/filesystem/path) support is
essential to making the library work. The problem with working on Wandbox is that you
don’t have access to an actual directory. Consequently, you end up experimenting with
code like this (found in the FileSystem example):

#include <iostream> 

#include <filesystem> 

  

using namespace std; 

namespace fs = std::filesystem; 

  

int main() { 

  fs::path APath("."); 

  cout << "Exists: " << fs::exists(APath) << endl 

       << "Root Name: " << APath.root_name() << endl 

       << "Root Path: " << APath.root_path() << endl 

       << "Relative Path: " << APath.relative_path() << endl; 

  return 0; 

}

https://wandbox.org/
https://en.cppreference.com/w/cpp/filesystem
https://en.cppreference.com/w/cpp/filesystem/path


Notice that this code simplifies typing the information by creating a namespace variable,
fs, to access the filesystem library. The code begins by creating a path (the example
uses the current path to avoid problems). It then starts querying the path for
information, such as whether that path exists and the relative path. Unfortunately, the
output is a little disappointing (but at least the current path exists):

Exists: 1 

Root Name: "" 

Root Path: "" 

Relative Path: "."

 This example uses a forward slash (/) in the call to mkdir() for
compatibility reasons. In Windows, you can use either a forward
slash or a backslash. After you run this example the first time, you
should see a new directory named abc added to the
/CPP_AIO4/BookVI/Chapter04 directory on your system. If you run
the example a second time, you receive the "Directory not
created." message because the directory already exists.

 It would be nice to create an entire directory-tree structure in one
fell swoop — doing a call such as mkdir("/abc/def/ghi/jkl")
without having any of the abc, def, or ghi directories already
existing — but each parent directory must exist before you attempt
to create a child directory. The function won’t create a jkl directory
unless the /abc/def/ghi directory exists. That means you have to
break this call into multiple calls: First create /abc. Then create
/abc/def, and so on.

 If you do want to make all the directories simultaneously, you
can use the system() function, as described in “Using the quick-



and-dirty method” section, later in this chapter. If you execute
system("mkdir \\abc\\def\\ghi\\jkl");, you can make the
directory in one fell swoop.

Deleting a directory
To delete a directory, you call the rmdir() function, passing the name of
the directory. If you want to find out whether it worked, test its results
against 0. Here’s some sample code as found in the DeleteDirectory
example:

#include <iostream> 

#include <stdio.h> 

#include <io.h> 

  

using namespace std; 

  

int main() { 

  if (rmdir("../abc") != 0) 

    cout << "Directory not deleted." << endl; 

  else 

    cout << "Directory deleted." << endl; 

  

  return 0; 

}

After you run this example, the /CPP_AIO4/BookVI/Chapter04/abc
directory that you created in the previous section goes away. Make sure
you verify that the directory is added and removed as expected. If you
run this example a second time, you see the "Directory not deleted."
message because you can’t delete a directory that doesn’t exist.

 This approach works only if the directory is empty. If the
directory has at least one file or directory in it, the function can’t
remove the directory — and returns a nonzero result.

Getting the Contents of a Directory



A directory usually contains multiple files as well as other directories.
Getting a list of contents can be complicated. You don’t just call a single
function and get something back. The following procedure tells how the
process of getting directory content works:

1. Call _findfirst(), passing it a pathname and a pattern for the files
whose names you want to find.
For example, pass *.* to get all files in the directory, or *.txt to get
all files ending in .txt. Also pass it a pointer to a _finddata_t
structure.

2. Check the results of _findfirst().
If _findfirst() returned –1, it didn’t find any files (which means
you’re finished). Otherwise it fills the _finddata_t structure with
the first file it found, and it will return a number that you use in
subsequent calls to the various find functions.

3. Look at the _finddata_t structure to determine the name of the file,
and other information such as create date, last access date, and size.

4. Call _findnext() and pass it the following values: the number
returned from _findfirst() and the address of a _finddata_t
structure
If _findnext() returns –1, it found no more files; you can go to Step
5. Otherwise look at the _finddata_t structure to get the
information for the next file found. Then repeat Step 4.

5. Call _findclose() and pass it the number returned from
_findfirst().
You’re all finished.

This is the process used in the days of programming with older
languages. Most languages today hide these details from view, but you
still follow this process when using an older version of C++. The
GetDirectoryContents example in Listing 4-1 shows how to implement
a directory listing.



LISTING 4-1: Using Code to Read the Contents of a
Directory
#include <iostream> 

#include <io.h> 

#include <time.h> 

  

using namespace std; 

  

string Chop(string &str) { 

  string res = str; 

  

  int len = str.length(); 

  if (str[len - 1] == '\r') 

    res.replace(len - 1, 1, ""); 

  

  len = str.length(); 

  if (str[len - 1] == '\n') 

    res.replace(len - 1, 1, ""); 

  

  return res; 

} 

  

void DumpEntry(_finddata_t &data) { 

  string createtime(ctime(&data.time_create)); 

  cout << Chop(createtime) << "\t"; 

  cout << data.size << "\t"; 

  

  if ((data.attrib & _A_SUBDIR) == _A_SUBDIR) 

    cout << "[" << data.name << "]" << endl; 

  else 

    cout << data.name << endl; 

} 

  

int main() { 

  _finddata_t data; 

  int ff = _findfirst ("../*.*", &data); 

  

  if (ff != -1) { 

    int res = 0; 

  

    while (res != -1) { 

      DumpEntry(data); 

      res = _findnext(ff, &data); 

    } 

  

    _findclose(ff); 



  } 

  return 0; 

}

You can see how main() follows the previously outlined steps. Each data
structure uses its own function called DumpEntry(). The DumpEntry()
function prints the file information. Here’s what you should see when
you run the application (the current directory entry, the parent directory
entry, and directories containing the examples for this chapter; your list
may vary slightly):

Sun Jul 26 15:04:51 2020   0       [.] 

Sun Jul 26 15:04:51 2020   0       [..] 

Sun Jul 26 16:12:09 2020   0       [DeleteDirectory] 

Sun Jul 26 15:04:51 2020   0       [FileSystem] 

Sun Jul 26 16:24:47 2020   0       [GetDirectoryContents] 

Sun Jul 26 16:03:32 2020   0       [MakeDirectory]

The DumpEntry() function tests whether the item is a directory. This is
another old (but reliable) way to program: You check for the presence of
a particular bit in the middle of the attrib member of the structure, like
this:

if ((data.attrib & _A_SUBDIR) == _A_SUBDIR) 

  cout << "[" << data.name << "]" << endl; 

else 

  cout << data.name << endl;

The Chop() function removes an extraneous carriage return that the
ctime() function adds to the end of the string it creates. Otherwise, the
information after the date has to start on the next line of text, which isn’t
what the example needs.

Copying Files
When you copy a file from one location to another, you actually create a
new file and fill it with the same contents as the original file. To perform
this task, you have to read each byte from the first file and write it to the
second. To make matters worse, copying a file means you have to make
sure that you copy it exactly the same, that you don’t accidentally tack
an extra 0 or two at the end of the file, or an extra carriage return or



linefeed at the end of the file (which could happen when you copy a text
file). The two files should be identical — not only contain the same
information, but also be the same size.

These are the basics, but most good copy routines do more. They give
the new file a date that matches the date of the original file, and they set
all the attributes, such as read-only, the same. There are a few ways to
perform a copying task, but the following sections provide two of them.

Copying with windows
If you’re programming in Windows, you can use an easy method to
perform copying tasks: the CopyFile function. To use it, you include the
line #include <windows.h> in your application. Then you just do the
following:

CopyFile("c:/dog.txt", "c:/dog2.txt", TRUE);

This code copies from c:/dog.txt to c:/dog2.txt. The final parameter,
TRUE in all capitals, is a preprocessor macro defined somewhere in the
bowels of the Windows header files. You have to use either TRUE or
FALSE when calling any of the Windows functions. When the early
versions of Windows were around, no bool type existed, so resourceful
developers defined their own TRUE and FALSE as integers. That final
parameter in CopyFile() tells the function what to do if the file you’re
copying to already exists: TRUE means don’t overwrite the existing file;
just abort. FALSE means overwrite it.

Using the quick-and-dirty method
There’s another way you can copy a file, and you can use this to also
move, delete, and rename files. However, this method isn’t portable: The
code is operating-system specific, which means that a Windows
application won’t run on Linux and vice versa. You can execute any
DOS or Unix-shell commands by using the system() function. For
example, this code pauses the display:

system("PAUSE");

This code runs the pause command, which prints the message



Press any key to continue . . .

and waits for you to press a key. Because the system() function can run
any shell command, you can use it to call the copy command, like this:

system("copy c:\\abc.txt c:\\def.txt");

Note that the command uses the backslash, not a forward slash due to
limitations in the Windows command processor. If you’re using some
other platform, you need to consider the needs of the platform when
formatting commands.

Moving and Renaming Files and
Directories

You may have a file called
dog1.txt

and need to rename it to
temp\dog1.txt

This doesn’t look like a valid way to rename a file. Notice that the file
started out being called dog1.txt, and afterward it’s still called
dog1.txt. Rather than being renamed, the file appears to have moved to
a new location — the temp subdirectory. The reason this is called a
rename is that the file’s real name is the entire pathname and filename
together. For this reason, you can move and rename by files and
directories using the same function. Of course, the path must exist. If
you try to rename c:\dog1.txt to c:\temp\dog1.txt and there’s no
c:\temp directory, the rename fails and you get an error message.

The RenameFile example renames a file. Note that you must create a
dog1.txt file and a temp directory in the
\CPP_AIO4\BookVI\Chapter04\RenameFile folder for this example to
work.

#include <iostream> 

#include <stdio.h> 



  

using namespace std; 

  

int main() { 

  if (rename("dog1.txt", "dog2.txt") == 0) 

    cout << "Renaming dog1.txt to dog2.txt." << endl; 

  

  if (rename("dog2.txt","dog1.txt") == 0) 

    cout << "Renaming dog2.txt to dog1.txt." << endl; 

  

  if (rename("dog1.txt","temp/dog2.txt") == 0) 

    cout << "Renaming dog1.txt to temp/dog2.txt." << endl; 

  

  if (rename("temp/dog2.txt","dog1.txt") == 0) 

    cout << "Getting back to start with dog1.txt." 

      << endl; 

  

  return 0; 

}

The example uses the rename() function, passing first the old filename
and then the new filename. The first call renames the file from dog1.txt
to dog2.txt. The second call renames it from dog2.txt to dog1.txt.
Finally, the code moves the file to the temp directory, but only if you
created it. When you run this example, you see the following output:

Renaming dog1.txt to dog2.txt. 

Renaming dog2.txt to dog1.txt. 

Renaming dog1.txt to temp/dog2.txt. 

Getting back to start with dog1.txt.

 You can also give the file a new filename when you move it, as
in this code:

rename("dog1.txt","temp/cat.txt")

 There are conditions under which the rename operation won’t
work:



You’re renaming the file to move it to a new directory, but that
directory does not exist. In this case, create the directory before you
move the file.
You’re renaming a file but some other file in the current directory
already exists under that name. In this case, either delete the other
file or (better yet) make your application ask its users what they want
it to do: Delete the old file (that is, “overwrite it”)? Abort the
operation?
You’re renaming a file to move it to a new directory, but there’s
already a file by that name in that directory. In this case, as in the
previous example, get your application to ask the users what to do —
overwrite or abort?
The file is locked by another application, such as when you open the
file for editing.

 Renaming also works with directories. You can move directory
names around just as if they were files. But there’s a catch: If any
application has a file open within that directory, the rename()
function won’t work. The operating system lets you move or
rename a directory only if you’re not accessing any files inside the
directory.
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Chapter 5

Streaming Your Own Classes
IN THIS CHAPTER

 Streaming a class to a text file
 Getting the most out of manipulators
 Writing your own manipulators

The C++ stream classes can read and write all sorts of goodies, such as
integers, characters, strings, floating-point numbers, and Boolean
variables. But sooner or later, being able to stream one of your own
classes (like the following) would be nice:

MyClass x; 

cout << x << endl;

C++ has a good reason not to have done this already: The compiler and
library can’t predict on their own how you want to stream your class
using cout. (The example in the “Writing and reading structured data”
section of Chapter 3 of this minibook shows one technique for
accomplishing this task by overriding the << operator.) Here are some
examples:

The name of the class followed by the values of the public
properties.
The private properties.
Derived values or some other information related to the class.

Therefore, you should make the class streamable. This chapter shows
you how to do it. But keep in mind that you have (at least) two separate
reasons why you may want to make a class streamable:

To provide a format for writing the object to a text stream.



To save the information in an object so that you can read it back in at
a later date, thereby reconstructing the object. A class with this
feature is called a persistent class.

This chapter covers both. You also discover how you can create your
own manipulators. Remember, a manipulator is this kind of code:

cout << endl;

That is, the endl is the manipulator that adds a newline to the end of a
stream. You can make your own manipulators that manipulate the stream
in various ways, as you see later in this chapter.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookVI\Chapter05
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Streaming a Class for Text
Formatting

When dealing with instances of one of your classes, the ability to use the
insertion (<<) and extraction operators (>>) is nice. To use these
operators, you overload them to work with your class properties.
However, when people first find out about overloading the insertion and
extraction operators, the process often seems so much harder than it
really is.

When working with streams, you might hear that converting data or an
object to a stream is called serialization, while converting a stream back
to data or an object is called deserialization. (Note that the information
from the following sections is combined with the CustomManipulator
example in Listing 5-1 to provide a more complete example.)



Understanding the process
If you have a class, say, Microwave, and you have an instance of this
class, say, myoven, all you do to accomplish the overloading of an
operator is code a function that takes a stream parameter and an instance
of your class, and writes the property values of the object to the stream.
Then you can code one of the following lines:

cout << myoven; 

outfile << myoven;

You can also code an operator that reads from a stream. All you do is
write a function that reads the property values from a stream if you want
to code one of the following lines:

cin >> myoven; 

infile >> myoven;

Remember that cout << myoven actually calls a function called <<.
Here’s the function header:

ostream &operator <<(ostream &out, Microwave &oven)

Overriding the insertion and extraction operators isn’t as hard to
remember as you may think when you consider these issues:

Every type you use for the operator override is a reference, which
makes sense when you look at cout << myoven. The second
parameter, myoven, isn’t a pointer. In addition, you normally don’t
want to pass objects around directly, so that leaves only one
possibility: passing it by reference.
The function must return the stream that it’s working with. Returning
the stream allows you to chain operators together, like this:

cout << "hi" << myoven << 123 << endl;

The operator function takes two parameters. You can see their order
when you look at the order of cout << myoven. The first is the
stream; the second is your class. Thus, when you put this all together,
you get the function header described earlier.



Considering the insertion implementation
To create a new insertion function, you write to the stream passed into it.
In general, you write class properties to the stream. However, you can
add formatting or other values as needed. You decide how the output
looks when you write the object to a stream. So if this is your Microwave
class:

class Microwave { 

public: 

  int HighVoltageRadiation; 

  int RadioactiveFoodCount; 

  int LeakLevel; 

  string OvenName; 

};

Then your insertion function may look like this:
ostream &operator <<(ostream &out, Microwave &oven) 

{ 

  out << "High Voltage Radiation: "; 

  out << oven.HighVoltageRadiation << endl; 

  out << "Radioactive Food Count: "; 

  out << oven.RadioactiveFoodCount << endl; 

  out << "Leak Level: "; 

  out << oven.LeakLevel << endl; 

  out << "Oven Name: "; 

  out << oven.OvenName << endl; 

  return out; 

}

Here are some points to consider about the preceding code:

The example takes complete liberty with how the object looks on the
stream. Each property provides a description, a colon, a space, and
then a value. Then entries use endl so that each property appears on
a separate line. The point is that the output can appear however you
need it to appear.

 The code returns the same output stream that came in as the
first parameter (modified with the class data, of course).



When writing to the stream, the code writes to out, not to cout.
Writing to cout would cause the function to fail when used with a
file. When coding myfile << myoven, the information would go to
cout, not into the file.

This function accesses only the public properties of the myoven instance.
As it stands, the function can’t access the private properties because it
isn’t a member of Microwave. To access the private properties, make this
function a friend of Microwave by adding this code inside the Microwave
class:

friend ostream &operator <<(ostream &out,Microwave &oven);

Considering the extraction implementation
The previous section tells you how to override the insertion operator.
Here’s a similar function for using the extraction operator to read from a
stream (this function doesn’t match the earlier insertion code, so it can’t
read text that was written by the earlier code):

istream &operator >>(istream &in, Microwave &oven) 

{ 

    in >> oven.HighVoltageRadiation; 

    in >> oven.RadioactiveFoodCount; 

    in >> oven.LeakLevel; 

    in >> oven.OvenName; 

    return in; 

}

You can see that the format of this function is like that of the insertion
operator: The function returns a reference to the stream, and for
parameters, the function takes a reference to a stream and a reference to
a Microwave object.

As before, you have complete freedom on how you want to read the data
in. The code reads in each member separately. So, if you call this
function by using cin, like this

cin >> myoven;



then — when you run this line — you can type the member values on
one line with spaces, or on separate lines, or any combination:

1234 5555 

1054 "Buzz"

 There are always caveats when it comes to input, and overriding
the extraction operator is no different. The istream you receive
isn’t guaranteed to provide all the data elements you need, in the
correct order and in the right form. In some respects, you depend on
the user or other data source to provide the information according
to whatever protocol you’ve created. Consequently, unlike writing
to a stream, reading from a stream involves some level of risk, so
you need to provide robust error trapping.

Manipulating a Stream
A lot of people see this kind of thing:

cout << "Hello" << endl;

and wonder what on Earth endl is. After all, it’s not a destination like
cout — it’s something else. The sections that follow discuss endl and
other kinds of manipulators, which are special functions that interact
with streams in specific ways using the insertion and extraction
operators.

What’s a manipulator?
A manipulator is actually the address of a function. To clarify exactly
what endl is, think about this:

cout << endl;

The << operator function in this case is an overloaded insertion operator
function that receives two parameters, cout and endl. The first
parameter, cout, is an instance of ostream. The second parameter, endl,
is the address of a function. When you type a function name, but don’t



include parentheses, you’re giving the address of the function rather than
calling the function.

So, in the standard header files is an overloaded insertion function that
takes both an ostream and the address of a function. Now the thing
about function addresses is that the type of a function pointer is based on
the function’s return type and parameter types. Thus, pointers to these
two functions have the same type:

void WriteMe(int x, char c); 

void AlwaysAndForever(int y, char x);

Even though the names of the parameters are different, the types of the
parameters are the same. That’s why pointers to the two functions have
the same type. But pointers to the following two functions don’t have the
same type:

void SomethingForNothing(int x); 

int LeaveMeAlone(int y, int z);

The functions don’t have the same type because their prototypes are
different. The first takes a single integer as a parameter and returns a
void. The second takes two integers as parameters and returns an integer.
Here’s the prototype for the endl function:

ostream& endl(ostream& outs);

This function takes a reference to ostream and returns a reference to
ostream. And here’s a typedef for a pointer to this function:

typedef ostream& (*omanip)(ostream&);

This typedef defines a new type called omanip, which is a pointer to a
function that takes as a parameter a reference to ostream and returns a
reference to ostream. Therefore, if you have a variable of type omanip,
you can set it to the address of the endl function.

For the endl manipulator to work, you need an overloaded insertion
operator function that takes two parameters: first a reference to ostream
(for cout) and then omanip. The second parameter must be a reference to
omanip because the second item in cout << endl is of type omanip.



 If you’re not clear on why endl is of type omanip, think about
this: There’s a function called endl, and to call that function, you
would type its name, an opening parenthesis, some parameters, and
then a closing parenthesis. But if you leave off the parentheses,
you’re just taking the address of the function. And the type omanip,
defined earlier, is exactly that: an address to a function. But on top
of being an address, the endl function’s prototype matches that for
the omanip type.

Here’s a possibility for the header of the overloaded insertion operator:
ostream& operator<<(ostream& out, omanip func);

You can see the parameters that this function takes: First, it takes a
reference to ostream and then omanip. Consequently, to implement
endl, two functions are involved. Here are their headers:

ostream& endl(ostream& outs); 

ostream& operator<<(ostream& out, omanip func);

When you type cout << endl, you’re not calling the endl function.
Instead, you’re calling the operator<< function because endl by itself
— without parentheses — is nothing more than the address of the endl
function. And the address is of type omanip. Here’s the operator<<
function in its entirety:

ostream& operator<<(ostream &out, omanip func) { 

    return (*func)(out); 

}

The func parameter contains the address of endl. The code shown ends
up calling endl and supplying it with out. You could use this approach
for any function that matches the omanip type. Using this approach relies
on function pointer syntax. As long as you know what is involved, you
normally don’t need to delve too far into the details. However, if you’d
like more details, check out the article at
https://www.cprogramming.com/tutorial/function-pointers.html.

https://www.cprogramming.com/tutorial/function-pointers.html


This isn’t the only way to accomplish coding a manipulator, as explained
in the following section, “Writing your own manipulator.” That section
uses a slightly different approach that works equally well. But the
technique described in this section is quite common, and you need to
know how it works.

Writing your own manipulator
You can write your own manipulators in several ways. The goal is to
allow for this type of code:

cout << mymanipulator;

and this line causes a function such as the following to get called:
ostream &operator << (ostream &out, somespecialtype a);

Several operator<< functions are natively available; ultimately, they
differ in the second parameter type, somespecialtype. Whatever
mymanipulator is, it must be the somespecialtype type as well. This
type must be unique or the compiler will complain.

The “What’s a manipulator?” section (earlier in this chapter) gives you
the details on how the endl manipulator works, but that amount of detail
is a bit too complicated. The example in this section creates a unique
type, and the manipulator is an object of that type. As with other
manipulators, function pointers work well. But for the function pointer
to be unique, its parameter types must be unique. The example uses that
as the parameter for the function, like this:

struct FullOvenManip {}; 

void FullOvenInfo(FullOvenManip x) {}

Check this sample carefully. The code uses a structure called
FullOvenManip. This structure has nothing in it; its sole purpose in life is
to provide for a unique set of parameters. The FullOvenInfo() function
takes this structure as a parameter. The point is to create a unique
prototype.

You can now provide an overloaded operator << function. That
function takes a pointer to the FullOvenInfo() function. But to do that,



you use typedef:

typedef void(*FullPtr)(FullOvenManip);

 This line of code creates a type called FullPtr, which is a
pointer to a function that takes a FullOvenManip parameter and
returns a void. When writing your own manipulators, don’t shy
away from using typedef. The manipulator concept is confusing
and can be a serious struggle for many developers to keep straight.
By using a typedef, you can simplify your life a bit. Here’s the
overloaded operator << function header:

ostream &operator << (ostream &out, FullPtr);

You can see the second parameter: It’s a FullPtr. And look at this code:

cout << FullOvenInfo;

The FullOvenInfo item is also a FullPtr because it’s a pointer to a
function that takes a FullOvenManip(). The CustomManipulator
example, in Listing 5-1, shows how these elements work together.

LISTING 5-1: Using Manipulators
#include <iostream> 

#include <fstream> 

#include <map> 

  

using namespace std; 

  

class Microwave { 

  friend ostream &operator <<(ostream &out, 

                              Microwave &oven); 

public: 

  int HighVoltageRadiation; 

  int RadioactiveFoodCount; 

  int LeakLevel; 

  string OvenName; 

  

  typedef map<ostream *, bool> FlagMap; 

  static FlagMap Flags; 



}; 

  

Microwave::FlagMap Microwave::Flags; 

  

ostream &operator <<(ostream &out, Microwave &oven) { 

  bool full = true; 

  Microwave::FlagMap::iterator iter = 

    Microwave::Flags.find(&out); 

  

  if (iter != Microwave::Flags.end()) { 

    full = iter->second; 

  } 

  

  if (full) { 

    out << "High Voltage Radiation: "; 

    out << oven.HighVoltageRadiation << endl; 

    out << "Radioactive Food Count: "; 

    out << oven.RadioactiveFoodCount << endl; 

    out << "Leak Level: "; 

    out << oven.LeakLevel << endl; 

    out << "Oven Name: "; 

    out << oven.OvenName; 

  } else { 

    out << oven.HighVoltageRadiation << ","; 

    out << oven.RadioactiveFoodCount << ","; 

    out << oven.LeakLevel << ","; 

    out << oven.OvenName; 

  } 

  return out; 

} 

  

istream &operator >>(istream &in, Microwave &oven) { 

  in >> oven.HighVoltageRadiation; 

  in >> oven.RadioactiveFoodCount; 

  in >> oven.LeakLevel; 

  in >> oven.OvenName; 

  return in; 

} 

  

struct FullOvenManip {}; 

  

void FullOvenInfo(FullOvenManip x) {} 

  

typedef void(*FullPtr)(FullOvenManip); 

  

ostream &operator << (ostream &out, FullPtr) { 

  Microwave::Flags[&out] = true; 

  return out; 



} 

  

struct MinOvenManip {}; 

  

void MinOvenInfo(MinOvenManip x) {} 

  

typedef void(*MinPtr)(MinOvenManip); 

  

ostream &operator << (ostream &out, MinPtr) { 

  Microwave::Flags[&out] = false; 

  return out; 

} 

  

int main() { 

  Microwave myoven; 

  myoven.HighVoltageRadiation = 9832; 

  myoven.RadioactiveFoodCount = 7624; 

  myoven.LeakLevel = 3793; 

  myoven.OvenName = "Burnmaster"; 

  

  cout << myoven << endl; 

  cout << "============" << endl; 

  cout << FullOvenInfo << myoven << endl; 

  cout << "============" << endl; 

  cout << MinOvenInfo << myoven << endl; 

  

  return 0; 

}

The code in Listing 5-1 creates two manipulators, one called
FullOvenInfo() and one called MinOvenInfo(). When you use one of
these manipulators, as in the following line, you call the overloaded
operator << function:

cout << FullOvenInfo << myoven << endl;

The FullOvenInfo() function works with a map to keep track of which
stream you’re manipulating. The map lives as a static member in the
Microwave class. So when you use the FullOvenInfo() manipulator on
cout, the map’s item for cout gets a value of true from operator<<() as
Microwave::Flags[&out] = true;. And when you use the
MinOvenInfo() manipulator on cout, the map’s item for cout gets a
value of false from that manipulator’s operator<<() function.



Using the map may not make sense at first. The idea is that you may be
working with multiple streams, such as one for an ofstream file and one
for cout, and you may want some streams to show the full information
via the FullOvenInfo() manipulator — and some other streams to show
the minimal information via the MinOvenInfo(). The map is based on the
stream. In the overloaded operator << function that prints a Microwave
object, you see how the code checks the map for a true or false for the
current stream.

 Note that cout << FullOvenInfo does not actually send any
output to cout; it just modifies cout so future output of a Microwave
object will use the full format. Then the next part of the statement,
<< myoven, sends the Microwave object to cout. When you run this
application, you see this output:

High Voltage Radiation: 9832 

Radioactive Food Count: 7624 

Leak Level: 3793 

Oven Name: Burnmaster 

============ 

High Voltage Radiation: 9832 

Radioactive Food Count: 7624 

Leak Level: 3793 

Oven Name: Burnmaster 

============ 

9832,7624,3793,Burnmaster

The output shows the same object three times. The first one
demonstrates the default: If you provide no manipulators, you get a full
listing. This need is handled in the overloaded operator <<() for
printing a Microwave object:

bool full = true; 

Microwave::FlagMap::iterator iter = 

  Microwave::Flags.find(&out); 

  

if (iter != Microwave::Flags.end()) { 

  full = iter->second; 

}



Remember that iterator is really a pointer to the map entry. The code
calls find() to determine whether the item is inside the map entry. If it’s
not, find returns Flags.end(). And if the code doesn’t return
Flags.end(), that means it found the item in the map. So in that case, the
code uses iter->second to obtain the value.

But notice what happens if the code doesn’t return Flags.end(),
meaning that the stream wasn’t found in the map. Then the application
sticks with the default value for full, which is true:

bool full = true;

So you can see that these output lines will function properly:
cout << myoven << endl; 

cout << "============" << endl; 

cout << FullOvenInfo << myoven << endl; 

cout << "============" << endl; 

cout << MinOvenInfo << myoven << endl;

The first line with myoven line uses the default, which is a full listing.
The second line with myoven says to definitely output a full listing, using
the FullOvenInfo() manipulator. The third line with myoven outputs a
minimal listing using the MinOvenInfo() manipulator.
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Chapter 1

Exploring the Standard Library Further
IN THIS CHAPTER

 Working with container functions
 Performing random access with iterator functions
 Working with algorithms and utilities
 Creating random numbers with functions
 Creating temporary buffers with allocators

The Standard Library is one of the most important parts of the C++ developer’s toolkit because
it contains a host of interesting functions that let you write great applications. The Standard
Library originally started as the Standard Template Library (STL), and a number of companies,
including Silicon Graphics, Inc. (SGI) and IBM, distributed it for everyone to use. The
International Standards Organization (ISO) eventually took over STL, made a few minor
changes to it, added some additional features, and renamed it the Standard Library.

 The STL and the Standard Library are two separate entities. As the Standard Library
has grown, it has also become more different from the STL. Consequently, when you
work with C++ today, you likely work with the Standard Library and, to avoid confusion,
shouldn’t refer to it as the STL. In fact, the Standard Library and the STL use different
headers — again, to avoid confusion (you can see a heading listing at
https://en.cppreference.com/w/cpp/header). The site at
https://www.tutorialspoint.com/What-s-the-difference-between-STL-and-

Cplusplus-Standard-Library provides a short discussion of the differences between the
Standard Library and STL that includes additional details.

GETTING A COPY OF THE STANDARD LIBRARY
DOCUMENTATION

The Standard Library is incredibly large, so this book doesn’t document it completely. The Code::Blocks product
doesn’t come with a Standard Library reference either. However, to really use the Standard Library, you really do
need a copy of the documentation.

You can join ISO for a bazillion bucks and get a copy of its document for free, or you can purchase a copy of it
from https://www.iso.org/standard/68564.html. Note that the price shown is in Swiss Francs, so you need to
consider the exchange rate. As an alternative, you can buy a copy of the Standard Library documentation from an
ISO member, such as the American National Standards Institute (ANSI). Check it out at
https://webstore.ansi.org/ (simply type ISO/IEC 14882:2017 in the search field).

Because many common STL elements and the Standard Library are relatively close, you have a third alternative:
Use an STL resource. One of the best written and easiest–to-use resources is from SGI at

https://en.cppreference.com/w/cpp/header
https://www.tutorialspoint.com/What-s-the-difference-between-STL-and-Cplusplus-Standard-Library
https://www.iso.org/standard/68564.html
https://webstore.ansi.org/


http://www.martinbroadhurst.com/sgi-stl-documentation.html. The downside to using the STL documentation is
that it doesn’t contain information about newer features found only in the Standard Library.

In addition to the resources mentioned so far, you’ll want to check out Bjarne Stroustrup’s website at
http://www.stroustrup.com/#standard. Just in case you don’t know, he’s the guy who designed and originally
implemented C++.

This chapter offers an overview of the Standard Library and shows you some examples of how
to use it. However, if you don’t see what you want here, don’t worry; later chapters have
additional examples, and you can always refer to the Standard Library documentation for even
more examples. Before the chapter moves on to any examples, however, you need to know
what the Standard Library contains, so the first section of this chapter gives you a list of
Standard Library function categories.

 You don’t have to type the source code for this chapter manually. In fact, using the
downloadable source is a lot easier. You can find the source for this chapter in the
\CPP_AIO4\BookVII\Chapter01 folder of the downloadable source. See the Introduction
for details on how to find these source files.

Considering the Standard Library Categories
The Standard Library documentation uses a formal approach that you’re going to find difficult
to read and even harder to understand; it must have been put together by lawyers more
interested in the precise meaning of words rather than the usability of the document. This
immense tome (1,300+ pages) requires quite a bit of time to review. Fortunately, you don’t
have to wade through all that legal jargon mixed indiscriminately with computer jargon and the
occasional bit of English. This chapter provides the overview you need to get going quickly.

The best way to begin is to break the Standard Library into smaller pieces. You can categorize
the Standard Library functions in a number of ways. One of the most common approaches is to
use the following categories:

Algorithms Atomic Operations (C++ 11 and
above) C Compatibility

Concepts (C++ 20 and above) Containers Coroutines (C++ 20 and above)

Filesystem (C++ 17 and above) Input/Output Iterators

Localization Numerics Ranges (C++ 20 and above)

Regular Expressions (C++ 11 and
above) Strings Thread Support (C++ 11 and

above)

Utilities

Note that this table doesn’t include the Standard Library Extensions, additions that add
specialized (non-general) functionality, which appear at
https://en.cppreference.com/w/cpp/experimental/lib_extensions_2. The following
sections provide a brief description of each of these categories and tell what you can expect to

http://www.martinbroadhurst.com/sgi-stl-documentation.html
http://www.stroustrup.com/
https://en.cppreference.com/w/cpp/experimental/lib_extensions_2


find in them. Knowing the category can help you locate the function you need quickly on
websites that use these relatively standard category names.

Algorithms
Algorithms perform data manipulations such as replacing, locating, or sorting information.
You’ve already seen some algorithms used in the book because it’s hard to create a substantial
application without using one. There aren’t any types in the Algorithms category. The
following is a list of common algorithm functions (functions removed since C++ 11 and above
don’t appear in the list even if you can use them in an older version of C++):

adjacent_find all_of (C++ 11 and above) any_of (C++ 11 and above)

binary_search clamp (C++ 17 and above) copy

copy_backward copy_if (C++ 11 and above) copy_n (Updated C++ 11)

count count_if equal

equal_range fill fill_n

find find_end find_first_of

find_if find_if_not (C++ 11 and above) for_each

for_each_n (C++17 and above) generate generate_n

includes inplace_merge is_heap (Updated C++ 11)

is_heap_until (C++ 11 and
above)

is_partitioned (C++ 11 and above) is_permutation (C++ 11 and
above)

is_sorted (Updated C++ 11) is_sorted_until (C++ 11 and above) iter_swap

lexicographical_compare
lexicographical_compare_three_way (C++ 20
and above)

lower_bound

make_heap max max_element

merge min min_element

minmax (C++ 11 and above) minmax_element (C++ 11 and above) mismatch

move (C++ 11 and above) move_backward (C++ 11 and above) next_permutation

none_of (C++ 11 and above) nth_element partial_sort

partial_sort_copy partition
partition_copy (C++ 11 and
above)

partition_point (C++ 11 and
above)

pop_heap prev_permutation

push_heap remove remove_copy

remove_copy_if remove_if replace

replace_copy replace_copy_if replace_if

reverse reverse_copy rotate

rotate_copy sample (C++ 17 and above) search

search_n set_difference set_intersection

set_symmetric_difference set_union shift_left (C++ 20 and



above)

shift_right (C++ 20 and
above)

shuffle (C++11 and above) sort

sort_heap stable_partition stable_sort

swap swap_ranges transform

unique unique_copy upper_bound

In addition to the <algorithm> header entries found in the previous table, C++ 17 and above
users have access to the <execution> header entries in the table that follows. This functionality
is still part of the Algorithms category but appears in a different header. An execution policy
determines whether your code executes in sequence (the normal approach) or in parallel.
Executing code in parallel, whenever possible, makes your application run significantly faster.

is_execution_policy parallel_policy parallel_unsequenced_policy

sequenced_policy unsequenced_policy (C++ 20 and above)

Atomic operations
An atomic operation is a code block that executes as a single concurrent entity without the use
of locking mechanisms. There are several benefits to using atomic operations:

Because the atomic operation is indivisible, it’s free of data races where:
Two or more threads in a single process access the same memory location
concurrently
At least one of the thread accesses is for writing
The threads don’t use any exclusive locks to control their accesses to that memory

which results in nondeterministic behavior. The changes made by the threads vary run-by-
run.
Application development is significantly easier because you don’t have to manage locks.
There is a smaller risk of data-related errors.

You must have C++ 11 or above to use this feature. The following table contains the Atomic
Operations category functions.

atomic_compare_exchange_strong atomic_compare_exchange_strong_explicit atomic_compare_exchange_weak

atomic_compare_exchange_weak_explicit atomic_exchange atomic_exchange_explicit

atomic_fetch_add atomic_fetch_add_explicit atomic_fetch_and

atomic_fetch_and_explicit atomic_fetch_or atomic_fetch_or_explicit

atomic_fetch_sub atomic_fetch_sub_explicit atomic_fetch_xor

atomic_fetch_xor_explicit atomic_flag_clear atomic_flag_clear_explicit

atomic_flag_notify_all (C++ 20 and
above)

atomic_flag_notify_one (C++ 20 and
above)

atomic_flag_test (C++ 20
and above)



atomic_flag_test_and_set atomic_flag_test_and_set_explicit atomic_flag_test_explicit

(C++ 20 and above)

atomic_flag_wait (C++ 20 and above) atomic_flag_wait_explicit (C++ 20 and
above)

atomic_init (Deprecated in
C++ 20)

atomic_is_lock_free atomic_load atomic_load_explicit

atomic_notify_all (C++ 20 and above) atomic_notify_one (C++ 20 and above) atomic_signal_fence

atomic_store atomic_store_explicit atomic_thread_fence

atomic_wait (C++ 20 and above) atomic_wait_explicit (C++ 20 and
above)

kill_dependency

C Compatibility
A C compatibility header provides you with access to functionality that came with the original
C language. For example, you find special math functions like pow() (raises a number to the
given power) in the <math.h> header.

 All the C compatibility headers are deprecated at this point, which means you can still
use them, but not for long. You should instead use the Utilities category equivalents. For
example, the <ctime> header replaces the <time.h> header (note that the <ctime> header
lacks the .h file extension).

Concepts
C++ 20 adds the capability to provide predicates that express a generic algorithm’s
expectations through concepts. You use a concept to formally document the constraints on a
template to enforce certain behaviors. In addition, because the compiler knows the constraints
at the outset, it can usually compile your application faster. The article at
https://isocpp.org/blog/2016/02/a-bit-of-background-for-concepts-and-cpp17-

bjarne-stroustrup provides more details about the potential for concepts. You could also
read the fuller discussion at https://www.stroustrup.com/good_concepts.pdf. The
following table provides a listing of Concepts category functions.

assignable_from common_reference_with common_with

constructible_from convertible_to copy_constructible

copyable default_initializable derived_from

destructible equality_comparable equality_comparable_with

equivalence_relation floating_point integral

invocable movable move_constructible

predicate regular regular_invocable

relation same_as semiregular

signed_integral strict_weak_order swappable

swappable_with totally_ordered totally_ordered_with

https://isocpp.org/blog/2016/02/a-bit-of-background-for-concepts-and-cpp17-bjarne-stroustrup
https://www.stroustrup.com/good_concepts.pdf


unsigned_integral

Containers
Containers work just like the containers in your home — they hold something. You’ve already
seen containers at work in other areas of this book. For example, both queues and deques are
kinds of containers. The Containers category doesn’t contain any functions, but it does contain
a number of types including those in the following table (types are removed because C++ 11
and above don’t appear in the list even if you can use them in an older version of C++).

array (C++ 11 and above) deque forward_list (C++ 11 and above)

list map queue

set span (C++ 20 and above) stack

unordered_map (C++ 11 and above) unordered_set (C++ 11 and above) vector

Coroutines
A coroutine is a new feature in C++ 20 that allows a function to suspend execution and resume
its task later. The function stores the data needed to allow task resumption separately, rather
than on the stack. This feature helps support sequential code that executes asynchronously,
such as nonblocking I/O, without requiring use of callbacks. You can find an example of a
coroutine at https://blog.panicsoftware.com/your-first-coroutine/. The following
table contains the Coroutines category classes.

coroutine_handle coroutine_traits noop_coroutine_handle

noop_coroutine_promise std::hash<std::coroutine_handle> suspend_always

suspend_never

Filesystem
Before C++ 17, C++ lacked the ability to perform some basic file system tasks, such as
determining the existence of a path. The Filesystem category provides functionality needed to
work with file systems on a local system. You can see an example of the <filesystem> header
in use in the “Using the filesystem Library” sidebar in Book 6, Chapter 4. The article at
https://www.codingame.com/playgrounds/5659/c17-filesystem provides additional
examples. The following table lists the Filesystem category classes.

copy_options directory_entry directory_iterator

directory_options file_status file_time_type

file_type filesystem:error path

perm:options perms recursive_directory_iterator

space_info

Input/Output

https://blog.panicsoftware.com/your-first-coroutine/
https://www.codingame.com/playgrounds/5659/c17-filesystem


The Input/Output category is an old friend in this book because you see it used in every
example. Not every heading in this category appears in the book, but most do in some form.
The following table provides a listing of the Input/Output category headers, which make it
possible to access various forms of I/O.

cstdio fstream iomanip

ios iosfwd iostream

istream ostream sstream

streambuf strstream (Deprecated in C++ 98) syncstream (C++ 20 and above)

Iterators
Iterators enumerate something. When you create a list of items and then go through that list
checking items off, you’re enumerating the list. Using iterators helps you create lists of items
and manipulate them in specific ways. The kind of iterator you create is important because
some iterators let you go forward only, some can go in either direction, and some can choose
items at random. Each kind of iterator has its specific purpose.

The Iterators category includes a number of classes. These classes determine the kind of
iterator you create in your code and the capabilities of that iterator. The following is a list of
the iterator classes (classes removed since C++ 11 and above don’t appear in the list even if
you can use them in an older version of C++):

back_insert_iterator
bidirectional_iterator (handled as concept in
C++ 20 and above)

bidirectional_iterator_tag

common_iterator (C++ 20 and
above)

contiguous_iterator_tag (C++ 20 and above) counted_iterator (C++ 20
and above)

default_sentinel (C++ 20 and
above)

forward_iterator (handled as concept in C++
20 and above)

forward_iterator_tag

front_insert_iterator incremental_traits (C++ 20 and above) indirect_result_t (C++ 20
and above)

indirectly_readable_traits (C++
20 and above)

input_iterator (handled as concept in C++ 20
and above)

input_iterator_tag

insert_iterator istream:iterator istreambuf_iterator

iter_common_reference_t (C++ 20
and above)

iter_difference_t (C++ 20 and above) iter_move (C++ 20 and
above)

iter_reference_t (C++ 20 and
above)

iter_rvalue_reference_t (C++ 20 and above) iter_swap (C++ 20 and
above)

iter_value_t (C++ 20 and above) iterator (Deprecated C++ 17) iterator_traits

move_iterator (C++ 11 and above) move_sentinel (C++ 20 and above) ostream:iterator

ostreambuf_iterator
output_iterator (handled as concept in C++ 20
and above)

output_iterator_tag

projected (C++ 20 and above) random:access_iterator (handled as concept in
C++ 20 and above)

random:access_iterator_tag

reverse_iterator unreachable_sentinel_t (C++ 20 and above)



Localization
When you write applications for multiple languages, the application needs to know how to
handle these languages correctly. The Localization category classes won’t automatically
convert your text to the other language. You need to perform any needed translation yourself.
However, it does help you perform these tasks:

Character classification
String collation
Numeric, monetary, and date/time formatting and parsing
Message retrieval

 For most applications today, you use the <locale> header. If you have older
applications that rely on the C language localization functionality that used to appear in
local.h, you use <clocale> instead. C++ 11 introduced the <codecvt> header for
converting Unicode character sets. This functionality is deprecated in C++ 17 — use the
codecvt class in the <locale> header instead. The following table shows the <local>
header classes.

codecvt codecvt_base codecvt_byname

collate collate_byname ctype

ctype_base ctype_byname ctype<char>

locale messages messages_base

messages_byname money_base money_get

money_put moneypunct moneypunct_byname

num:get num:put numpunct

numpunct_byname time_base time_get

time_get_byname time_put time_put_byname

wbuffer_convert (Added C++ 11, deprecated
C++ 17)

wstring_convert (Added C++ 11, deprecated
C++ 17)

Numerics
The Numerics category is immense, as you might imagine. It provides access to all sorts of
functions to perform math-related tasks. The most basic of the associated headers is <cmath>,
which contains basic math functionality, such as obtaining the absolute value of a number
using the abs function. The following table lists the Numerics category headers.

Header C++ version Short description

<bit> C++ 20 and above Bit manipulation

<cfenv> C++ 11 and above Floating point environment access



Header C++ version Short description

<cmath> Common math functions

<complex> Complex number operations

<numbers> C++ 20 and above Math constants

<numeric> Operations on values in ranges

<random> C++ 11 and above Random number generation

<ratio> C++ 11 and above Compile-time rational math

<valarray> Interacts with arrays of values

Ranges
Being able to work efficiently with ranges of values is important in reducing the amount of
code you write and ensuring that the code you do write is easy to understand. Most modern
languages provide shortcuts for working with ranges of values, and the C++ 20 standard adds
this functionality to C++.

 Unfortunately, as of this writing, no major compilers or libraries actually implement
this functionality, so you need to download and install the range-v3 library
(https://github.com/ericniebler/range-v3/) to actually use it. This library is the
basis for ranges support in C++ 20. (Using this library is outside the scope of this book;
however, you can find documentation for it at https://ericniebler.github.io/range-
v3/.)

This particular category is designed to work with views, which describe what you want to see
as output. For example, if you want to sort a range in reverse order, you provide a view that
describes this need, such as views::reverse(v), where v is a vector containing the range you
want to interact with. A sort might then look like ranges::sort(views::reverse(v));.

Ranges also work with concepts, described in the “Concepts” section of this chapter. A concept
defines the sort of range you work with. The following table lists range concepts.

bidirectional_range common_range contiguous_range

forward_range input_range output_range

random:access_range range sized_range

view viewable_range

After you have a range, an idea of how you want to see it, and a task in mind, you can use the
various <ranges> header classes to perform work. The following table shows the classes
associated with the standard for this header.

borrowed_iterator_t borrowed_subrange_t dangling

iterator_t range_difference_t range_reference_t

https://github.com/ericniebler/range-v3/
https://ericniebler.github.io/range-v3/


range_rvalue_reference_t range_size_t range_value_t

ref_view sentinel_t subrange

view_interface views::all views::all_t

views::common (common_view) views::counted views::empty (empty_view)

views::filter (filter_view) views::iota (iota_view) views::join (join_view)

views::reverse (reverse_view) views::single (single_view) views::split (split_view)

views::take (take_view) views::transform (transform:view)

You can also customize the manner in which ranges work using customization point objects.
The following table lists these objects found in the std::ranges namespace.

ranges::begin ranges::data ranges::empty

ranges::end ranges::rbegin ranges::rend

ranges::size

Regular Expressions
Regular expression support appears in C++ 11 and above. It helps you look for patterns in
strings. For example, you can ensure that email addresses and telephone numbers are in the
right format before someone enters them into a database, reducing a few data errors in the
process. You can also use regular expressions to perform search-and-replace operations. The
following table contains the Regular Expression category classes.

basic_regex match_results regex_error

regex_iterator regex_token_iterator regex_traits

sub_match

Strings
The Strings category provides a wide range of support for strings in C++. You have seen many
examples of the <string> header, the most commonly used header, in use in this book.
Humans understand strings quite well, but computers handle characters and, therefore, strings
as numbers. To make strings easier to use, you need library support. The following table lists
the String category headers and their purpose.

Header C++ Version Short Description

<cctype> Determines the category of narrow (char) characters.

<charconv> C++ 17 and above Conversion to and from characters.

<cstring> Narrow character string handling functions.

<cuchar> C++ 11 and above C-style Unicode character conversion functions.

<cwchar> Wide and multibyte character string-handling functions.

<cwctype> Determines the category of wide (wchar_t) characters.



Header C++ Version Short Description

<format> C++ 20 and above String formatting functionality.

<string_view> C++ 17 and above Basic string view handling class.

<string> Basic string handling class.

Thread Support
Multithreaded applications allow an application to apparently perform more than one task at a
time. Obviously, the actual simultaneous execution of tasks on a system relies on the number of
processors or cores it contains, but multithreading enables you to share processors in a manner
that lets you perform tasks efficiently. Parallel and threaded execution of tasks falls into a
category of development called concurrency, which isn’t covered in this book, but you can find
a basic article on it at https://isocpp.org/wiki/faq/cpp11-library-concurrency.

Utilities
Utilities are functions and types that perform small service tasks within the Standard Library.
The functions include min(), max(), and the relational operators. The types include
chart_traits (the traits of characters used in other Standard Library features, such as
basic_string) and pair (a pairing of two heterogeneous values). The following table lists the
various essential headers provided as part of the Utilities category, their associated C++
version, and a short description. If no C++ version is supplied, you can use the header in all
current versions of C++.

Header C++
version Short description

<any>
C++ 17 and
above

Provides support for the any class for objects that hold instances of any
CopyConstructible type.

<bitset> Implements constant-length bit arrays.

<chrono>
C++ 11 and
above C++ time utilities.

<compare>
C++ 20 and
above Supports the three-way (spaceship) operator.

<csetjmp> Passes control to a particular execution context.

<csignal> Passes signals (messages) between various application elements.

<cstdarg> Handles variable-length argument lists.

<cstddef> Standard macros and typedefs.

<cstdlib>
General-purpose utilities for program control, dynamic memory allocation,
random numbers, sort, and search.

<ctime> C-style time and date utilities.

<functional>
Provides function objects, function invocations, bind operations, and reference
wrappers.

<initializer_list>
C++ 11 and
above

Provides the means to initialize containers other than array, such as vector, list,
and map.

https://isocpp.org/wiki/faq/cpp11-library-concurrency


Header C++
version Short description

<optional>
C++ 17 and
above A wrapper for a variable that may or may not contain an object.

<source_location>
C++ 20 and
above Identifies the location of source code.

<tuple>
C++ 11 and
above Allows creation of tuples.

<type_traits>
C++ 11 and
above Obtains compile-time type information.

<typeindex>
C++ 11 and
above

Provides a wrapper around a type_info object for use as an index in associative
and unordered associative containers.

<typeinfo> Obtains runtime information.

<utility> Basic utility functions.

<variant>
C++ 17 and
above Provides support for variant type variables.

<version>
C++ 20 and
above Supplies implementation-dependent library information.

Parsing Strings Using a Hash
Hashes are an important security requirement for applications today. A hash creates a unique
numeric equivalent of any string you feed it. Theoretically, you can’t duplicate the number that
the hash creates by using another string. A hash isn’t reversible — it isn’t the same as
encryption and decryption.

A common use for hashes is to send passwords from a client to a server. The client converts the
user’s password into a numeric hash and sends that number to the server. The number varies
daily depending on some formula that both client and server know. The server verifies the
number, not the password. Even if people are listening in, they have no way to ascertain the
password from the number; therefore, they can’t steal the password for use with the target
application. Other examples of hash use are to:

Verify a file’s hash to a previously saved hash value to ensure no one has modified the file.
Compare two files to ensure they’re most likely the same.
Make dictionary searches fast.

Code::Blocks provides excellent support for hashes. However, in order to use it, you must
enable support for C++ 11 extensions using the technique found in the “Working with ranges”
section of Book 1, Chapter 5. After you enable the required support, you can create the
HashingStrings example shown here to demonstrate the use of hashes.

#include <iostream> 

#include <unordered_map> 

  

using namespace std; 

  



int main() { 

  hash<const char*> MyHash; 

  cout << "The hash of \"Hello World\" is:" << endl; 

  cout << MyHash("Hello World") << endl; 

  cout << "while the hash of \"Goodbye Cruel World\" is:" 

    << endl; 

  cout << MyHash("Goodbye Cruel World") << endl; 

  return 0; 

}

The example begins by creating a hash function object, MyHash. You use this function object to
convert input text to a hash value. The function object works just like any other function, so
you might provide the input text as MyHash("Hello World"). Hashes always output precisely
the same value given a particular input. Consequently, you should see the following output
from this example.

The hash of "Hello World" is: 

4952133 

while the hash of "Goodbye Cruel World" is: 

4952192

 Hashes have uses other than security requirements. For example, you can create a
container that relies on a hash to make locating a particular value easier. In this case, you
use a key/value pair in a hash map using unordered_map<>. The HashMap example, shown
next, illustrates how to create a hash map:

#include <iostream> 

#include <unordered_map> 

#include <string.h> 

  

using namespace std; 

  

struct eqstr { 

  bool operator()(const char* s1, const char* s2) const 

  { 

    return strcmp(s1, s2) == 0; 

  } 

}; 

  

int main() { 

  unordered_map<const char*, int, 

    hash<const char*>, eqstr> Colors; 

  Colors["Blue"] = 1; 

  Colors["Green"] = 2; 

  Colors["Teal"] = 3; 

  Colors["Brick"] = 4; 

  Colors["Purple"] = 5; 

  Colors["Brown"] = 6; 

  Colors["LightGray"] = 7; 

  cout << "Brown = " << Colors["Brown"] << endl; 

  cout << "Brick = " << Colors["Brick"] << endl; 

  // This key isn't in the hash map, so it returns a 

  // value of 0. 

  cout << "Red = " << Colors["Red"] << endl; 

}



An unordered (hash) map requires four inputs:

Key type
Data type
Hashing function
Equality key

The first three inputs are straightforward. In this case, the code uses a string as a key type, an
integer value as a data type, and hash<const char*> as the hashing function. You already
know how the hashing function works from the previous example in this section.

The equality key class is a little more complex. You must provide the hash map with a means
of determining equality. In this case, the code compares the input string with the string stored
as the key. The eqstr structure performs the task of comparing the input string to the key. The
structure must return a Boolean value, so the code compares the strcmp function to 0. When
the two are equal, meaning that the strings are equal, eqstr returns true.

 The example goes on to check for three colors, only two of which appear in the hash
map Colors. In the first two cases, you see the expected value. In the third case, you see
0, which indicates that Colors doesn’t contain the desired key. Always reserve 0 as an
error indicator when using a hash map, because the hash map will always return a value,
even if it doesn’t contain the desired key. The output from this example is

Brown = 6 

Brick = 4 

Red = 0

Obtaining Information Using a Random Access
Iterator

Most containers let you perform random access of data they contain. For example, the
RandomAccess example shows that you can create an iterator and then add to or subtract
from the current offset to obtain values within the container that iterator supports:

#include <iostream> 

#include <vector> 

  

using namespace std; 

  

int main() { 

  vector<string> Words; 

  Words.push_back("Blue"); 

  Words.push_back("Green"); 

  Words.push_back("Teal"); 

  Words.push_back("Brick"); 

  Words.push_back("Purple"); 

  Words.push_back("Brown"); 



  Words.push_back("LightGray"); 

  // Define a random iterator. 

  vector<string>::iterator Iter = Words.begin(); 

  // Access random points. 

  Iter += 5; 

  cout << *Iter << endl; 

  Iter -= 2; 

  cout << *Iter << endl; 

  return 0; 

}

In this case, the vector, Words, contains a list of seven items. The code creates an iterator for
Words named Iter. It then adds to or subtracts from the iterator offset and displays the
output onscreen. Here is what you see when you run this example:

Brown 

Brick

Sometimes you need to perform a special task using a random-access iterator. For example,
you might want to create a special function to summate the members of vector or just a range
of members within vector. In this case, you must create a specialized function to perform the
task as follows because the Standard Library doesn’t include any functions to do it for you, as
shown in the RandomAccess2 example:

#include <iostream> 

#include <vector> 

  

using namespace std; 

  

template <class RandomAccessIterator> 

float AddIt(RandomAccessIterator begin, 

            RandomAccessIterator end) { 

  float Sum = 0; 

  RandomAccessIterator Index; 

  // Make sure that the values are in the correct order. 

  if (begin > end) 

  { 

    RandomAccessIterator temp; 

    temp = begin; 

    begin = end; 

    end = temp; 

  } 

  for (Index = begin; Index != end; Index++) 

    Sum += *Index; 

  return Sum; 

} 

  

int main() { 

  vector<float> Numbers; 

  Numbers.push_back(1.0); 

  Numbers.push_back(2.5); 

  Numbers.push_back(3.75); 

  Numbers.push_back(1.26); 

  Numbers.push_back(9.101); 

  Numbers.push_back(11.3); 

  Numbers.push_back(1.52); 

  

  // Sum the individual members. 

  float Sum; 



  Sum = AddIt(Numbers.begin(), Numbers.end()); 

  cout << Sum << endl; 

  Sum = AddIt(Numbers.end(), Numbers.begin()); 

  cout << Sum << endl; 

  

  // Sum a range. 

  vector<float>::iterator Iter = Numbers.begin(); 

  Iter += 5; 

  Sum = AddIt(Iter, Numbers.end()); 

  cout << Sum << endl; 

  return 0; 

}

This example builds on the previous example. You still create a vector, Numbers, and fill it
with data. However, in this case, you create an output variable, Sum, that contains the
summation of the elements contained in Numbers.

AddIt() is a special function that accepts two RandomAccessIterator values as input. These
two inputs represent a range within the vector that you want to manipulate in some way. The
example simply adds them, but you can perform any task you want. The output is a float that
contains the summation.

AddIt() works as you expect. You call it as you would any other function and provide a
beginning point and an end point within vector. The first two calls to AddIt sum the entire
vector, and the third creates an iterator, changes its offset, and then sums a range within
vector. Here is the output from this example:

30.431 

30.431 

12.82

 A random-access iterator can go in either direction. In addition, you can work with
individual members within the container supplied to iterator. As a result, the functions
you create for iterator must be able to work with the inputs in any order. How you
handle this requirement depends on the kind of function you create.

Locating Values Using the Find Algorithm
The Standard Library contains a number of functions to find something you need within a
container. Locating what you need as efficiently as possible is always a good idea. The four
common find() algorithms are

find()

find_end()

find_first_of()

find_if()



The algorithm you use depends on what you want to find and where you expect to find it.
You’ll likely use the plain find() algorithm most often. The FindString example shows how
to locate a particular string within vector. You can use the same approach to locate
something in any container type:

#include <iostream> 

#include <vector> 

#include <algorithm> 

  

using namespace std; 

  

int main() { 

  vector<string> Words; 

  Words.push_back("Blue"); 

  Words.push_back("Green"); 

  Words.push_back("Teal"); 

  Words.push_back("Brick"); 

  Words.push_back("Purple"); 

  Words.push_back("Brown"); 

  Words.push_back("LightGray"); 

  

  vector<string>::iterator Result = 

    find(Words.begin(), Words.end(), "LightGray"); 

  if (Result != Words.end()) 

    cout << *Result << endl; 

  else 

    cout << "Value not found!" << endl; 

  

  Result = find(Words.begin(), Words.end(), "Black"); 

  if (Result != Words.end()) 

    cout << *Result << endl; 

  else 

    cout << "Value not found!" << endl; 

}

The example starts with a vector containing color strings. In both cases, the code attempts to
locate a particular color within vector. The first time the code is successful because LightGray
is one of the colors listed in Words. However, the second attempt is thwarted because Black
isn’t one of the colors in Words. Here’s the output from this example:

LightGray 

Value not found!

 Never assume that the code will find a particular value. Always assume that someone
is going to provide a value that doesn’t exist and then make sure you provide a means of
handling the nonexistent value. In this example, you simply see a message stating that the
value wasn’t found. However, in real-world code, you often must react to situations in
which the value isn’t found by

Indicating an error condition
Adding the value to the container
Substituting a standard value



Defining an alternative action based on invalid input

 You can use the find() algorithm for external and internal requirements. Even though
the example shows how you can locate information in an internal vector, you can also
use find() for external containers, such as disk drives.

Using the Random Number Generator
Random number generators fulfill a number of purposes. Everything from games to
simulations require a random number generator to work properly. Randomness finds its way
into business what-if scenarios as well. In short, you need to add random output to your
application in many situations. Creating a random number isn’t hard. All you need to do is call
a random number function, as shown in the RandomNumberGenerator example:

#include <iostream> 

#include <time.h> 

#include <stdlib.h> 

  

using namespace std; 

  

int main() { 

  // Always set a seed value. 

  srand((unsigned int)time(NULL)); 

  int RandomValue = rand() % 12; 

  cout << "The random month number is: " 

    << RandomValue + 1 << endl; 

  return 0; 

}

 The Standard Library uses pseudorandom number generators: The numbers are
distributed such that you appear to see a random sequence, but given enough time and
patience, eventually the sequence repeats. In fact, if you don’t set a seed value for your
random number generator (or set it to a specific number), you can obtain predictable
sequences of numbers every time. Most people use the time or some other automatically
changing numeric source to set the seed value to make it more unpredictable. Here is
typical output from this example:

The random month number is: 7

 The first line of code in main() sets the seed by using the system time. Using the
system time ensures a certain level of randomness in the starting value — and therefore a
level of randomness for your application as a whole. If you comment out this line of code,
you see the same output every time you run the application.



The example application uses rand() to create the random value. When you take the modulus
of the random number, you obtain an output that is within a specific range — 12 in this case.
The example ends by adding 1 to the random number because there isn’t any month 0 in the
calendar, and then outputs the month number for you.

Working with Temporary Buffers
Temporary buffers are useful for all kinds of tasks. Normally, you use them when you want to
preserve the original data, yet you need to manipulate the data in some way. For example,
creating a sorted version of your data is a perfect use of a temporary buffer. The
TemporaryBuffer example shows how to use a temporary buffer to sort some strings:

#include <iostream> 

#include <vector> 

#include <memory> 

#include <algorithm> 

  

using namespace std; 

  

int main() { 

  vector<string> Words; 

  Words.push_back("Blue"); 

  Words.push_back("Green"); 

  Words.push_back("Teal"); 

  Words.push_back("Brick"); 

  

  int Count = Words.size(); 

  cout << "Words contains: " << Count << " elements." 

    << endl; 

  

  // Create the buffer and copy the data to it. 

  pair<string*, ptrdiff_t> Mem = 

    get_temporary_buffer<string>(Count); 

  uninitialized_copy(Words.begin(), Words.end(), 

                     Mem.first); 

  

  // Perform a sort and display the results. 

  sort(Mem.first, Mem.first+Mem.second); 

  for (int i = 0; i < Mem.second; i++) 

      cout << Mem.first[i] << endl; 

  

  // Show that the original list is unchanged. 

  cout << "\nShowing Words Hasn't Changed" << endl; 

  for (int i = 0; i < Count; i++) 

    cout << Words[i] << endl; 

  return 0; 

}

The example starts with the now familiar list of color names. It then counts the number of
entries in Words and displays the count onscreen.

At this point, the code creates the temporary buffer using get_temporary_buffer(). The
output is Mem of type pair, with the first value containing a pointer to the string values and the
second value containing the count of data elements. Mem doesn’t contain anything — you have
simply allocated memory for it.



The next task is to copy the data from Words to Mem using uninitialized_copy(). Now that
Mem contains a copy of your data, you can organize it using the sort() function. The final step
is to display the Mem content onscreen. Here is what you’ll see:

Words contains: 4 elements. 

Blue 

Brick 

Green 

Teal 

  

Showing Words Hasn't Changed 

Blue 

Green 

Teal 

Brick
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Chapter 2

Working with User-Defined
Literals (UDLs)

IN THIS CHAPTER
 Considering the needs and uses for UDLs
 Using the UDL features of the Standard Library
 Developing custom UDLs

Previous chapters have discussed literals as a kind of constant. For
example, in the expression X = 5, the number 5 is a literal constant. The
constant X stands in for the value 5 in application code. Using a literal
enables you to create code that states the use of a value clearly, rather
than having code that is filled with mystery values that no one can figure
out. In addition, using literals lets you change constant values in one
place, rather than in each place they’re needed in an application.

Up to this point, you have used every other kind of literal constant in the
various examples except for User-Defined Literals (UDLs). Unlike other
kinds of literal constants, a UDL isn’t defined as part of the C++
compiler — you create UDLs as needed to make your code more
readable and easier to manage. In some cases, UDLs come with the
libraries you use in C++, such as the Standard Library. This chapter does
discuss UDLs that come as part of the Standard Library, but it also looks
at how you’d create your own UDLs as needed.

 UDLs aren’t part of older C++ specifications. In fact, they first
made an appearance in C++ 11. This means that you must configure
Code::Blocks to use the features provided by C++ 11 by using the



technique found in the “Working with ranges” section of Book 1,
Chapter 5. If you don’t perform the configuration for each example
in this chapter, you see error messages telling you that the default
setup doesn’t provide the desired support.

There are also some small, but important, changes for UDLs in C++ 20
that aren’t covered in this chapter because they’re used at a more
detailed level. You can read about these tweaks to UDLs at
https://en.cppreference.com/w/cpp/language/user_literal.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookVII\Chapter02
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Understanding the Need for UDLs
The whole point of literals is to make code more readable and easier to
maintain. However, built-in literals are limited to a few data types,
summarized as follows:

Integer
Floating-point
Character
String
Boolean
Pointer
UDL

Sometimes you need a literal of a type other than these built-in types,
and that’s where UDLs come into play. Unlike variables, the value of a

https://en.cppreference.com/w/cpp/language/user_literal


UDL is always known at compile time. The compiler substitutes
whatever value you define for the UDL with the actual value in the code.
The purpose of the UDL is to make the code easier for the human
developer to read and understand. After that task is completed, the
compiler is free to use the actual value referenced by the UDL in the
compiled code so that the application doesn’t need to convert it during
runtime. Your application therefore runs faster and uses fewer resources
while remaining easy to read.

 Built-in literals are straightforward because they’re based on
core types. A UDL can be as complex as you need it to be to
express a real-world data type. For example, if you’re involved in a
field that uses imaginary numbers, you can create a UDL to fulfill
that need. You can also perform data conversions and other tasks
that would be time consuming to perform in other ways. You can
even create side effects, such as performing some sort of output,
using a UDL.

Prefixes and suffixes
Saving time and effort is part of the reason you use literals. There is a
shorthand way to create literals and ensure that you obtain the correct
constant type. Many of the standard literals provide you with a prefix or
suffix that you can use to tell the compiler how to interpret them.
Precisely how the prefix or suffix is interpreted depends on how you use
it. For example, a suffix of U could mean an unsigned int when used
with an int value, while a prefix of U could mean a char32_t const
pointer when used with a character string. Table 2-1 shows a listing of
the prefixes and suffixes that most compilers support.

TABLE 2-1 Standard Prefixes and Suffixes

Data Type Prefix Suffix Resultant Type

int U or u unsigned int



Data Type Prefix Suffix Resultant Type

int L or l long

int UL, Ul, uL, ul, LU, Lu, lU, or lu unsigned long

int LL or ll long long

int ULL, Ull, uLL, ull, LLU, LLu, llU, or llu unsigned long long

double F or f float

double L or l long double

char L wchar_t

char U char32_t

char U char16_t

String L wchar_t const*

String U char32_t const*

String U char16_t const*

Using the prefixes and suffixes can save you considerable time. The
PrefixesAndSuffixes example in Listing 2-1 demonstrates how you’d
employ them to create variables of various sorts.

LISTING 2-1: Creating Literals Using Prefixes and
Suffixes
#include <iostream> 

#include <typeinfo> 

#include <cxxabi.h> 

  

using namespace std; 

using namespace abi; 

  

char* Demangle(const char* Object) { 

  int Status; 

  char* RealName; 

  RealName = __cxa_demangle(Object, 0, 0, &Status); 

  return RealName; 

} 

  

int main() { 



  auto Int1 = 23; 

  auto Int2 = 23L; 

  auto Int3 = 23U; 

  auto Int4 = 23u; 

  

  auto String1 = "Hello"; 

  auto String2 = L"Hello"; 

  auto String3 = U"Hello"; 

  auto String4 = u"Hello"; 

  

  cout << Int1 << endl 

    << Demangle(typeid(Int1).name()) << endl; 

  cout << Int2 << endl 

    << Demangle(typeid(Int2).name()) << endl; 

  cout << Int3 << endl 

    << Demangle(typeid(Int3).name()) << endl; 

  cout << Int4 << endl 

    << Demangle(typeid(Int4).name()) << endl; 

  

  cout << String1 << endl 

    << Demangle(typeid(String1).name()) << endl; 

  cout << String2 << endl 

    << Demangle(typeid(String2).name()) << endl; 

  cout << String3 << endl 

    << Demangle(typeid(String3).name()) << endl; 

  cout << String4 << endl 

    << Demangle(typeid(String4).name()) << endl; 

  return 0; 

}

 The Demangle() function is GCC specific. Most C++ compilers
mangle (modify the spelling of) keywords and type information to
make an application harder for someone to reverse-assemble
(convert from machine language back into C++ source code). To
determine type information, you use the typeid() function to
create a typeinfo structure. The name() function returns the type
name found in this structure to display it onscreen. However, this
name is mangled, so you must use the Demangle() function to
change it back to its original readable form.



Most of the examples in this chapter rely on the auto keyword to
automatically detect the variable type created by a UDL. This keyword
is an important feature for newer C++ applications that make use of the
new extensions that the language provides. You can read about the auto
keyword in the “Using the auto keyword with lambda expressions”
section of Book 3, Chapter 2. In this case, the code uses the auto
keyword to detect the output of the literal prefix or suffix so that the
variable is automatically the correct type for a situation. When you run
this application, you see the following output:

23 

int 

23 

long 

23 

unsigned int 

23 

unsigned int 

Hello 

char const* 

0x46e02c 

wchar_t const* 

0x46e038 

char32_t const* 

0x46e02c 

char16_t const*

Even though the data is the same in every case, the variables used to
hold the data differ because of the prefix or suffix used to create the
variable. Notice that the same prefix or suffix has different effects
depending on the type of the variable to which it’s applied. In addition,
sometimes the case of the prefix or suffix matters (as in working with a
string).

Differentiating between raw and cooked
There are many ways to define literals. Of course, the kind of
information that a literal affects is the most common method. However,
literals can also be raw or cooked. A raw literal receives input from the
application source and doesn’t interpret it in any way. This means that
the information is interpreted character by character, precisely as the



sender has presented it. Cooked literals interpret the sender’s input and
automatically perform any required conversions to make the data usable
to the recipient.

The easiest way to see this principle in action is through an example.
The RawAndCooked example, shown in Listing 2-2, demonstrates the
technique used to create either raw or cooked string processing.

LISTING 2-2: Using Raw and Cooked String
Processing
#include <iostream> 

  

using namespace std; 

  

int main() { 

  auto Cooked = "(Hello\r\nThere)"; 

  auto Raw = R"(Hello\r\nThere)"; 

  cout << Cooked << endl; 

  cout << Raw << endl; 

}

Most of the time when you see the \r\n combination, you know that the
application will output a carriage return and linefeed combination. This
is the cooked method of processing a string. The string is interpreted and
any escape characters converted into control characters (characters that
are normally regarded as commands, rather than data, such as the
carriage return). However, notice how the Raw string is created. The R in
front of the string tells the compiler to create the variable without
interpreting the content. Here’s the output you see from this example:

(Hello 

There) 

Hello\r\nThere

 Notice that the cooked form does output the parentheses, but the
raw form doesn’t. The parentheses are required as part of the raw
form input. As you might imagine, the cooked form outputs the



\r\n combination as control characters, while the raw form outputs
the actual characters.

Working with the UDLs in the
Standard Library

Even though you can currently create UDLs for the basic types
described in the “Understanding the Need for UDLs” section, earlier in
this chapter, there are many situations in which developers need UDLs
for classes as well. In some cases, these classes are part of the Standard
Library. Rather than have a number of nonstandard implementations of
these UDLs, the standards committee decided to add the UDLs directly
to the Standard Library. You can read the details in the “User-defined
Literals for Standard Library Types” at http://www.open-
std.org/jtc1/sc33/wg21/docs/papers/2013/n3531.pdf. Consistent
and standardized UDLs are now attached to some classes. The following
sections describe the more important classes and show how to use them.

std::basic_string
The std::basic_string class enables you to work with sequences of
char-like objects. The class currently has templates defined for

char

wchar_t

char16_t

char32_t

OBTAINING STANDARD LIBRARY UDL
SUPPORT

Adding UDLs to the Standard Library is a new feature for C++ 14. To actually see this
feature at work, your compiler must support all the C++ 14 additions. Because some of

http://www.open-std.org/jtc1/sc33/wg21/docs/papers/2013/n3531.pdf


these features require time to implement, your C++ compiler may not provide all the
standardized features, even if it purports to provide C++ 14 support.

However, the class could easily be extended for other kinds of
characters. In addition, the templates let you specify character traits and
the method used to store the data in memory. The essential idea behind
the basic_string is to enable you to accommodate a variety of
character types within one character class to simplify coding.

In C++ 14, the Standard Library includes built-in literal support for
basic_string. All you need to do is add the s suffix to a string to create
one. However, it’s important to get an idea of how all this works behind
the scenes. The BasicString example, shown in Listing 2-3,
demonstrates three techniques for creating a basic_string object.

LISTING 2-3: Three Techniques for Creating a
basic_string
#include <iostream> 

#include <typeinfo> 

#include <cxxabi.h> 

  

using namespace std; 

using namespace abi; 

  

string operator"" _s(const char * str, unsigned len) { 

  return string{str, len}; 

} 

  

char* Demangle(const char* Object) { 

  int Status; 

  char* RealName; 

  RealName = __cxa_demangle(Object, 0, 0, &Status); 

  return RealName; 

} 

  

int main() { 

  basic_string<char> StdString = "A standard string."; 

  auto AutoString = "This is an auto string."_s; 

  auto UDLString = "This is a UDL string."s; 

  

  cout << StdString << endl << 



    Demangle(typeid(StdString).name()) << endl; 

  cout << AutoString << endl << 

    Demangle(typeid(AutoString).name()) << endl; 

  cout << UDLString << endl << 

    Demangle(typeid(UDLString).name()) << endl; 

  return 0; 

}

This example performs three essential levels of conversion so that you
can see the progression from one to another. In the first case, you see the
straightforward method for creating a simple basic_string object,
StdString. As you can see, it works just like any other template. The
second case relies on a C++ 11 type operator definition to emulate the
UDL that is included as part of C++ 14. The “Creating Your Own
UDLs” section of this chapter tells you all the details about creating such
an operator. All you really need to know for now is that the operator
makes it possible to use a shortcut when creating basic_string objects.
The third case shows the C++14 version of the same _s definition, but
this one is built right into the Standard Library so you don’t have to do
anything special to use it. In all three cases, you create the same
basic_string object type, but the technique differs each time. When
you run this example, you see the following output:

A standard string. 

std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> 

> 

This is an auto string. 

std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> 

> 

This is a UDL string. 

std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> 

>

 There seems to be some confusion online as to how the raw and
cooked versions of basic_string should work. In looking at the _s
and s operators, the code already provides both raw and cooked



implementations. For example, if you used this code with the _s
operator:

auto RawString = R"(This is a\r\nraw string.)"; 

auto CookedString = "This is a\r\ncooked string."; 

cout << RawString << endl; 

cout << CookedString << endl;

you’d see the following output:
This is a\r\nraw string. 

This is a 

cooked string.

The s operator works in the same manner. So, you can use either raw or
cooked strings with the same operator and receive the appropriate
results.

std::complex
A complex number consists of a real number and an imaginary number
that are paired together. (Just in case you’ve completely forgotten about
complex numbers, you can read about them at
http://www.mathsisfun.com/numbers/complex-numbers.html.) Real-
world uses for complex numbers include:

Electrical engineering
Fluid dynamics
Quantum mechanics
Computer graphics
Dynamic systems

There are other uses for complex numbers, too, but this list should give
you some ideas. In general, if you aren’t involved in any of these
disciplines, you probably won’t ever encounter complex numbers.
However, the Standard Library provides full support for complex
numbers, just in case you do need them.

As with the BasicString example, this example shows the progression
from a standard declaration to the C++ 14 suffix. The ComplexNumber

http://www.mathsisfun.com/numbers/complex-numbers.html


example, shown in Listing 2-4, demonstrates all three stages so that you
can see how both the C++ 14 suffix and the C++ 11 UDL forms work.

LISTING 2-4: Three Techniques for Creating a
complex Number
#include <iostream> 

#include <complex> 

  

using namespace std; 

  

complex<long double> operator"" _i(long double Value) { 

  return complex<double>(0, Value); 

} 

int main() { 

  complex<double> StdComplex(0, 3.14); 

  auto AutoComplex = 3.14_i; 

  auto UDLComplex = 3.14i; 

  auto NonZeroRealPart = 2.01 + 3.14i; 

  

  cout << StdComplex.real() << "\t" 

    << StdComplex.imag() << endl; 

  cout << AutoComplex.real() << "\t" 

    << AutoComplex.imag() << endl; 

  cout << UDLComplex.real() << "\t" 

    << UDLComplex.imag() << endl; 

  cout << NonZeroRealPart.real() << "\t" 

    << NonZeroRealPart.imag() << endl; 

  return 0; 

}

The example declares variables of all three types and assigns values to
them. It also creates a version of a variable with a non-zero real part so
you can see how to perform this task. You provide the real part plus the
imaginary part as two values. It then displays both the real and
imaginary parts of the number. When you run this example, you see the
following output:

0       3.14 

0       3.14 

0       3.14 

2.01    3.14



 You can create three kinds of complex numbers. The following
list shows the suffixes used for each type:

i: double

if: float

il: long double

 The auto UDLComplex = 3.14i; form of declaration generates
an error when you use the -fext-numeric-literals switch with
the GNU GCC Compiler. You see this switch demonstrated in the
“Specifying a precision” section of Book 6 Chapter 2. When
performing tasks such as using hexadecimal notation with an
exponent, you need to use one of the other complex number
declaration types instead.

std::chrono::duration
The chrono::duration class serves to mark the passage of time. It
answers the question of how much time has elapsed between two events.
Developers use it for all sorts of time-related purposes.

 A chrono::duration object relies on a second as the standard
duration between ticks. A tick is a single time duration interval.
Using the standard setup, each tick equals one second. However,
you can use the ratio object to define a new tick duration. For
example, if you define ratio<60>, each tick lasts one minute.
Likewise, defining ratio<1, 5> sets each tick to last one fifth of a
second.



You can also change one interval to another using duration_cast with
either a standard interval, such as chrono::seconds, or any interval
typedef that you want to create. For example, typedef
chrono::duration<double, ratio<1, 5>> fifths; defines an interval
called fifths.

There is a lot more to talk about with the chrono::duration class, but
you now have enough information to work with the Duration example,
shown in Listing 2-5. As with previous examples, this one shows a
progression from defining a variable directly, to using a custom UDL,
and finally the built-in support that C++ 14 provides.

LISTING 2-5: Three Techniques for Creating a
chrono::duration
#include <iostream> 

#include <chrono> 

  

using namespace std; 

  

chrono::duration<unsigned long long> operator"" _m( 

   unsigned long long Value) { 

  return chrono::duration<int, ratio<60>>(Value); 

} 

  

int main() { 

  chrono::duration<int, ratio<60>>StdTime(20); 

  auto AutoTime(20_m); 

  auto UDLTime(20min); 

  

  cout << chrono::duration_cast<chrono::seconds>(StdTime) 

    .count() << endl; 

  cout << chrono::duration_cast<chrono::seconds>(AutoTime) 

    .count() << endl; 

  cout << chrono::duration_cast<chrono::seconds>(UDLTime) 

    .count() << endl; 

  return 0; 

}

The example demonstrates a few features of the chrono::duration
class. However, it focuses again on the progression from defining the
variable by hand to using a shortcut to perform the task. Notice that the



UDL relies on an integer value in this case, rather than a floating-point
type. The value of 20 minutes is converted to seconds for output. As a
result, you see these values when you run the application:

1200 

1200 

1200

 The Standard Library supports a number of suffixes for
chrono::duration when you use C++ 14. The following list shows
the individual suffixes and tells you what they mean:

h: Hours
min: Minutes
s: Seconds
ms: Milliseconds
us: Microseconds
ns: Nanoseconds

Creating Your Own UDLs
The Standard Library, coupled with the built-in features of C++, provide
you with an interesting array of literals. However, the true value of
literals becomes more obvious when you create your own. There are
many different needs you can address using UDLs, but three common
needs are supporting data conversions, making custom types easier to
work with, and obtaining desired side effects without the usual number
of coding problems.



 Although built-in or Standard Library literals come in both
prefix and suffix form, you can create only the suffix form when
defining your own literals. In addition, the suffix must begin with
an underscore. The underscore serves to help prevent conflicts with
existing suffixes and to ensure that other developers know that the
literal is a custom (nonstandard) form.

Developing a conversion UDL
You can encapsulate conversions within a UDL. All you need to do after
you create such a UDL is provide the appropriate suffix when defining
the constant to obtain the result you want. The CustomUDL01 example, in
Listing 2-6, demonstrates a technique for defining a conversion that
changes the radius input to the area of a circle in the constant.

LISTING 2-6: Defining a Data Conversion UDL
#include <iostream> 

  

using namespace std; 

  

constexpr long double operator"" 

  _circ(long double radius) { 

  return radius*radius*3.141592; 

} 

  

int main() { 

  double x = 5.0_circ; 

  cout << "The circle's area is: " << x << endl; 

  return 0; 

}

To create the UDL, the example relies on a constexpr with a return
value of a long double and an input value, radius, of a long double.
The equation for computing the area of a circle is πr2. As you can see,
the example performs the correct computation as part of the constexpr.



 Whenever you create a custom UDL, the compiler forces you to
use the largest type for the conversion. What this means is that you
must use a long double for floating-point literals and unsigned
long long for integer literals. Even if you later choose to use a
smaller type, as is done in this example by declaring x as a double,
the literal itself must employ the largest possible type.

To declare a UDL of the new type, the example creates x, which uses the
_circ suffix. It then outputs the result onscreen. When you run this
example, you see that the correct value has been placed in x, as shown
here:

The circle's area is: 78.5398

Developing a custom type UDL
A lot of the code you encounter relies on custom types that are hard to
follow and understand. Creating a UDL to simplify the code makes
things clearer and reduces the potential for error. The CustomUDL02
example, shown in Listing 2-7, shows a custom type, the operator used
to create the UDL, and how the UDL is used to define a literal.

LISTING 2-7: Creating a UDL for a Custom Type
#include <iostream> 

  

using namespace std; 

  

struct MyType { 

  MyType (double Input):Value(Input){} 

  double Value; 

}; 

  

MyType operator"" _mytype (long double Value) { 

  return MyType(Value); 

} 

  

int main() { 

  auto UDLType = 145.6_mytype; 



  cout << UDLType.Value << endl; 

  return 0; 

}

For this technique to work, you must create a constructor for your type
that accepts the number of inputs required to configure the type. At
minimum, the constructor must accept one type or the input value the
user provides is lost. The custom type need not support the same size
data type as required by the operator, but they must be of the same sort.
For example, you couldn’t transition a long double to an int.

When you run this example, you see an output value of 145.6, which is
the value you input to the custom type. You can handle fairly complex
setups using this approach. The user of your custom type obtains the
capability to create clear code that’s easy to follow and interpret, even
when the underlying types are complex.

Using a custom UDL for side effects
One of the most interesting uses for UDLs is to create side effects (an
operation other than the usual or normal operation, either to make the
application shorter and more efficient or to provide added flexibility).
You want to define a certain kind of operation that takes place as a result
of defining the literal. What you get is still a literal, but a literal that
doesn’t necessarily denote a value that you plan to use later. The
CustomUDL03 example, shown in Listing 2-8, shows one such
nontraditional use.

LISTING 2-8: Using UDLs to Create an Interesting
Side Effect
#include <iostream> 

  

using namespace std; 

  

void operator"" _countdown (unsigned long long Value) { 

  for (int i = Value; i >= 0; i--) 

    cout << i << endl; 

} 

  

int main() { 



  5_countdown; 

  return 0; 

}

Notice that the _countdown operator isn’t attached to something that
you’d normally associate with a value. In fact, it doesn’t return a value at
all. What you get instead is a side effect. When you run this example,
you see this output.

5 

4 

3 

2 

1 

0

What has happened is that the compiler has replaced 5_countdown with
individual cout statements, one for each iteration of the loop. You end
up with six cout statements that output the values between 5 and 0 (in
reverse order). The side effect UDL opens all sorts of interesting
possibilities for creating code that simplifies certain repetitive tasks in a
manner that makes their use obvious.
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Chapter 3

Building Original Templates
IN THIS CHAPTER

 Defining template and template library creation
 Understanding the elements of good template design
 Developing basic math, structure, and class templates
 Using template specialization to your advantage

C++ has been around for many years. Because of its longevity, C++
templates abound. In fact, it may seem that there is a template for every
practical purpose. However, the templates that are available to the
developer community through standardized and third-party resources
usually reflect generalized needs. The individual company you work for
(or you as a developer) may have specialized needs that a generalized
template can’t address.

 Every programming tool in existence offers a certain amount of
flexibility. The reason you see so many generalized tools is that
someone developed them and the community as a whole decided to
adopt them. Never think that you can’t create your own tools. After
all, someone created the generalized tools you work with daily.
Creating a custom tool requires nothing special, just time and
thought on your part.

The trick to creating a customized tool is to think the process through,
just as you would for any application you create. The fact that you’ll use
this customized tool to create multiple applications means that you must
apply a higher standard to its design and the code it contains than you
would for one-time applications. A mistake in a customized tool can



spell errors in every application you create using it, so this code must
work well.

This chapter addresses the thought process behind templates first and
then shows some typical template examples. The examples help
demonstrate ways in which you can use templates to create better
applications that require less code because the templates you create meet
your needs more completely than any generalized template can. After
you see the template examples, you discover the techniques used to
place a number of templates in a library. Finally, you discover how to
use the template library to create applications.

The examples in this chapter discuss significant template creation and
use details. However, they’re designed to work with a broad range of
C++ versions simply because templates are most useful when they
support more than the latest version. However, C++ 17 and 20 do
provide some interesting additional features, such as type deduction (see
the “Understanding the Role of auto” section in Book 3, Chapter 1 for
details) and you can read about them in the article at
https://dzone.com/articles/c-template-story-so-farc11-to-c20.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookVII\Chapter03
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Deciding When to Create a Template
The first step in creating a template is deciding whether your idea will
generate a useful template. Most developers have thousands of creative
thoughts that translate into ideas during their careers; however, only a
few of these ideas are exceptionally useful. By determining whether the
template you want to create is a good idea at the outset, you waste less

https://dzone.com/articles/c-template-story-so-farc11-to-c20


time on bad ideas and have more time to create that truly useful idea.
Before you begin creating a new template, consider the following
questions:

Is there a generic template that is close enough to meet your
needs? A good template idea is unique — it does something more
than perform a useful task; it performs a new kind of useful task.
Template ideas that fail the uniqueness test usually consume many
resources for a small payoff.
Will you use the template more than once? Some template ideas
are so tuned to a particular project that the developer ends up using
them precisely once, which means that the template never provides a
payback on the investment to create it.
Will the template save more time than you use to create it?
Templates can become complex. In fact, some templates are complex
enough that you’d save time by not writing them at all. The reason to
use templates is to save time and effort, so a complex template tends
to require a larger payback period than a simple one.
Is there a third-party template you can buy (or, better yet, obtain
free) that nearly meets your need? Someone else may have already
had your good idea, or something very close to it. Before you invest
time in creating a template, you should spend time researching
online. Obtaining a third-party template that’s close to what you
want is always more time efficient than creating a custom template
on your own.
How generic is the template you want to create? Many good
template ideas are simply too specific, which limits their adaptability
to other situations. You want to create a unique template, but one that
can meet a range of organizational needs.
Is your template concept complete? Developers often envision
only a piece of a template. For example, if you create a math
template, you should actually create a library that contains all the
equations you plan to use with your applications. Designing a



template that contains a single equation is never worthwhile because
other developers will have to finish the work you started.
Do you have the skills to create the template? Not everyone is a
good template designer. A template designer must define a template
that goes beyond the original expectations because someone will
almost certainly use the template in unexpected ways. The best
templates adapt to new situations that the originator never
considered. Consequently, creating a template requires a different
sort of mindset than creating an application.

 A little research at the outset can save significant time, effort,
and replicated development. C++ has been around for a long time
(at least in computer terms), so you can choose from a wealth of
existing code. Always determine in advance whether the template
you want to create is worth the effort and will make life easier for
other developers.

Defining the Elements of a Good
Template

Book 5, Chapter 5 offers some insights into basic template creation
techniques. However, that introductory chapter doesn’t address what
makes for a good template. The template you create has to look
professional and work as expected. The first decision you have to make
is what kind of template to create. You can choose among these three
types:

Function: A function represents the simplest way to create a
template and eases debugging requirements. You can group functions
in libraries to make them easier to access. However, functions often
lack depth, and you can’t coordinate activities between them as
easily as you can between the elements of an object.



Structure: A structure provides the best speed in many cases and
can reduce the amount of system resources required, depending on
how you define the structure. Remember that C++ allocates memory
for the entire structure, but structures also present opportunities for
optimization that you don’t get with a class.
Class: A class provides the greatest flexibility because you can
express the template using all the elements that a class can provide
— methods, properties, and events. You can inherit classes to create
new classes. In short, if you have a complex idea to implement,
classes are the way to do it.

The second decision you have to make is how to weight design factors
when creating the template. C++ offers myriad ways to accomplish any
given task. For example, you have multiple ways to create a function.
However, one method is normally superior to the others simply because
it offers some particular benefit. Consider these requirements when
choosing the kind of template to create:

Security: “Simplicity” often translates into “easier to secure.” In
general, functions are easier to secure than structures, which are
easier to secure than classes. However, you can easily write an
insecure class if you use the wrong approach. Secure templates often
require additional checks that can affect reliability (the template
tends not to allow specific actions when these actions affect security)
and speed (additional code always slows template execution).
Reliability: The options you choose will affect the reliability of the
template you create. A reliable template produces consistent results
for any data type supplied to it. In some cases, ensuring reliability
means adding checks to the template, which increases complexity.
The additional code affects both the security and the speed of the
template.
Speed: Templates save the developer time. However, if the resulting
template produces slow code, you can be sure that users will
complain and the developer will end up rewriting some code to
improve application speed. A fast template is usually small and



performs the task precisely. The additional checks required to ensure
secure and reliable operation always affect speed negatively, so you
must work to achieve a balance.
Usage: Some templates are so difficult to use that it’s hard to
imagine that even the originator uses them. If a developer can’t
determine how to use your template, no one will ever use it, and your
effort is wasted. Consequently, you must design the template such
that it meets security, reliability, and speed goals without becoming
overly difficult to use.
Time: Every time you design a new piece of software, a time
element is involved. It’s essential to decide whether the template will
ultimately save enough development time to offset the development
cost of creating and testing it. A template that you intend to use only
a few times may not be worth the effort.
Maintenance: Someone will have to maintain the code used to
create the template. A good template is one in which the code is
relatively straightforward. Of course, you need to add comments to
the code that explain how the code works — and fully document the
template design. Most templates see some level of redesign during
their lifecycles. They evolve as developers use the template and
discover new ways to incorporate it into applications.

 The best template is the one that seems obvious. Consider the
article about the invention of the safety pin at
https://lemelson.mit.edu/resources/walter-hunt. The safety
pin seems obvious, but someone still had to invent it because no
one else had thought about it. When you create a template and
someone tells you that it seems like an obvious idea, don’t get mad.
Be glad. You’ve joined the ranks of people who thought of
something that fulfills an obvious need, but no one thought about
your idea before you did.

https://lemelson.mit.edu/resources/walter-hunt


The third decision you must make is how inclusive to make the template.
In some cases, you want to create a template that can handle a range of
situations. However, a template can quickly become unwieldy and
difficult to manage. A good template is balanced; it includes the
elements you need, but nothing beyond.

Creating a Basic Math Template
With a math template, you usually need access to a wealth of
calculations but may use only one or two of those calculations at a time.
For example, when calculating your mortgage, you don’t need to know
the amortization calculation. However, you might need the amortization
calculation the next week when thinking about a retirement plan. In
short, the calculations all have a purpose, and you need them all, but you
don’t need them all at the same time. Because of the way you use math
templates, they work best as a series of function templates. The
MathTemplate example, in Listing 3-1, shows how to create the series of
functions.

LISTING 3-1: Defining a Series of Function
Templates
#include <iostream> 

#include <cmath> 

  

using namespace std; 

  

template<typename T> T Area(T height, T length) { 

  return height * length; 

} 

  

const double PI = 4.0*atan(1.0); 

  

template<typename T> T CircleArea(T radius) { 

  double result; 

  result = PI * radius * radius; 

  // This version truncates the value. 

  return (T)result; 

} 

  



template<typename T> T TriangleArea(T base, T height) { 

  double result; 

  result = base * height * 0.5; 

  return (T)result; 

} 

  

int main() { 

  cout << "4 X 4 Areas:" << endl; 

  cout << "Square: " << Area<int>(4, 4) << endl; 

  cout << "Circle: " << CircleArea<int>(2) << endl; 

  cout << "Triangle: " << TriangleArea<int>(4, 4) << endl; 

  cout << "Using a value of pi of: " << PI << endl; 

  return 0; 

}

The calculations could consist of any math calculation. The point of the
example is that using functions makes each of the calculations discrete,
easy to use, and easy to manage. When you run this example, you see
the following output:

4 X 4 Areas: 

Square: 16 

Circle: 12 

Triangle: 8 

Using a value of pi of: 3.14159

Note that CircleArea<int>(2) uses half the value of the other
calculations as input. That’s because you calculate the area of a circle
using the equation π × r2. If you want to see other area and volume
equations, check out the website at
http://www.aquatext.com/calcs/calculat.htm.

 For consistency, you could change the circle equation to read
like this:

radius = radius / 2; 

result = PI * radius * radius;

Dividing the input by 2, essentially changing the diameter to a radius,
means that you could call the equation using the same number as all the
other area calculations: CircleArea<int>(4). Whichever approach you

http://www.aquatext.com/calcs/calculat.htm


choose, you need to document how the template works so that other
developers know how to use it.

You should also note that the circle and triangle calculations perform a
bit of type coercion to ensure that the user gets the expected results back
by modifying the return statement to read return (T)result;. The
type conversions are needed to keep your templates from generating
warning messages. It’s important to note that the approach used in the
example truncates the result when the template returns an int.

 You may see examples online that don’t calculate the value of π.
Instead, these examples use M_PI, which supposedly appears in
<cmath> or <math.h>. You can use either header. However, if you
try to access M_PI, the compiler will complain that it can’t find the
value. This is because most compilers today use strict ANSI
(American National Standards Institute) conventions, and M_PI isn’t
part of that convention. To access M_PI, you must add #undef
__STRICT_ANSI__ before #include <cmath> in your file. Of
course, now you’re also dragging in all the non-ANSI features, so
in most cases, it’s just better to calculate π to keep your code
cleaner.

Building a Structure Template
Structure templates have many interesting uses, such as creating a data
repository that doesn’t depend on a particular type. The
StructureTemplate example, shown in Listing 3-2, shows one such use.

LISTING 3-2: Creating a Template from a Structure
#include <iostream> 

  

using namespace std; 

  

template<typename T> struct Volume { 



  T height; 

  T width; 

  T length; 

  

  Volume() { 

    height = 0; 

    width = 0; 

    length = 0; 

  } 

  

  T getvolume() { 

    return height * width * length; 

  } 

  

  T getvolume(T H, T W, T L) { 

    height = H; 

    width = W; 

    length = L; 

    return height * width * length; 

  } 

}; 

  

int main() { 

  Volume<int> first; 

  cout << "First volume: " << first.getvolume() << endl; 

  first.height = 2; 

  first.width = 3; 

  first.length = 4; 

  cout << "First volume: " << first.getvolume() << endl; 

  

  Volume<double> second; 

  cout << "Second volume: " 

    << second.getvolume(2.1, 3.2, 4.3) << endl; 

  cout << "Height: " << second.height << endl; 

  cout << "Width: " << second.width << endl; 

  cout << "Length: " << second.length << endl; 

  return 0; 

}

In this case, the structure contains height, width, and length data values
that the code can use to determine volume. The structure includes a
constructor to initialize the values, so even if someone calls
getvolume() without initializing the structure, nothing bad will happen.
The structure allows independent access of each of the data values. You
can set or get them as needed.



The getvolume() function is overloaded. You can call it with or without
input values. The code in main() tests the structure thoroughly. Here’s
what you see as output from this example:

First volume: 0 

First volume: 24 

Second volume: 28.896 

Height: 2.1 

Width: 3.2 

Length: 4.3

 You can use structures for another interesting purpose. The C++
standard says you can’t create a typedef template. For example, the
following code produces an error when you try to compile it:

template<typename T> 

typedef map<string, T> MyDef;

When you try to compile this code in Code::Blocks, you see the
following error:

error: template declaration of 'typedef'

However, you can define a typedef within a structure template. The
StructureTemplate2 example code, in Listing 3-3, shows a variation of
the example found in Listing 6-4 of Book 5, Chapter 6.

LISTING 3-3: Using a Structure to Define a typedef
#include <iostream> 

#include <map> 

  

using namespace std; 

  

template<typename T> struct MyDef { 

  typedef map<string, T> Type; 

}; 

  

int main() { 

  MyDef<string>::Type marriages; 

  marriages["Tom"] = "Suzy"; 

  marriages["Harry"] = "Harriet"; 



  cout << marriages["Tom"] << endl; 

  cout << marriages["Harry"] << endl; 

  return 0; 

}

This example overcomes the C++ limitations by placing the typedef
within the struct, MyDef. The same structure can hold any number of
typedef entries.

 Using a typedef in this manner makes it easier to work with
map. All you need to worry about is the value type; the key type is
already defined as string. Except for the marriages declaration,
this example works precisely the same as the example in Book 5,
Chapter 6. It still outputs the following results:

Suzy 

Harriet

Developing a Class Template
Class templates perform the heavy lifting of the template types. You use
a class template to define objects of nearly any size. Classes are larger
and more complex than the other techniques demonstrated in the chapter
so far. In most cases, you use classes to represent complex objects or to
perform tasks ill suited for function or structure templates.

 You normally code classes in a separate file using the name of
the class as the filename. The class definition appears in a header
file, while the code appears in a code file. To make things a bit
easier to understand, this chapter eschews the normal setup and
shows the entire example using a single file.

The example shows a specialized queue implementation. It includes
many of the features of a standard queue and then adds a few features to



meet special development needs. Queues and other containers tend to
contain complex code, but you also need to use them with a variety of
data types, making a class template the perfect implementation. The
ClassTemplate example, shown in Listing 3-4, shows the code for this
example.

LISTING 3-4: Creating a Specialized Queue
#include <iostream> 

#include <vector> 

  

using namespace std; 

  

template<typename T> class MyQueue { 

protected: 

  vector<T> data; 

public: 

  void Add(T const &input); 

  void Remove(); 

  void PrintString(); 

  void PrintInt(); 

  bool IsEmpty(); 

}; 

  

template<typename T> void MyQueue<T>::Add(T const &input){ 

  data.push_back(input); 

} 

  

template<typename T> void MyQueue<T>::Remove() { 

  data.erase(data.begin()); 

} 

  

template<typename T> void MyQueue<T>::PrintString() { 

  vector<string>::iterator PrintIt = data.begin(); 

  while (PrintIt != data.end()) { 

    cout << *PrintIt << endl; 

    PrintIt++; 

  } 

} 

  

template<typename T> void MyQueue<T>::PrintInt() { 

  vector<int>::iterator PrintIt = data.begin(); 

  while (PrintIt != data.end()) { 

    cout << *PrintIt << endl; 

    PrintIt++; 



  } 

} 

  

template<typename T> bool MyQueue<T>::IsEmpty() { 

  return data.begin() == data.end(); 

} 

  

int main() { 

  MyQueue<string> StringQueue; 

  cout << StringQueue.IsEmpty() << endl; 

  StringQueue.Add("Hello"); 

  StringQueue.Add("Goodbye"); 

  cout << "Printing strings: " << endl; 

  StringQueue.PrintString(); 

  cout << StringQueue.IsEmpty() << endl; 

  StringQueue.Remove(); 

  cout << "Printing strings: " << endl; 

  StringQueue.PrintString(); 

  StringQueue.Remove(); 

  cout << StringQueue.IsEmpty() << endl; 

  

  MyQueue<int> IntQueue; 

  IntQueue.Add(1); 

  IntQueue.Add(2); 

  cout << "Printing ints: " << endl; 

  IntQueue.PrintInt(); 

  return 0; 

}

The example starts with the class MyQueue. Note that data is a vector,
not a queue as you might expect. A queue is an adapter — as such, it
doesn’t provide support for many of the features found in containers,
such as vector. One of these features is the use of iterators.

 This example uses an iterator for printing, so it relies on a
vector rather than a queue as a starting point. Whenever you create
your own specialized version of a common construct, make sure
you begin with the right object. Otherwise, you might find the
experience of creating the new class frustrating at a minimum, and
impossible in the worst case.



MyQueue includes the capability to add, remove, and print elements. In
addition, you can check whether a queue is empty or full. You have
already seen the code for these tasks in other parts of the book.

You might wonder about the code used for printing. The example
includes separate methods for printing strings and integers, which might
seem counterintuitive. After all, why not simply declare the iterator as
follows so that it accepts any data type:

vector<T>::iterator PrintIt = data.begin();

The problem is that the iterator requires a specific data type.
Consequently, you must declare it as shown previously in Listing 3-4.
Otherwise you get this unhelpful error message:

error: expected ';' before 'PrintIt'

At some point, you want to test this new class using steps similar to
those found in main(). The test checks whether the queue actually does
detect the empty and filled states, determines how adding and removing
elements works, and checks whether the print routines work. Here is the
output from this example:

1 

Printing strings: 

Hello 

Goodbye 

0 

Printing strings: 

Goodbye 

1 

Printing ints: 

1 

2

Considering Template Specialization
Some templates don’t go together quite as easily as you might expect
because they express a concept that doesn’t translate the same way for
every data type. For example, when you use stringify to turn a data
type into its string representation, the technique differs based on data



type. When using stringify on an int, you might use the following
template (as shown in the StringifyInt example):

#include <iostream> 

#include <sstream> 

  

using namespace std; 

  

template<typename T> 

inline string stringify(const T& input) { 

  ostringstream output; 

  output << input; 

  return output.str(); 

} 

  

int main() { 

  // This call works as expected. 

  cout << stringify<int>(42) << endl; 

  // This call truncates. 

  cout << stringify<double>(45.6789012345) << endl; 

  return 0; 

}

The stringify() function accepts any data type and simply uses an
ostringstream to convert input to a string. This approach works fine
for the first call in main(), which is an int. However, when the code
uses it for a double, the result is truncated, as shown here:

42 

45.6789

 You can fix this problem by adding special handling for a
double. Here is the modified form of the example (as shown in
StringifyDouble) that accommodates a double:

#include <iostream> 

#include <sstream> 

#include <iomanip> 

#include <limits> 

  

using namespace std; 

  



template<typename T> 

inline string stringify(const T& input) { 

  ostringstream output; 

  output << input; 

  return output.str(); 

} 

  

template <> 

inline string stringify<double> (const double& input) { 

  ostringstream output; 

  const int sigdigits = numeric_limits<double>::digits10; 

  output << setprecision(sigdigits) << input; 

  return output.str(); 

} 

  

int main() { 

  cout << stringify<int>(42) << endl; 

  cout << stringify<double>(45.6789012345) << endl; 

  return 0; 

}

When you run this example, you see the expected result because the
double form of the template uses setprecision to modify the
ostringstream value. As a result, you see the following output:

42 

45.6789012345

 As things sit with C++ today, you must create a special template
for each data type that requires it. Theoretically, if C++ ever gets a
typeof() function, you could detect the data type and add a switch
to perform specialized processing within a single template. The
typeid() function demonstrated in the “Prefixes and suffixes”
section in Chapter 2 of this minibook could work as a substitute for
typeof(), but it’s vendor-specific and not implemented in every
version of C++. If you choose to use the typeid() function, make
sure you know which compiler your organization will use to
compile the application code.



 You may have also noticed the inline keyword used for the
template in this example. The inline keyword tells the compiler to
place the code created by the template in line with the code in
which it appears, rather than out of line as a separate function call.
In some cases, such as this stringify() function, the result is code
that executes faster. The compiler is under no obligation to comply
with the inline keyword. In addition, you want template code
placed out of line when it must perform some level of instantiation
or it doesn’t represent critical path code that the application can call
often.

Creating a Template Library
You won’t normally create a template and stick it in your application
project file. The previous examples in this chapter put everything
together for ease of explanation, but in the real world, templates usually
reside in a library. Code::Blocks provides several kinds of library
projects. This chapter looks at the static library — a library that is
added into the application. Templates always reside in static libraries.

 Code::Blocks also supports dynamic link libraries (DLLs) and
shared libraries that more than one application can use at a time.
However, you can’t place template code inside a DLL or shared
library unless you create specific instances of the template because
templates require the preprocessor to work and DLLs are
precompiled code. Working with DLLs and shared libraries is more
complex than working with static libraries, and you won’t normally
need the ability to share the library when creating a console
application. See the “Defining your first project” section of Book 1,
Chapter 3 for details about the various project types that
Code::Blocks supports.



Defining the library project
Creating a library project is only a little different than creating a console
application. The following steps describe how to create a library project:

1. Choose File ⇒ New ⇒ Project.
You see the New From Template dialog box, shown in Figure 3-1.

FIGURE 3-1: Provide a description of your project for Code::Blocks.

2. Highlight the Static Library icon on the Projects tab and then
click Go.
You see the Welcome page of the Static Library wizard.

3. Click Next.
You see a list of project-related information fields, as shown in
Figure 3-2. These questions define project basics, such as the project
name.



FIGURE 3-2: Provide a description of your static library for Code::Blocks.

4. Type a name for your project in the Project Title field.
The example uses MathLibrary as the project title. Notice that the
wizard automatically starts creating an entry for you in the Project
Filename field.

5. Type a location for your project in the Folder to Create Project
In field.

6. (Optional) Type a project filename in the Project Filename field.
7. Click Next.

 You see the compiler settings, shown in Figure 3-3. This
example uses the default compiler settings. However, it’s important
to remember that you can choose a different compiler, modify the



locations of the debug and release versions of the project, and make
other changes as needed. Code::Blocks provides the same level of
customization for libraries as it does for applications.

8. Change any required compiler settings and click Finish.
The wizard creates the application for you. It then displays the
Code::Blocks IDE with the project loaded. This template creates a
main.c file rather than a main.cpp file. Note that the Static Library
project main.c file includes some sample code to get you started.
You could compile this library and test it now.

FIGURE 3-3: Change the compiler settings to meet your project needs.

Configuring the library project
The static library starts with a standard C file. To make this library work
well with templates, you need to delete the C file, add a C++ file, and



add a header file. The following steps describe how to perform this
process:

1. Right-click main.c in the Projects tab of the Management
window and choose Remove File From Project from the context
menu that appears.
Code::Blocks removes the file from the project tree.

2. Choose File ⇒ New ⇒ File.
You see the New from Template dialog box, shown in Figure 3-4.

3. Highlight the C/C++ Header icon and click Go.
You see the Welcome page of the C/C++ Header wizard.

4. Click Next.
The wizard asks you to provide the header configuration information
(see Figure 3-5).

5. In the Filename with Full Path field, type MathLibrary.h, click the
ellipsis (…) button, and then click Save.
Code::Blocks adds the complete project path to the filename you
chose. Notice that Code::Blocks also supplies an entry for the
Header Guard Word field. This word ensures that the header isn’t
added more than once to a project.

6. Click All and then click Finish.
The C/C++ Source wizard adds the file to your project. You’re ready
to begin creating a template library.



FIGURE 3-4: Add new files using the New from Template dialog box.



FIGURE 3-5: Define the header requirements.

Coding the library
At this point, you have what amounts to a blank header file in a static
library project. Your static library could conflict with other libraries, so
it’s important to add a namespace to your code. The example uses
MyNamespace, but normally you’d use something related to you as a
person or your company, such as MyCompanyInc. The MathLibrary
heading, in Listing 3-5, shows what you need to create the library used
for this example.

LISTING 3-5: Creating a Static Library
#ifndef MATHLIBRARY_H_INCLUDED 

#define MATHLIBRARY_H_INCLUDED 

  

#include <iostream> 

#include <cmath> 



  

using namespace std; 

  

namespace MyNamespace { 

  template<typename T> T Area(T height, T length) { 

    return height * length; 

  } 

   

  const double PI = 4.0*atan(1.0); 

   

  template<typename T> T CircleArea(T radius) { 

    double result; 

    result = PI * radius * radius; 

    // This version truncates the value. 

    return (T)result; 

  } 

   

  template<typename T> T TriangleArea(T base, T height) { 

    double result; 

    result = base * height * 0.5; 

    return (T)result; 

  } 

} 

  

#endif // MATHLIBRARY_H_INCLUDED

As you can see, this is a portable form of the math library discussed in
the “Creating a Basic Math Template” section, earlier in this chapter. Of
course, the library form has changes. You have the usual #define
statements and the use of a namespace to encapsulate all the code.
Notice that the namespace comes after all the declarations.

Using Your Template Library
You have a shiny new template library. It’s time to test it. The
MathLibraryTest console application uses MathLibrary to display some
area information. The output is the same as in the “Creating a Basic
Math Template” section, earlier in this chapter. Listing 3-6 shows the test
code used for this example.

LISTING 3-6: Testing the Static Library



#include <iostream> 

#include "..\MathLibrary\MathLibrary.h" 

  

using namespace std; 

using namespace MyNamespace; 

  

int main() { 

  cout << "4 X 4 Areas:" << endl; 

  cout << "Square: " << Area<int>(4, 4) << endl; 

  cout << "Circle: " << CircleArea<int>(2) << endl; 

  cout << "Triangle: " << TriangleArea<int>(4, 4) << endl; 

  cout << "Using a value of pi of: " << PI << endl; 

  return 0; 

}

When you use your own libraries, you need to tell the compiler where to
find them. Because you likely created the example library in the same
folder as the test application, you can use the simple path shown in
Listing 3-6.

Because the library relies on a namespace, you must also include using
namespace MyNamespace; in the example code. Otherwise, you’ll spend
hours trying to figure out why the compiler can’t locate the templates in
your library. You access and use the template library much as you did
before.
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Chapter 4

Investigating Boost
IN THIS CHAPTER

 Considering what Boost can do for you
 Getting, installing, and building Boost
 Working with the various Boost tools
 Integrating and using the Boost documentation
 Creating your first application using Boost

As your skill with C++ improves, you find that you need additional
functionality that doesn’t come with the Standard Library. For example,
the simple act of checking a string for specific character sequences (such
as a telephone number pattern) can prove difficult. You can do it, but
most developers will think that someone else has certainly crossed this
bridge before. The answer to the question of where to find the additional
code you need is third-party libraries. One of the most popular C++
libraries is Boost, which is the topic of this chapter and the next.

Two book chapters can’t serve as a complete reference to an entire
library — especially not a set of libraries the size of Boost. This
particular chapter (Chapter 4) has a set of more limited goals. It
introduces you to Boost and helps you understand why Boost may be
helpful to your development efforts. It also shows you how to obtain and
install Boost, demonstrates some Boost tools, and finally helps you
create your first application using Boost. Chapter 5 picks up where this
chapter leaves off and helps you use Boost to build some interesting
applications. In short, these two chapters combined provide you with an
overview of a library that you should consider spending more time
discovering.



 Libraries are simply repositories of code. Consequently, any
library can help you produce applications faster and with fewer
errors. However, not all libraries are created with the same quality
of code. Many developers use the Boost libraries because they
provide high-quality code — so high quality that some of Boost is
being standardized for inclusion in the Standard Library. The
bottom line is that you must choose the libraries you want with care
and look at both quality and price (when price is an issue).

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookVII\Chapter04
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Considering the Standard Library
Alternative

As a developer, you encounter a vast number of libraries designed to
overcome C++ deficiencies or limitations. Boost is one of the most
popular libraries, but you can find many others. Looking at the list found
at https://en.cppreference.com/w/cpp/links/libs, you soon
discover that you could easily find yourself buried in libraries. Some of
these libraries provide resources for exotic programming needs, and you
should peruse them before creating your own custom library, as
discussed in the previous chapter of this minibook. However, this section
essentially comes down to the question of whether to use the Boost
library or to stick exclusively with the Standard Library, both of which
support general needs.

https://en.cppreference.com/w/cpp/links/libs


Understanding why the Standard Library
contains Boost features
Boost has maintained a high standard for using the latest C++ features
over the years. You can find more than a few articles and discussions
online covering Boost classes that moved to the Standard Library after
testing. Unfortunately, it’s hard (or perhaps impossible) to find a
complete listing. The discussion at
https://stackoverflow.com/questions/8851670/which-boost-

features-overlap-with-c11 is one of the most interesting because it
shows that some Boost features are backported (an act of taking features
from a newer version of a piece of software and adding them to an older
version of the same software) from the Standard Library (rather than the
other way around). Check out the site at
https://caiorss.github.io/C-Cpp-Notes/boost-libraries.html as
well, because it’s more complete than most sources. When thinking
about these moves, C++ 11 uses these Boost features, among many
others:

std::regex

std::tuple

std::function

Threading
Smart pointers

 Each version of C++ with its associated Standard Library comes
with new additions. When you move to C++ 17, you see these
additions from Boost (along with many others):

Vocabulary types: std::variant, std::any, and std::optional

string_view

https://stackoverflow.com/questions/8851670/which-boost-features-overlap-with-c11
https://caiorss.github.io/C-Cpp-Notes/boost-libraries.html


Searchers: Boyer Moore and Boyer Moore Horspool
std::filesystem

Special math functions
Template enhancements

The main point here is that Boost is a proving ground, while the
Standard Library tends to act as a repository for tested functionality. If
your goal is to build stable applications that use tested techniques, Boost
may not be the solution you’re looking for. However, when you need to
implement the latest C++ features, you really need to use Boost.

Defining the trade-offs of using the Standard
Library
As mentioned in the previous section, the Standard Library tends toward
using stable techniques. You therefore don’t necessarily find the best
solution to a problem in the Standard Library if C++ is deficient in an
area at the outset. However, you need to consider the transitional phase
of an application, where it can move from using Boost to the Standard
Library. Consider these sites that provide insights from people who
moved from using Boost to the Standard Library when the Standard
Library received updates from Boost that made it a good solution:

Bitcoin: https://github.com/bitcoin/bitcoin/projects/3

Tronic: https://github.com/performous/performous/issues/39

GoogleCodeExporter: https://github.com/jbeder/yaml-
cpp/issues/264

 In reviewing these sites, you find that the transition wasn’t
necessarily seamless or error free, but it was doable. Fortunately,
you can also find articles about making the move, such as this one

https://github.com/bitcoin/bitcoin/projects/3
https://github.com/performous/performous/issues/39
https://github.com/jbeder/yaml-cpp/issues/264


on std::filesystem for C++ 17 developers:
https://www.bfilipek.com/2019/05/boost-to-stdfs.html.

Many people also feel that Boost provides better productivity over the
Standard Library. To a certain extent, this perception makes sense
because Boost provides access to the latest C++ features in an easily
used form. You don’t have to write new functions to use the latest C++
features; Boost provides them for you. Articles like the one at
http://linuxcursor.com/open-source-gnu/01c-boost-libraries-

can-increase-productivity supply additional reasons for the
productivity boost, which include the use of strict code-writing
guidelines.

You should consider the trade-offs no matter which library you choose to
use. Despite the problems of using older functionality, potentially
introducing errors into your code by transitioning, and a drop in
productivity, the essential reasons to use the Standard Library in place of
Boost are the following:

The Standard Library is part of the compiler, so it’s easy to access
and is guaranteed to work.
The standards committee approves the Standard Library, so you can
be sure that compatibility is stronger.
The concepts and techniques in the Standard Library are time tested,
so you know that what you’re using is less likely to break over time.
Boost developers are part of the Standard Library effort as well, so
you can be sure that they’ve had time to work out kinks in Boost that
won’t appear in the Standard Library.

Understanding Boost
One of the best things about Boost is that the library itself is free. The
Boost website, https://www.boost.org/, makes a point of letting
developers know that they won’t pay anything for using Boost, even in a
commercial setting. In addition, Boost doesn’t have any expenses, so

https://www.bfilipek.com/2019/05/boost-to-stdfs.html
http://linuxcursor.com/open-source-gnu/01c-boost-libraries-can-increase-productivity
https://www.boost.org/


you probably won’t ever need to pay for it. You need to download Boost
1.73 (the version used for this book) from the
https://www.boost.org/users/history/version_1_73_0.html site
before proceeding with the rest of this chapter (you see installation
instructions later in the chapter after the explanation of Boost features).
You should probably read the associated Getting Started guide (the index
page is at
https://www.boost.org/doc/libs/1_73_0/more/getting_started/in

dex.html) so that you know how to perform the installation for your
platform. A number of people and organizations contribute to Boost.
You can check out their pictures at
https://www.boost.org/users/people.html.

 However, don’t get the idea that Boost is completely free. If you
want commercial-level support, you’ll pay for it, just as you would
with any other product. Only the library itself is free. The following
sections describe some of the details of Boost.

Boost features
You might think that Boost couldn’t really be all that complete if you
can get it for free. Actually, Boost includes a significant number of
features — far more features than the average developer will use in
writing typical applications. It’s interesting to note that you probably
have an application on your system that relies on Boost: Adobe Acrobat.
That’s right; major applications do rely on Boost because it’s a feature-
rich application development library. In fact, you can see entire lists of
applications you know and use at
https://www.boost.org/users/uses.html (simply choose one of the
categories, such as Shrink Wrapped Boost, to see the applications in that
category).

The current version of Boost contains in excess of a hundred libraries in
categories that meet an incredible number of needs (new libraries are
added all the time). You can see a list of these libraries at

https://www.boost.org/users/history/version_1_73_0.html
https://www.boost.org/doc/libs/1_73_0/more/getting_started/index.html
https://www.boost.org/users/people.html
https://www.boost.org/users/uses.html


https://www.boost.org/doc/libs/1_73_0/. In some cases, you’ll
need only Boost to meet all your development needs. Because these
libraries meet specific conformity requirements, you never find yourself
calling a function one way with one library and another way when using
a different library.

 In addition to libraries, Boost also provides a number of tools to
make your development experience more enjoyable. Most of this
chapter discusses these specialized tools. Because you get the
source code for all the tools, you can build a version of the tool for
every platform in your organization, which means that every
developer can use the same toolset. Using a common toolset
reduces training time and tends to improve the consistency of
development output.

ENSURE THAT YOUR COMPILER IS
SUPPORTED

Boost constantly adds new libraries and functionality. To provide these new features,
the developers who create Boost have to make some hard decisions. One of the
hardest decisions is whether to continue supporting older compilers (and possibly hold
Boost development back) or to drop support for some compilers in order to make Boost
better.

Boost 1.73.0 is the current version as of this writing, and is the version used for the
examples (using a different version may cause some examples to fail). You can view
compiler support details at
https://www.boost.org/doc/libs/1_73_0/libs/log/doc/html/log/installation.html

that includes caveats, such as the use of compiler optimization in some cases. As a
result, if you’re using this book with an older compiler, the examples in this chapter and
Chapter 5 of this minibook may not work. (In fact, they probably won’t.) If you plan to
use Boost extensively, it pays to subscribe to its RSS feed for additional information.

In addition to the Boost-specific information, please be sure to check for book-specific
information on my blog at http://blog.johnmuellerbooks.com/categories/263/c-all-
in-one-for-dummies.aspx. I’ll provide updates as readers bring issues to my attention. In
addition, my blog is the place to look for information regarding the effect of Boost
updates on book examples and so on. Please be sure to contact me at

https://www.boost.org/doc/libs/1_73_0/
https://www.boost.org/doc/libs/1_73_0/libs/log/doc/html/log/installation.html
http://blog.johnmuellerbooks.com/categories/263/c-all-in-one-for-dummies.aspx


John@JohnMuellerBooks.com with your questions and concerns regarding book
examples.

Licensing
The Boost license is friendly to individual users, consultants, and
organizations. Even if you work in an enterprise environment, you can
use Boost for free. The developers behind Boost are concerned enough
about legal matters that they continue working on the license so that
usage requirements are easy to understand. You can find a copy of the
current license at https://www.boost.org/users/license.html.

 The Boost license and the GNU General Public License (GPL)
differ in some important ways. The most important consideration
for organizations is that the Boost license lets you make changes to
the libraries without having to share these changes with anyone.
You get to keep your source code secret, which is a big plus for
organizations that create commercial applications.

Paid support
When working with Boost, you gain access to the source code and
community support. For some organizations, the lack of a formal support
mechanism is a problem. Fortunately, you can also get paid support from
BoostPro Computing (https://github.com/boostpro). Most
important, BoostPro Computing offers formal training in using Boost,
which means that your organization can get up to speed quickly. You can
find additional companies that provide Boost support at
https://www.boost.org/community/.

Obtaining and Installing Boost for
Code::Blocks

mailto:John@JohnMuellerBooks.com
https://www.boost.org/users/license.html
https://github.com/boostpro
https://www.boost.org/community/


Before you can use Boost, you need to download it. The examples in this
chapter rely on version 1.73.0 of the library, which you can obtain at
https://www.boost.org/users/history/version_1_73_0.html. You
get the entire Boost library in a single 173MB download (when obtained
in .zip format). There are downloads for Windows and Unix (which you
can use for both Mac and Linux development).

The Boost documentation appears at
https://www.boost.org/doc/libs/1_73_0/. You can download the
documentation as a .pdf from
https://sourceforge.net/projects/boost/files/boost-docs/, but
this source is outdated with 1.56.0 as the latest version.

You can download binaries for Windows systems if you want the library
prebuilt from
https://sourceforge.net/projects/boost/files/boost-binaries/.
Unfortunately, the 1.73.0 binaries work only with Microsoft Visual C++.
Code::Blocks developers will need to compile their own version of the
product, which is actually the best way to go for everyone because you
avoid compatibility issues that way.

Unpacking Boost
The first step in gaining access to Boost is to unpack the Boost 1.73.0
library file (boost_1_73_0.zip) that you downloaded earlier. The
unzipped files add up to around 613MB, so it can take a while for the
library to unpack. When working with Code::Blocks, you want to
unpack this library into the \CodeBlocks\boost_1_73_0\ folder for ease
of access. The documentation often refers to the boost_1_73_0\ folder
as the Boost root directory, or $BOOST_ROOT. When you unpack the Zip
file, you see the following folders (some of the folders, such as lib\,
will be empty):

boost\: Contains all the Boost header files.
doc\: Provides a subset of the Boost documentation. If you want
complete documentation, you must either download the separate
Boost Docs file or use the website directly.

https://www.boost.org/users/history/version_1_73_0.html
https://www.boost.org/doc/libs/1_73_0/
https://sourceforge.net/projects/boost/files/boost-docs/
https://sourceforge.net/projects/boost/files/boost-binaries/


lib\: Contains all the Boost precompiled libraries after you build
them. This folder won’t contain any files (or may not even exist)
when you unpack the Boost library.
libs\: Provides a root folder for all the Boost library headers. Here is
a small sampling of a few of them:

libs\accumulators\: Contains a library of incremental
statistical computation functions. In addition, you use this
library for general incremental calculations.
libs\algorithm\: Contains algorithms that build on the string
functionality found in the Standard Library. These algorithms
provide functionality such as trimming, case conversion,
predicates, and find/replace functions. You also find a
min/max library that lets you determine the minimum and
maximum of an expression in a single call (among other
things).
libs\any\: Contains a library that helps you interact with
variables in a manner reminiscent of scripting languages. You
don’t need this capability all the time, but it’s handy when you
want to do things such as convert between an int and string
using a simple lexical_cast.

libs\array\: Provides an extension to basic array
functionality so that you get some of the advantages of using a
vector without the performance hit that using a vector can
introduce.
libs\more libraries: Boost contains more than a hundred
libraries. You’ll want to check them all out.

more\: Holds policy and other important documents. The most
important document at the outset is getting_started.html, which
provides essential information for getting started using Boost. The
index.htm file provides access to basic information about Boost,
such as the licensing policy.



status\: Provides access to a Boost-wide test suite. Generally, you
won’t need the contents of this folder unless you plan to augment the
Boost libraries in some way.
tools\: Contains a wealth of tools you use when working with Boost.
Much of this chapter tells you about these tools. You must build the
tools before you can use them. Each folder contains complete
instructions, but you can also find an example of building the tools
later in this section.

Using the header-only libraries
No matter which platform you work with, the header-only libraries are
ready for use immediately after you unpack Boost. These libraries
appear in the boost_1_73_0\boost\ directory. Each library is contained
in a separate subdirectory, and you access the library through its header
file. Boost 1.73.0 supports 146 different header-only libraries that
address all sorts of issues, such as incremental statistical computation.
(That particular area is covered by the accumulators library, which is
found in the accumulators\ subdirectory.)

 Having access to the library doesn’t mean that you’ll know how
to use it right out of the box, but the Boost folks do make an effort
to supply you with good documentation so that you can discover
how to use Boost. Look in the boost_1_73_0\libs\ directory and
you see another set of subdirectories containing the names of
libraries, such as accumulators\. Each of these subdirectories
contains a minimum of three subdirectories:

doc: The documentation for understanding and using the library.
Access the documentation for an individual library by opening the
index.htm file in its subdirectory. Access the documentation for
Boost as a whole by opening the libraries.htm (or index.html)
file found in the boost_1_73_0\libs\ directory.



example: A somewhat simple application that demonstrates how to
use the library. (The example is designed to show both usage and
functionality, so some complex libraries have larger examples to
demonstrate them.) Some libraries include multiple examples to fully
demonstrate the library’s functionality.
test: A test suite that you can use to ensure that any changes you
make to Boost won’t break the library or cause undesirable side
effects.

Depending on the needs of the library, you may find additional
subdirectories that contain other information or resources, such as tools.
Some of the libraries require additional processing before you can use
them. The next section of the chapter describes the building process so
that you have a complete Boost installation. Make absolutely certain that
you build the libraries before you proceed.

Building the libraries
The Boost library relies on code in headers. Using this approach means
that if you include the header in your code, you already have everything
you need to use the Boost library. However, these few Boost libraries,
including these common libraries, require separate compilation:

Boost.Chrono
Boost.Context
Boost.Filesystem
Boost.GraphParallel
Boost.IOStreams
Boost.Locale
Boost.MPI
Boost.ProgramOptions
Boost.Python (See the Boost.Python build documentation before
building and installing it.)
Boost.Regex



Boost.Serialization
Boost.Signals
Boost.System
Boost.Thread
Boost.Timer
Boost.Wave

 If you have used previous versions of Boost, throw out
everything you know because this latest version uses a completely
different (and much easier) process to build the libraries — and it
works the same on any platform. The process isn’t any faster,
unfortunately, but then again, Boost is a huge library.

The following steps help you build the libraries and create a centralized
store of Boost information for your applications. These steps assume that
you’re using Code::Blocks as your IDE and that you’ve installed it using
the instructions in Book 1, Chapter 1. You may need to modify the steps
if you used some other installation process, rely on a different IDE, or
work with certain 64-bit systems.

1. Open a command prompt or terminal window using the
technique appropriate for your platform.
For example, when working with Windows, you choose Start ⇒ 
Programs ⇒ Accessories ⇒ Command Prompt. (Depending on your
version of Windows, you may need to press the Windows key, type
cmd, press Enter, and then select Command Prompt App from the
list presented.) When working with a Mac, you navigate to the
/Applications/Utilities window and double-lick Terminal. The
method of opening a terminal window in Linux varies with the
distribution you use.

2. Type CD /CodeBlocks/boost_1_73_0 and press Enter.



The command processor takes you to the Boost directory.
3. (Optional) If you haven’t already created a path to the

Code::Blocks compiler at the command line or terminal, create
one.
For example, when working with Windows, type path =
C:\CodeBlocks\MinGW\bin;%path% and press Enter.

4. Type bootstrap gcc and press Enter.
You see a message, Building Boost.Build engine, at the command
prompt or terminal window for a few seconds. After the Boost.Build
Engine is complete, you see additional text telling you how to use
the resulting B2 command.

5. Type b2 and press Enter.
Go get a cup of coffee. The installation process takes between 5 and
20 minutes depending on your system. This command prompt
installs Boost using the default options and in the default directory.
For example, you find Boost installed in the C:\Boost directory on a
Windows system. It appears in the /usr/local/Boost directory on
Mac and most Linux systems. When the process is complete, you
find the new Boost folder complete with header and library files
appropriate for your system.

 Older sites will tell you to build the Boost function using the --
toolset=gcc command-line switch with b2 to perform various
tasks. Using this command-line switch will result in an error with
the newest versions of Boost. Make sure you leave this command
line switch out unless you actually need it. In fact, it’s usually better
to use b2 alone and only add the --toolset command-line switch if
an error occurs.



BOOST INSTALLATION ON CERTAIN 64-
BIT SYSTEMS

You may find that the build process in Step 4 of the procedure in the “Building the
libraries” section fails. Generally, these steps work fine, but if you’re working with certain
64-bit systems, you may find that they fail completely. The main problem could occur
because you’re using the wrong version of Code::Blocks for the book. Choose Help ⇒ 
About and verify that the version number you’re using is 17.12 and that the Information
tab shows Release 12.12 rev. 11256 in the Version field and 1.33.0 in the SDK Version
field. If these values are wrong, you have the wrong version of Code::Blocks installed
and may find that this chapter doesn’t work at all.

If you have a 64-bit system (it says that you have a 64-bit install on the About dialog),
you might still need to use an alternative installation procedure, as described at
https://gist.github.com/zrsmithson/0b72e0cb58d0cb946fc48b5c88511da8. You shouldn’t
have to reinstall your copy of MinGW; simply move down to the Install Boost part of the
page. The Boost settings accessed using Settings ⇒ Compiler (and described in the
“Testing the installation” section of the chapter) will differ, as shown here:

Search Directories: Compiler: \boost\include\boost-1_68

Search Directories: Linker: C:\boost\lib

Toolchain Executables: Compiler’s installation directory: C:\MinGW

Toolchain Executables: C Compiler: g++.exe

Toolchain Executables: C++ Compiler: g++.exe

Toolchain Executables: Linker for Dynamic Libs: g++.exe

Linker Settings: Link Libraries: C:\boost\lib\libboost_regex-mgw81-mt-sd-x64-
1_68.a

Note that this procedure uses Boost 1.68, not Boost 1.73, so you may still experience
problems, but this process could provide an alternative for making the examples in this
chapter work. It’s also important to note that the locations of header files and other
application development necessities will differ from those in this chapter for your
installation.

Testing the installation
At this point, you have the unpacked Boost files as a subdirectory under
your Code::Blocks installation and a set of built libraries in the Boost
directory (wherever it might appear on your system). You may initially
think that you can get rid of one or the other set of files, but this isn’t the

https://gist.github.com/zrsmithson/0b72e0cb58d0cb946fc48b5c88511da8


case. The files you unpacked include documentation and example code
that isn’t part of the built libraries. The following steps help you test
your installation by building the Boost.Timer library, which relies on
both sets of files, so having both sets in place is important. (You can
modify these instructions to build other libraries as well.)

1. Locate the
C:\CodeBlocks\boost_1_73_0\libs\regex\example\timer folder
on your system.

2. Double-click the regex_timer.cpp file.
Code::Blocks automatically opens the file for you. If you attempt to
compile the file at this point, Code::Blocks displays a considerable
number of errors. The errors aren’t due to problems with the code,
but with issues in the configuration. You need to configure
Code::Blocks to work with this example.

3. Choose Settings ⇒ Compiler.
You see the Compiler Settings dialog box, shown in Figure 4-1. You
need to perform three configuration tasks to make the example
usable:

Tell Code::Blocks where to find the Boost include (header)
files.
Tell Code::Blocks where to find the Boost library files.
Configure Code::Blocks to add the required libraries to the
application.



FIGURE 4-1: Use the Compiler Settings dialog box to configure Code::Blocks to
use Boost.

4. Select the Search Directories tab.
You see three subtabs: Compiler, Linker, and Resource Compiler.

5. Click Add in the Compiler subtab.
You see an Add Directory dialog box like the one shown in Figure 4-
2.

FIGURE 4-2: Add appropriate search directories for Boost header and library files.

6. Type the location of the Boost header files in the Directory field.



As an alternative, you can click the Browse button to use a Browse
for Folder dialog box to find them. The files are normally located in
the C:\CodeBlocks\boost_1_73_0\boost folder.

7. Click OK.
You see the search folder added to the Compiler tab, as shown in
Figure 4-3.

FIGURE 4-3: The Search Directories tab will display any compiler, linker, or
resource compiler search locations.

8. Click Add in the Linker subtab.
You see the Add Directory dialog box (refer to Figure 4-2).

9. Type the location of the Boost library files in the Directory field
and then click OK.
The Boost library files are typically located in the
C:\CodeBlocks\boost_1_73_0\libs directory. After you click OK,
you see the directory added to the Linker tab.



10. Select the Linker Settings tab.
This tab contains two lists — one for link libraries and another for
linker options.

11. Click Add.
Code::Blocks displays the Add Library dialog box, shown in Figure
4-4. This example requires use of the libboost_regex-mgw6-mt-d-
x32-1_73.a library file.

FIGURE 4-4: The example requires the use of a special library.

12. Click the Browse button, locate the library you need to use, and
click Open.
The libboost_regex-mgw6-mt-d-x32-1_73.a library is normally
found in the
C:\CodeBlocks\boost_1_73_0\bin.v2\libs\regex\build\gcc-

6.2.0\debug\address-model-32\link-static\threading-

multi\visibility-hidden\ directory.

13. Click OK.
You see the library file added to the Link Libraries list, as shown in
Figure 4-5.

14. Click OK.
The Compiler Settings dialog box closes.

15. Build the application by choosing Build ⇒ Build.
The application should build without warnings or errors. If you see
warnings or errors, ensure that you’ve added both header and library
search paths, and the required library file.



FIGURE 4-5: The needed file appears in the Link Libraries list.

At this point, you have a shiny new application to try. This is an example
application that is provided as part of Boost that shows how to work
with regular expressions. (It serves to test the development environment
to ensure that everything works.) Now it’s time to see the application in
action.

1. Click Run.
You see the example start. The example asks you to type an
expression. A simple string works fine.

2. Type Hi when asked to enter an expression and press Enter.
The example asks you to provide a search string.

3. Type Hi there! and press Enter.
You see the results shown in Figure 4-6. The times may be different
because they depend on the processing speed of your system and a



number of other factors.
4. Type quit and press Enter.
5. Type quit (a second time) and press Enter twice.

The application ends. At this point, you know you can create, build,
and use Boost applications on your system. You can close
Code::Blocks without saving anything.

FIGURE 4-6: The example displays the result of the search.

Creating the Boost Tools
It’s always nice when a vendor provides tools for making it easier to
work with a product, and Boost is no exception. You find these tools in
the \boost_1_73_0\tools directory. The sections that follow this one
describe a number of these tools in detail, but here is a quick list of the
tools you get:

Boost.Build: Helps you build applications that use Boost by
automating some of the process from the command line. This
product is actually an add-on for an updated version of Boost.Jam,
which used to appear as a separate product.



Inspect: Determines whether there are any errors in the Boost
directory hierarchy. Errors in the directory hierarchy can cause the
automatic Boost features to work incorrectly.
BoostBook: Provides the developer with a fast and easy method for
accessing the Boost documentation. It relies partially on DocBook
(https://docbook.org/), the eXtensible Stylesheet Language
(XSL), and some Boost functionality. This tool is used by some
Boost libraries.
bcp: Extracts subsets of Boost for use with your application. To
perform this task, bcp also provides a method for determining which
parts of Boost your code relies upon and it also makes it possible to
print reports of Boost usage (including any required licensing
information).
QuickBook: Generates BoostBook XML files. This tool provides a
WikiWiki (wiki) style documentation geared toward C++
documentation requirements. A wiki is a collection of hypertext
documents. Wiki pages are collaborative and allow all users or
registered users to change the content in these collections, which
makes them different from a collection of static hypertext
documents. It relies on simple rules and markup for providing output
formatting.
Wave: Preprocesses your C/C++ application code. You can use it
with any compiler. The main purpose of the Wave preprocessor is to
check the expansion of macros in your code as part of the debugging
process. You can also use it as a preprocessor replacement if you
don’t like how the preprocessor supplied with your compiler works.
AutoIndex: Creates indexes for BoostBook and DocBook
documents.

All these tools come in source code format as part of your Boost
installation. They’re not ready for use when you unpack Boost. Of
course, the lack of executable code makes sense considering the number
of platforms that Boost supports. In order to use the tools, you must first
build them.

https://docbook.org/


The first task is to create a version of Boost.Build for your system. You
use Boost.Build to build all the other tools. The following steps describe
how to build Boost.Build:

1. Open a command prompt or terminal window using the
technique appropriate for your platform.
For example, when working with Windows, you choose Start ⇒ 
Programs ⇒ Accessories ⇒ Command Prompt. When working with a
Mac, you navigate to the /Applications/Utilities window and double-
click Terminal. The method of opening a terminal window in Linux
varies with the distribution you use.

2. Type CD \CodeBlocks\boost_1_73_0\tools\build and press Enter.
This is the Windows version of the command. For other platforms,
you need to change directories to the directory that contains the
Boost 1.73 tools. The command processor takes you to the
Boost.Build directory.

3. (Optional) If you haven’t already created a path to the
CodeBlocks compiler at the command line or terminal, create
one.
For example, when working with Windows, type path =
C:\CodeBlocks\MinGW\bin;%path% and press Enter.

4. Type bootstrap gcc and press Enter.
You see a message, Building the B2 engine (along with a lot of
other text), at the command prompt or terminal window for a few
seconds. When the Boost.Build compilation is complete, you see
additional text telling you how to use the resulting B2 command.

5. Type b2 --prefix=DIR install and press Enter.

 You must replace the placeholder text DIR shown previously
with the location you want to use to install Boost.Build. For
example, if you have a Windows system and want to install



Boost.Build in C:\Boost.Build, you type b2 --prefix=C:\Boost.Build
install and press Enter.

6. Add Boost.Build to the path using the command for your
particular platform.
For example, when working with Windows, type
path=C:\Boost.Build\bin;%path% and press Enter.

Now that you have an application to build the Boost tools, you can build
the tools themselves. A number of the tools come with build directories
or build files in their main directory. In those directories are the
instructions required to create the tools. For example, look in the
\CodeBlocks\boost_1_73_0\tools\auto_index\build directory and
you see a Jamfile.v2 file. This is the file that contains the instructions
for building the AutoIndex tool. Likewise, you find a Jamfile.v2 file in
the \CodeBlocks\boost_1_73_0\tools\bcp folder. (The file is in the
main directory, rather than a build directory in this case.). No matter
where the Jamfile.v2 file is located, you use it to build the associated
tool.

 However, the easiest method to build the tools is to build them
all at one time. A special Jamfile.v2 file is located in the
\CodeBlocks\boost_1_73_0\tools directory. You use it to create
all the tools simultaneously, using the following steps.

1. Open a command prompt or terminal window using the
technique appropriate for your platform.

2. Type CD \CodeBlocks\boost_1_73_0\tools and press Enter.
The command processor takes you to the main tools directory.

3. (Optional) If you haven’t already created a path to the
CodeBlocks compiler at the command line or terminal, create
one.



For example, when working with Windows, type path =
C:\CodeBlocks\MinGW\bin;%path% and press Enter.

4. (Optional) If you haven’t already created a path to Boost.Build
at the command line or terminal, create one.
For example, when working with Windows, type
path=C:\Boost.Build\bin;%path% and press Enter.

5. Type b2 and press Enter.
Be patient; the build process will take several minutes. The
executable files for Inspect (inspect.exe), bcp (bcp.exe), and
QuickBook (quickbook.exe) will automatically appear in the
\CodeBlocks\boost_1_73_0\dist\bin directory on your system
after the build process is complete. BoostBook content appears in the
\CodeBlocks\boost_1_73_0\dist\share\boostbook directory.

Using Boost.Build
Boost.Build is a complex tool that helps you create fully functional
applications that rely on Boost using your compiler, such as GCC.
Boost.Build provides an automated command-line approach to
performing tasks that some developers prefer, especially when
performing repetitive tasks where the IDE simply gets in the way. You
have already used Boost.Build several times in this chapter to build the
Boost libraries, a specific version of Boost.Build for your compiler, as
well as the Boost tools. The following sections provide some helpful
hints and tips for working with Boost.Build.

Getting a successful build
Every time you use the b2 command at the command prompt or terminal
window, you use Boost.Build. A few rules to remember when using
Boost.Build are

Ensure that you have a path set up to your compiler.
Ensure that you have a path set up to Boost.Build.



Use the --prefix option to place the output in a specific directory.

 If you know these rules, you’ll avoid the problems that plague
many developers who are new to Boost.Build. The bbv2.html file
contained in the \CodeBlocks\boost_1_73_0\doc\html directory
contains complete documentation for Boost.Build. This is where
you find a complete list of the Boost.Build properties and options.
In addition, the documentation tells you how to perform various
build types, such as applications and libraries. If you find that the
bbv2.html file link is broken, it’s a known issue that’s documented
at https://github.com/boostorg/website/issues/451. You can
try the online alternative at
https://boostorg.github.io/build/manual/master/index.htm

l instead.

Creating your own example
It’s time to see Boost.Build at work. To do this, you create a folder on
your system where you can place a .cpp file. The example for this
section appears in the Hello folder of the downloadable source as
hello.cpp. The code for this example is really simple. It outputs a
message to the computer screen, as shown here:

#include <iostream> 

  

using namespace std; 

  

int main() 

{ 

    cout << "Hello, I am your computer talking." << endl; 

    return 0; 

}

https://github.com/boostorg/website/issues/451
https://boostorg.github.io/build/manual/master/index.html


 You don’t even need to use Code::Blocks to perform this task.
Any editor that produces plain-text output will work fine. For
example, you could use Notepad to produce the code in Windows.

To use Boost.Build, you also need create a jamfile.v2 file, which is just
another plain-text file that you can create using Notepad or another text
editor. The resource at
https://www.boost.org/doc/libs/1_33_1/doc/html/bbv2/advanced/

jamfiles.html makes things look a bit complex, but for this example, it
comes down to a single line of text:

exe Hello : hello.cpp ;

Notice the space between cpp and ;. You must include this space or the
build process will fail. The error message isn’t very helpful either. It tells
you that you’ve encountered an odd escape character and then the end of
file. All that this file says is to create an executable named Hello from
hello.cpp.

To perform the build, you open a command prompt in the folder you
chose, type b2 --toolset=gcc, and press Enter. The output tells you what
Boost.Build does:

…found 8 targets… 

…updating 5 targets… 

gcc.compile.c++ bin\gcc-6.2.0\debug\hello.o 

gcc.link bin\gcc-6.2.0\debug\Hello.exe 

…updated 5 targets…

The fourth line tells you the location of the file: bin\gcc-6.2.0\debug\.
When you go to this directory, you can type Hello, press Enter, and see
the expected output. You can do a lot more than this section tells you,
but it provides you with a very basic idea of how Boost.Build works.

Using Inspect

https://www.boost.org/doc/libs/1_33_1/doc/html/bbv2/advanced/jamfiles.html


Many organizations want to make changes to the Boost library to ensure
that the library meets their needs or to augment the Boost library to meet
a new requirement. Whenever you change something, there is a chance
that the change will cause compatibility issues because it doesn’t meet
the Boost library guidelines. In addition, a developer might introduce
errors into the Boost library that others will find difficult to fix. The
Inspect utility enables you to scan for potential Boost library errors after
you make a change to it.

Start Inspect from the directory that you want to check. To make this
process more efficient, make sure to set a path to the copy of Inspect that
you built in the “Creating the Boost Tools” section of the chapter using
the method appropriate for your platform. For example, when working
with Windows, you type path =
C:\CodeBlocks\boost_1_73_0\dist\bin;%path% and press Enter.

Inspect looks for errors in the current directory and all subdirectories.
You can try it by checking the library files you find out how to build in
the “Building the libraries” section, earlier in this chapter. These files
usually appear in the \CodeBlocks\boost_1_73_0\boost directory.
Normally, Inspect performs a complete check of the libraries. However,
you can modify Inspect behavior using the following command-line
switches to perform specific tests:

-license

-copyright

-crlf

-end

-link

-path_name

-tab

-ascii

-apple_macro



-assert_macro

-deprecated_macro

-minmax

-unnamed

-version-string version_message

 You can use any number of these command-line switches. If you
forget the Inspect command-line switches, type Inspect -help and
press Enter. Inspect shows you a list of the command-line switches
that you can use for testing.

Inspect also provides a number of command-line switches that affect
how it performs tests. The following list describes these command-line
switches:

–cvs: Performs a check of only the cvs directory and ignores all
other files.
–text: Outputs the results in pure text format. This option is
especially useful when you want to save the results to a text file for
later analysis. Otherwise, Inspect formats the output as HTML.
Figure 4-7 shows a typical report. Click the links to see details about
a particular test, such as the licensed status of each file within a
particular directory.

 Inspect outputs information to the default output device,
which is normally the console (your display). Seeing HTML in text
form on a display isn’t particularly helpful. Most platforms offer
some type of redirection feature so that you can see the output to a
file. For example, on a Windows system, you can type Inspect >



MyReport.html and press Enter to output the results to a file named
MyReport.html.

FIGURE 4-7: Inspect normally outputs its reports as HTML.

–brief: Reduces the amount of output text to the minimum required
to indicate success or failure of the various tests.
-version-string version_message: Reduces the amount of output
text by locating entries with a specific version string (as defined by
version_message). What you’re normally looking for is the version
string provided with the library, such as 1_73_0 for the 1.73.0
version.



 Inspect is sensitive about the ordering of command-line
switches. You must place the -cvs, -text, or -brief command-line
switch first, followed by the test switches; otherwise, Inspect
displays an error message. The website at
https://www.boost.org/doc/libs/1_73_0/tools/inspect/inde

x.html tells you more about working with Inspect.

Understanding BoostBook
The world abounds with documentation formats — everything from
.docx files produced by Word to the seemingly ubiquitous .pdf file. Of
all the documentation formats, the most universal and compatible is the
lowly .txt file. However, .txt files lack formatting (except for control
characters like tab, carriage return, and linefeed), which means that they
limit you solely to words, which may not be enough to describe your
documentation. Because you can choose from so many different file
formats, and formatting code can prove especially difficult, the Boost
library relies on a special document format called BoostBook.

 Documentation seems to be the bane of developers everywhere.
No one seems to want to write the documentation, and the attempts
at documentation often leave readers with more questions than
answers. BoostBook won’t make you a good writer. Although it
does help you produce highly formatted documentation with a
standardized format, it can’t overcome deficiencies in writing skill.
When creating documentation for your project, the best writer in
your group is still the unsurpassed choice for documentation tasks.

If you have installed the Boost library using the instructions in the
“Obtaining and Installing Boost for Code::Blocks” section of this
chapter, you already have access to BoostBook. However, as with some

https://www.boost.org/doc/libs/1_73_0/tools/inspect/index.html


other Boost utilities, you need to know a bit about Python to use this
feature. In addition, you need an Apache server setup and must also
download a number of other utilities. In short, even though BoostBook is
accessible from a Boost library perspective, you still need to do some
work to make this feature useful. The instructions at
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook/gett

ing/started.html describe the additional steps you need to perform.

BoostBook relies on XML to hold the content you want to place in the
document. The use of XML is the reason you must install the DocBook
eXtensible Stylesheet Language (XSL)
(http://docbook.sourceforge.net/) and DocBook Document Type
Definition (DTD) (http://www.oasis-open.org/docbook/xml/4.5/)
support. You can see the XML used for BoostBook at
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook/docu

menting.html. Check the main BoostBook page at
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook.html

for additional information.

If you performed the steps in the “Creating the Boost Tools” section of
the chapter, you already have access to all the functionality needed to
use BoostBook. The files you require appear in the
CodeBlocks\boost_1_73_0\dist\share\boostbook directory of your
system. These files help you perform the required formatting.

 Even if you choose not to use BoostBook for your project, you
do need to create a common documentation format. Using
BoostBook may prove complicated for the Windows developer; the
originators seem to have meant this documentation format more for
Unix and Linux developers. However, it’s still a useful
documentation format, and you should consider it. If you find
BoostBook lacking, you need to create a custom format or suffer
the consequences of a poorly documented application.

https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook/getting/started.html
http://docbook.sourceforge.net/
http://www.oasis-open.org/docbook/xml/4.5/
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook/documenting.html
https://www.boost.org/doc/libs/1_73_0/doc/html/boostbook.html


Using QuickBook
QuickBook is an add-on for BoostBook. This utility started as
someone’s weekend project. Originally, QuickBook outputted simple
HTML documents. However, now it outputs XML in BoostBook format
so that you can quickly generate documentation that links with the rest
of the documentation for your project. As described by the author at
https://www.boost.org/doc/libs/1_73_0/doc/html/quickbook.html

, QuickBook is a WikiWiki-style documentation tool. It’s important to
note that some people simply call it a Wiki
(https://en.wikipedia.org/wiki/Wiki) or Wiki-Wiki or even Wiki
Wiki. All the terms mean the same thing.

Before you use QuickBook, you generate a documentation file. You can
see an example of such a file at
https://www.boost.org/doc/libs/1_73_0/tools/quickbook/doc/qui

ckbook.qbk. For a complete syntax summary for QuickBook, look at
https://www.boost.org/doc/libs/1_73_0/doc/html/quickbook/synt

ax.html.

At this point, you’re probably wondering why you should use
QuickBook at all, because you have to generate a document file for it
anyway. Here are the reasons why many developers use QuickBook
instead of relying on BoostBook directly:

The QuickBook syntax is easier to read and use than writing XML.
You can use QuickBook to generate non-Boost documentation.
It’s relatively easy to convert other documentation formats into
QuickBook syntax.

QuickBook is a command-line utility. You find it in the
\CodeBlocks\boost_1_73_0\dist\bin directory after generating the
Boost tools. (See the “Creating the Boost Tools” section, earlier in this
chapter, for details.) Here are the command-line switches you can access
when working with QuickBook:

https://www.boost.org/doc/libs/1_73_0/doc/html/quickbook.html
https://en.wikipedia.org/wiki/Wiki
https://www.boost.org/doc/libs/1_73_0/tools/quickbook/doc/quickbook.qbk
https://www.boost.org/doc/libs/1_73_0/doc/html/quickbook/syntax.html


--help: Displays a help message showing all the command-line
switches, as well as the command-line syntax.
--version: Displays version information about QuickBook.
--no-pretty-print: Disables XML printing and uses plain text
instead.
--strict: Performs additional checks for issues such as sections that
aren’t closed and square brackets that don’t match any tags or
templates.
--no-self-linked-headers: Generates plain headers, which makes
creating the files easier but also prevents someone from right-
clicking the header and copying a link to it.
--indent arg: Defines the number of spaces to use for indents (as
specified by arg).
--linewidth arg: Defines the number of characters in a single line.
--input-file arg: Specifies the name of the input file.
--output-format arg: Allows the creation of boostbook, html, or
onehtml output. The default is boostbook.
--output-file arg: Specifies the name of the output file.
--output-dir arg: Specifies the output directory path for html files.
--no-output: Allows checking of the documentation syntax without
outputting the boostbook, which saves time during debugging.
--output-deps arg: Specifies the name of the output dependency file.
--ms-errors: Specifies that QuickBook should use the Microsoft
Visual Studio style of errors and warnings in the output message
format. This option can make QuickBook easier for Microsoft Visual
Studio developers to use and understand.
--include-path arg: Adds the selected path to the include path. You
may use this command-line switch multiple times to add multiple
paths.
--define arg: Defines a QuickBook macro. This feature is often used
for conditional compilation.



--image-location arg: Specifies the location of any image elements
in order to read SVG details.

Using bcp
The bcp (Boost copy) utility helps you make Boost more manageable.
You can use it to

Copy one or more Boost modules to another location so that you can
use a subset within an application.
List all the elements within a module.
Create an HTML report about module content that includes:

License information
Files without licensing information
Files without copyright information
Copyright information
Dependency information for individual files

Theoretically, you can also use bcp to scan your application for a listing
of elements needed to run the application. The output report includes all
the information in a standard bcp report for a Boost module. You use one
of four command-line syntaxes to work with bcp, as shown here:

bcp [options] module-list output-path 

bcp --list [options] module-list 

bcp --list-short [options] module-list 

bcp --report [options] module-list html-file

Each of these command-line syntaxes performs a different task: copy,
listing, short listing, and reporting. These command lines can accept a
number of options, as described in the following list:

--boost=path: Defines the path to the Boost library.
--scan: Treats the modules as a non-Boost file for the purpose of
scanning file dependencies. You always use this option with your



own applications.
--cvs: Copies only files under Concurrent Versions System (CVS)
version control.
--unix-lines: Uses Unix-style line endings for the output. You won’t
ever use this command-line switch on a Windows system but may
need it on Unix, Linux, and Macintosh systems.
--namespace=name: Rename the Boost namespace and associated
library names to the value specified by name.
--namespace-alias: Makes the namespace boost an alias of the
namespace set with the --namespace command-line switch.

Using bcp is relatively straightforward. For example, if you want a
listing of files for the regex library, change directories to
\CodeBlocks\boost_1_73_0 and then use the following command line:

bcp --list regex > Out.txt

The bcp utility looks in the \CodeBlocks\boost_1_73_0 directory for
Boost applications. In this case, the output appears in Out.txt. You
should always use file redirection because the output is too large to read
at the command prompt.

Say that you want a report about the regex module instead of a simple
listing. In this case, you use the following command line:

bcp --report regex MyReport.html

Creating a report can take a while. Eventually, you see an HTML report
like the one shown in Figure 4-8. You can discover more about bcp at
https://www.boost.org/doc/libs/1_73_0/tools/bcp/doc/html/inde

x.html.

https://www.boost.org/doc/libs/1_73_0/tools/bcp/doc/html/index.html


FIGURE 4-8: The bcp utility can output some nice-looking reports about Boost modules.

Using Wave
The Wave utility is a preprocessor for the Boost library. Using a
preprocessor can significantly speed the compilation process because a
preprocessor compiles the library portion of the application. After you
compile it the first time, you need not compile the library again.
Theoretically, you can use Wave with any C++ compiler; however, you
probably won’t need it with compilers such as Code::Blocks and
Microsoft Visual Studio because these products include their own
preprocessor. You can find more information about the Wave utility at
https://www.boost.org/doc/libs/1_73_0/libs/wave/doc/wave_driv

er.html.

There is more to the Wave utility than meets the eye, however. The
Wave utility relies on the Wave library. This library ships as part of

https://www.boost.org/doc/libs/1_73_0/libs/wave/doc/wave_driver.html


Boost, and you can use it in your applications as you do any other
library. The website at
https://www.boost.org/doc/libs/1_73_0/libs/wave/index.html

tells you more about the Wave library.

Building Your First Boost
Application Using Date Time

Enough information about licensing, content, and utilities — it’s time to
use the Boost library for something interesting. This section shows a
simple date/time example that you can’t easily build without using
Boost. You also discover some interesting setup requirements that are
good to know when you work with other third-party libraries.

As usual, this example begins with a console application. The example
uses the name FirstBoost. After you create the new console application
project following the steps you’ve used to create all the other console
applications in the book, perform these setup steps:

1. Choose Project ⇒ Build Options and select the Search
Directories tab.
You see the Project Build Options dialog box.

2. Highlight FirstBoost in the left pane. Click Add.
Code::Blocks displays the Add Directory dialog box, shown in
Figure 4-9.

FIGURE 4-9: Select the Boost library directory.

3. Click the Browse button to display the Browse for Folder dialog
box and highlight the \CodeBlocks\boost_1_73_0 folder on your

https://www.boost.org/doc/libs/1_73_0/libs/wave/index.html


hard drive. Click OK.
A dialog box appears asking whether you want to maintain the entry
as a relative path. Relative paths specify a location using the current
location as a starting point. The alternative is an absolute path,
which specifies a location based on the root directory of your hard
drive. In most cases, absolute paths are less likely to get broken.

4. Click No.
Code::Blocks adds the folder you selected to the Add Directory
dialog box.

5. Click OK.
You see the folder for the Boost library, as shown in Figure 4-10.
(Your path could vary from the one shown in the screenshot,
depending on the platform you use and how your copy of Boost was
set up). Make sure you select the correct folder; otherwise, the
compiler won’t be able to find the Boost library or the headers won’t
compile correctly because they point to the wrong location on the
hard drive.

FIGURE 4-10: Make sure you set the environment to use Boost.

6. Click OK.
The application environment is ready to use with the Boost library.



Now that you have the environment configured, you can begin working
with Boost. Listing 4-1 shows a date/time example that displays the
current time and then a modified date/time.

LISTING 4-1: Using Boost to Create a Simple
Date/Time Example
#include <iostream> 

#include "boost/date_time/posix_time/posix_time.hpp" 

  

using namespace std; 

using namespace boost::posix_time; 

using namespace boost::gregorian; 

  

int main() { 

  // Obtain the current date and time. 

  ptime Now = second_clock::local_time(); 

  cout << Now << endl; 

  

  // Get the date and adjust it for tomorrow. 

  date TheDate = Now.date() + days(1); 

  

  // Get the time and adjust for an hour from now. 

  time_duration TheHour = Now.time_of_day() + hours(1); 

  

  // Create a new date/time and output it. 

  ptime NewDateTime = ptime(TheDate, TheHour); 

  cout << NewDateTime << endl; 

  return 0; 

}

As with any other added capability, you must include the proper library
files. Note that Boost headers use an .hpp extension, which makes it
harder to confuse them with some other header type. To define what to
include as the path to your library, simply look at the hierarchy in
Windows Explorer. Locate the .hpp file you want to use and then copy
that information from the Address bar.

 Boost provides namespaces for each of the libraries. In this case,
the ptime and time_duration classes appear in the



boost::posix_time namespace and the date class appears in the
boost::gregorian namespace. If you find that your application
won’t compile, it usually means that you’ve missed a namespace
and need to consider where each of the classes in your application
comes from.

The application code begins by creating a variable, Now, that contains the
current time, which you obtain using the second_clock::local_time()
method. It then displays the current time. The ptime class includes
methods for interacting with every time element: years, months, days,
hours, minutes, seconds, and so on. The example shows a few of the
interactions you can perform. When you run this application, the second
time you see is one day and one hour ahead of the current time.
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Chapter 5

Boosting up a Step
IN THIS CHAPTER

 Using RegEx to parse strings
 Using Tokenizer to break strings into tokens
 Converting numbers to other data types
 Using Foreach to create improved loops
 Using Filesystem to access the operating system

The Boost library is vast. It’s doubtful that a typical developer will ever
use everything that Boost has to offer. Of course, before you can pick
and choose what you want to use, you need to know it exists. Browsing
through the help file can reveal classes that you need to add to your
toolkit to produce good applications. This chapter helps by taking you on
a whirlwind tour of the major Boost categories. Don’t expect this chapter
to discuss everything — Boost is simply too large for that. If you want to
see a list of what Boost has to offer, check out

All classes in alphabetical order:
https://www.boost.org/doc/libs/1_73_0

Categorized list: https://www.boost.org/doc/libs/1_73_0?
view=categorized

 In addition to reviewing the examples in this chapter and
looking through the Help file, it also pays to browse the Boost
directory for examples. For example, if you look at the
\CodeBlocks\boost_1_73_0\libs\regex\example directory, you

https://www.boost.org/doc/libs/1_73_0
https://www.boost.org/doc/libs/1_73_0?view=categorized


find three examples of how to use RegEx, one of which is
demonstrated in the “Testing the installation” section of Book 7,
Chapter 4. Every example directory contains a Jamfile.v2 that you
can use to build the examples using Boost.Build. If you still haven’t
found the example you need, check online for more examples —
Boost is extremely popular. Even Microsoft has gotten into the act
by providing examples at
https://devblogs.microsoft.com/cppblog/using-c-

coroutines-with-boost-c-libraries/,
https://marketplace.visualstudio.com/items?

itemName=AdamWulkiewicz.GraphicalDebugging, and
https://docs.microsoft.com/en-us/visualstudio/test/how-

to-use-boost-test-for-cpp?view=vs-2019.

Before you begin working through the examples in this chapter, make
sure you know how to configure your development environment to use
Boost. The “Testing the installation” and “Building Your First Boost
Application Using Date Time” sections of Book 7, Chapter 4 tell how to
configure Code::Blocks to use Boost. The “Building Your First Boost
Application Using Date Time” section also provides you with a simple
example that gets you started working with Boost.

 You don’t have to type the source code for this chapter manually.
In fact, using the downloadable source is a lot easier. You can find
the source for this chapter in the \CPP_AIO4\BookVII\Chapter05
folder of the downloadable source. See the Introduction for details
on how to find these source files.

Parsing Strings Using RegEx
Regular expressions are an important part of today’s computing
environment. You use them to perform pattern matching, where the
application finds a series of matching characters in a string. For

https://devblogs.microsoft.com/cppblog/using-c-coroutines-with-boost-c-libraries/
https://marketplace.visualstudio.com/items?itemName=AdamWulkiewicz.GraphicalDebugging
https://docs.microsoft.com/en-us/visualstudio/test/how-to-use-boost-test-for-cpp?view=vs-2019


example, if you want the user to enter values from 0 through 9 and
nothing else, you can create a pattern that prevents the user from
entering anything else. Using patterns in the form of regular expressions
serves a number of important purposes:

Ensures that your application receives precisely the right kind of
input
Enforces a particular data input format (such as the way you input a
telephone number)
Reduces security risks (for example, a user can’t input a script in
place of the data you wanted)

 Some developers make the mistake of thinking that a regular
expression can prevent every sort of data input error. However,
regular expressions are only one tool in an arsenal you must build
against errant input. For example, a regular expression can’t
perform range checking. If you want values between 101 and 250, a
regular expression will ensure that the user enters three digits;
however, you must use range checking to prevent the user from
entering a value of 100.

DEFINING THE PATTERN
The RegEx library provides a number of methods for creating a pattern. For example, if
you want the user to input only lowercase letters, you can create a range by using [a-
z]. The example in this chapter shows how to create a simple three-digit numeric input.
However, you can create a pattern for nearly any use. For example, a telephone
number pattern might appear as ([0-9][0-9][0-9])[0-9][0-9][0-9]-[0-9][0-9][0-9]
[0-9], where a telephone number of (555) 555-5555 is acceptable, but a telephone
number of 555-555-5555 isn’t. The RegEx library reference appears at
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/index.html.

This chapter doesn’t provide you with a full explanation of all the patterns you can
create. In fact, there are different flavors of regex patterns, so you want to be sure that
a pattern you see online will actually work with the library that you’re using for your
application. The best place to start discovering the basics of Boost-compatible patterns

https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/index.html


is at
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_regex/syntax.htm

l. It’s important to note that older versions of Boost supported only the Perl syntax;
newer versions support POSIX basic and POSIX extended syntax as well. Boost
provides a wealth of pattern types.

How you use the pattern is just as important as how you create the pattern. For
example, you can use RegEx_match to obtain a precise match. However, if you want to
search only for a value, you use RegEx_search instead. The usage reference appears at
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_regex/ref.html.

Defining the pattern for a regular expression can prove time consuming.
However, after you create the pattern, you can use it every time you
must check for a particular input pattern. The following sections
describe how to work with the RegEx (regular expressions) library.

Adding the RegEx library
Most of the Boost library works just fine by adding headers to your
application code. However, a few components, such as RegEx, require a
library. Before you can use a library, you must build it. The instructions
for performing this task appear in the “Building the libraries” section of
Book 7, Chapter 4. After you build the library, you must add it to your
application.

USING BOOST LIBRARIES ON CERTAIN
64-BIT SYSTEMS

If you performed the Boost installation for your system using the techniques found in
the “Boost Installation on Certain 64-bit Systems” sidebar in Book 7 Chapter 4, then you
may not have any library files to use because they won’t build. However, that means
skipping the instructions in this section. In this case, you can try a header-only example
using the code in the next section of the chapter to see if RegEx will work on your
system. In at least some cases, it will work, but you may lose functionality provided by
the library. When problems occur, you’ll see an error message telling you there is a
configuration (or sometimes other) error and that the Boost RegEx library is missing. The
example in the “Accessing the Operating System Using Filesystem” section won’t run
on a 64-bit system using the alternative configuration.

https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_regex/syntax.html
https://www.boost.org/doc/libs/1_73_0/libs/regex/doc/html/boost_regex/ref.html


Two techniques exist for adding the required headers and libraries to an
application. The first technique is to add it to the compiler settings, as
you do for the “Testing the installation” section of Book 7, Chapter 4.
The second technique is to add the settings to a specific project. You use
the first technique when you work with Boost for a large number of
projects and require access to all libraries. The second technique is best
when you use Boost only for specific projects and require access only to
specific libraries. The following steps show you how to perform the
project-specific setup for any library, not just the RegEx library:

1. Use the Project wizard to create a new project.
Nothing has changed from the beginning of this book; every
application begins with a new project. The next section discusses the
RegEx example, and you can use that project name as a starting point
here.

2. Choose Project ⇒ Build Options.
Code::Blocks displays the Project Build Options dialog box.

3. Select the project name, such as RegEx, in the left pane.
4. Select the Linker Settings tab.

You see a number of linker settings, including a Link Libraries list,
which will be blank.

5. Click Add.
Code::Blocks displays the Add Library dialog box, shown in Figure
5-1.

6. Click the Browse button — the button sporting an opening file
folder.
You see the Choose Library to Link dialog box.

FIGURE 5-1: Select the library you want to add.



7. Using the dialog box, navigate to the library of your choice, such
as libboost_regex-mgw6-mt-x64-1_73.a (the release version of
the library), select the library, and then click OK.
The Boost library files are typically located in the
\CodeBlocks\boost_1_73_0\bin.v2\libs\ directory. When you
click OK, you see a dialog box that asks whether you want to keep
this as a relative path.

 Relative paths specify a location using the current location as
a starting point. The alternative is an absolute path, which specifies a
location based on the root directory of your hard drive. In most
cases, absolute paths are less likely to get broken.

8. Click No.
You see the absolute path for the selected library, such as
libboost_regex-mgw6-mt-x64-1_73.a, added to the File field of
the Add Library dialog box.

9. Click OK.
After you click OK, you see the absolute path for the library added to
the Linker Settings, as shown in Figure 5-2.



FIGURE 5-2: Add the library to the application.

10. Click the Search Directories tab.
You see three subtabs: Compiler, Linker, and Resource Compiler.

11. Click Add in the Compiler subtab.
You see an Add Directory dialog box like the one shown in Figure 5-
3.

FIGURE 5-3: Add appropriate search directories for Boost header and library files.

12. Type the location of the Boost header files in the Directory field.
As an alternative, you can click the Browse button to use a Browse
for Folder dialog box to find them. The files are normally located in
the \CodeBlocks\boost_1_73_0\boost folder.

13. Click OK.
You see the search folder added to the Compiler tab, as shown in
Figure 5-4.



FIGURE 5-4: The search location for any compiler, linker, or resource compiler.

14. Click Add in the Linker subtab.
You see yet another Add Directory dialog box (refer to Figure 5-3).

15. Type the location of the Boost library files in the Directory field
and then click OK.
The Boost library files are typically located in the
\CodeBlocks\boost_1_73_0\bin.v2\libs directory. After you click
OK, you see the directory added to the Linker tab.

16. Click OK.
The selected library is ready for inclusion in your application.

Creating the RegEx code
Using a regular expression is relatively straightforward. All you do is
create the expression and then use it with a function to perform specific
kinds of pattern matches. The function you choose is important because
each function performs the pattern matching differently. The RegEx
example code, shown in Listing 5-1, demonstrates how to create a
regular expression and then use it in two different ways to determine
whether user input is correct.

LISTING 5-1: Performing Matches and Searches
Using RegEx
#include <iostream> 

#include "boost/regex.hpp" 

  

using namespace std; 

using namespace boost; 

  

int main() { 

  char MyNumber[80]; 

  cout << "Type a three-digit number: "; 

  cin >> MyNumber; 

  

  regex Expression("[0-9][0-9][0-9]"); 

  cmatch Matches; 

  



  // Perform a matching check. 

  if (regex_match(MyNumber, Matches, Expression)) { 

    cout << "You typed: " << Matches << endl; 

  } else { 

    cout << "Not a three-digit number!" << endl; 

  } 

  

  // Perform a search check. 

  if (regex_search(MyNumber, Matches, Expression)) { 

    cout << "Found: " << Matches << endl; 

  } else { 

    cout << "No three-digit number found!" << endl; 

  } 

  return 0; 

}

In this case, the code begins by adding the proper header, RegEx.hpp,
and the proper namespace, boost. In many cases, you can get by without
doing much more than performing these two steps in your code. It then
performs three steps:

1. Get some user input. Even though the prompt tells the user to enter a
three-digit number, C++ doesn’t enforce this requirement.

2. Create the regular expression. This example needs a set of three
ranges for numbers: [0-9][0-9][0-9]. Using ranges works well for
a number of tasks, and you use them often when creating a regular
expression.

3. Perform the pattern match. The example uses RegEx_match(), which
performs a precise match, and RegEx_search(), which looks for the
right characters anywhere in the input. Both functions require three
input values: the value you want to check, an output variable of type
cmatch that tells where the match is found, and the regular
expression.

To see how this code works, you must perform a series of three tests.
First, run the application and type 0 as the input. Naturally, typing 0
means that the code will fail and you see this output:

Not a three-digit number! 

No three-digit number found!



Run the application again and type 123 as the input to see
You typed: 123 

Found: 123

So far, there isn’t much difference between the two functions, which is
why you need the third test. Run the application and type ABC123XYZ
as the input to see:

Not a three-digit number! 

Found: 123

This final test shows that the RegEx_search() function finds the three-
digit value in the string. Obviously, the RegEx_search() function is
great when you need to locate information but not good when you need
to secure it. When you need a precise pattern match, use RegEx_match()
instead.

Breaking Strings into Tokens Using
Tokenizer

Humans view strings as a sentence or at least a phrase. Mixtures of
words create meaning that we can see in a moment.

 Computers, on the other hand, understand nothing. A computer
can perform pattern matching and do math, but it can’t understand
Kipling (read more about this fascinating author at
https://www.poetryfoundation.org/poets/rudyard-kipling).
It’s because of this lack of understanding that you must tokenize
text for the computer. A computer can perform comparisons on
individual tokens, usually single words or symbols, and create
output based on those comparisons.

The compiler you use relies on a tokenizer, an application component
that breaks text into tokens, to turn the text you type into machine code
the computer can execute. However, the tokenizer appears in all sorts of

https://www.poetryfoundation.org/poets/rudyard-kipling


applications. For example, when you perform a spelling check on a
document, the word processing application breaks the text into
individual words using a tokenizer, and then compares those words to
words in its internal dictionary.

The Tokens example, shown in Listing 5-2, shows a method for creating
tokens from strings. This basic technique works with any phrase, string,
or series of strings. You’ll normally process the tokens after you finish
creating them.

LISTING 5-2: Creating Tokens from Strings
#include <iostream> 

#include "boost/tokenizer.hpp" 

  

using namespace std; 

using namespace boost; 

  

int main() { 

  string MyString = "This is a test string!"; 

  tokenizer<> Tokens(MyString); 

  

  // Display each token on screen. 

  tokenizer<>::iterator Iterate; 

  for (Iterate = Tokens.begin(); Iterate != Tokens.end(); 

    Iterate++) 

    cout << *Iterate << endl; 

  return 0; 

}

The tokenizer template places the tokenized form of MyString in
Tokens. The application now has a set of tokens with which to work. To
see the tokens, you must iterate through them by creating a
tokenizer<>::iterator, Iterate. The application uses iterator to
output the individual tokens. When you run this application, you see the
following output:

This 

is 

a 

test 

string



 This example shows a basic routine that you can use for just
about any need. However, you might need some of the extended
capabilities of the tokenizer class. Check out the materials at
https://www.boost.org/doc/libs/1_73_0/libs/tokenizer/doc

/index.html for more information about both the tokenizer and
the tokenizer<>::iterator.

Performing Numeric Conversion
Numeric conversion isn’t hard to perform — it’s accurate numeric
conversion that’s hard to perform. Getting the right result as you move
from one type of number to another is essential. Sure, you probably
won’t notice too much if your game score is off by a point or two, but
you’ll definitely notice the missing dollars from your savings account.
Worse yet, when taking a trip into space, a rounding error can definitely
ruin your day as you head off toward the sun rather than Planet Earth.

The Boost library includes the converter template, which makes
converting from one kind of number to another relatively easy. The
converter template includes all kinds of flexibility. The Convert
example, shown in Listing 5-3, presents two different levels of converter
template usage.

WHY NUMERIC CONVERSION IS
NECESSARY

Humans don’t differentiate between one kind of number and another — seeing 1 is
about the same as seeing 1.0. The computer, however, does make a differentiation
between numbers at two levels:

Integer versus floating-point

Size

https://www.boost.org/doc/libs/1_73_0/libs/tokenizer/doc/index.html


The integer part of the equation comes into play because of the early processors in
PCs, which could perform only integer math. For floating-point math, you had to buy a
separate math coprocessor. Today, the math coprocessor comes with the processor,
but integer and floating-point math still occur in different areas of the processor. When
the processor performs integer math, it uses different registers and capabilities than
when it performs floating-point math. So the conversion between integer and floating-
point data is more than philosophical; it involves using physically different areas of the
processor.

The size issue determines how large the integer or floating-point value is. Again, the
difference is physical. Early processors could handle only 8 bits of data at a time, then
16 bits, and on to 32 bits, and finally the 64 bits of today. (You can even read about an
AMD 128 bit processor at https://www.tweaktown.com/news/68872/rick-morty-uses-
128-bit-amd-cpu-3-584-825-480gb-ram/index.html.) Using larger numbers in older
processors required a number of additional tasks in software, so using larger numbers
incurred a significant performance penalty.

Today, with memory and processor register size no longer a concern, large numbers
are also no longer a concern, except that you must observe the historical reasons for
using numbers of a specific size. In addition, you sometimes gain benefits from a
reliability, security, or speed perspective in using a smaller number. The important
consideration in working with numbers is that you must observe the correct conversion
techniques when you want to obtain the correct results.

LISTING 5-3: Converting from double to int
#include <iostream> 

#include "boost/numeric/conversion/converter.hpp" 

  

using namespace std; 

using namespace boost; 

using namespace boost::numeric; 

  

int main() { 

  typedef converter<int, double> Double2Int; 

  double MyDouble = 2.1; 

  int MyInt = Double2Int::convert(MyDouble); 

  

  cout << "The double value is: " << MyDouble << endl; 

  cout << "The int value is: " << MyInt << endl; 

  

  // See what happens with a larger value. 

  MyDouble = 3.8; 

  MyInt = Double2Int::convert(MyDouble); 

  cout << "The double value is: " << MyDouble << endl; 

  cout << "The int value is: " << MyInt << endl; 

https://www.tweaktown.com/news/68872/rick-morty-uses-128-bit-amd-cpu-3-584-825-480gb-ram/index.html


  

  // Round instead of truncate. 

  typedef conversion_traits<int, double> Traits; 

  typedef converter<int, double, Traits, 

    def_overflow_handler, RoundEven<double> > 

    Double2Rounded; 

  MyInt = Double2Rounded::convert(MyDouble); 

  cout << "The int value is: " << MyInt << endl; 

  return 0; 

}

The example begins by creating a converter object, Double2Int. This
first object shows the minimum information that you can provide — the
target (int) and source (double) values. The default setting truncates
floating-point values (float and double among them) to obtain an int
value. To perform a conversion, the code relies on the convert method,
which requires a variable of the required source type as an argument.

 The converter template includes support for four kinds of
rounding. You must use the correct kind of rounding to match your
application requirements. Imagine what would happen to
calculations if you used truncation when rounding is really the
required operation. The following list describes all four kinds of
rounding that converter supports:

Trunc: Removes the decimal portion of the value (rounds toward 0)

RoundEven: Rounds values up or down as needed such that the
ending value is even (also called banker’s rounding). Consequently,
1.5 rounds up to 2, while 2.5 rounds down to 2.
Ceil: Rounds the value up toward positive infinity when the decimal
portion is greater than 0
Floor: Rounds the value down toward negative infinity when the
decimal portion is greater than 0



The second converter object, Double2Rounded, shows the template
requirements to choose the kind of rounding that the object performs. In
this case, you supply five arguments to the template (the converter
template accepts up to seven arguments; see
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion

/doc/html/boost_numericconversion/converter___function_object

.html):

Target
Source
conversion_traits, which include the target and source types as a
minimum
Overflow handler, which determines how the object handles
conversions that result in an overflow (the default is
def_overflow_handler)

Rounding template object (which includes the rounding source type)

The process for using the extended form of the converter template is
the same as the simple form shown earlier in the example. However, you
must now create a conversions_traits object (Traits in this case) and
provide the required input information. (See more examples of using
conversion_traits at
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion

/doc/html/boost_numericconversion/conversion_traits___traits_

class.html.) As before, you rely on the convert method to perform the
conversion process. Here’s the application output:

The double value is: 2.1 

The int value is: 2 

The double value is: 3.8 

The int value is: 3 

The int value is: 4

The last two lines show the difference in rounding the value 3.8 using
Trunc and RoundEven. See

https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/boost_numericconversion/converter___function_object.html
https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/boost_numericconversion/conversion_traits___traits_class.html


https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion

/doc/html/index.html for more about numeric conversion.

Creating Improved Loops Using
Foreach

Writing efficient loops is a requirement if you want your application to
perform optimally. Interestingly enough, many loops use a certain
amount of boilerplate code (code that is essentially the same every time
you write it, but with small nuances).

 Templates and other methodologies described in this book
provide a means to overcome the boredom of writing essentially the
same code. However, none of the examples to date has shown a
tried-and-true method: macros. A macro is essentially a substitution
technique that replaces a keyword with the boilerplate code you’d
normally write. Macros normally appear in uppercase, such as
BOOST_FOREACH, which is the macro used in this section of the
chapter. Instead of typing all the code associated with a macro, you
simply type the macro name and the compiler does the rest of the
work for you.

 The magic behind the BOOST_FOREACH macro is that it creates all
the iteration code you normally create by hand. In other words, you
aren’t providing any less code to the compiler; you simply let the
macro write it for you. The Boost library still relies on the Standard
Library for_each algorithm; you avoid writing all the code you
used to write when using the algorithm. See
https://www.boost.org/doc/libs/1_73_0/doc/html/foreach.h

tml for more about the BOOST_FOREACH macro. The ForEach

https://www.boost.org/doc/libs/1_73_0/libs/numeric/conversion/doc/html/index.html
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example, in Listing 5-4, shows how to use a BOOST_FOREACH loop to
iterate through a vector.

LISTING 5-4: Creating a BOOST_FOREACH Loop
#include <iostream> 

#include <vector> 

#include "boost/foreach.hpp" 

  

using namespace std; 

using namespace boost; 

  

int main() { 

  vector<string> names; 

  names.push_back("Tom"); 

  names.push_back("Dick"); 

  names.push_back("Harry"); 

  names.push_back("April"); 

  names.push_back("May"); 

  names.push_back("June"); 

  

  BOOST_FOREACH(string Name, names) 

      cout << Name << endl; 

  

  cout << endl << "Backward:" << endl; 

  BOOST_REVERSE_FOREACH(string Name, names) 

      cout << Name << endl; 

  return 0; 

}

This example begins by creating a vector. In fact, it’s the same vector as
the one used for the Vectors example in Book 5, Chapter 6, Listing 6-1.
In this case, the example then creates a BOOST_FOREACH loop that iterates
through names. Each iteration places a single value from names into
Name. The code then prints the single name.

An interesting feature of the Boost library is that you can reverse the
order of iteration. In this case, the code uses a BOOST_REVERSE_FOREACH
loop to go in the opposite direction — from end to beginning. The
technique is precisely the same as going forward. Here’s the application
output:

Tom 

Dick 



Harry 

April 

May 

June 

  

Backward: 

June 

May 

April 

Harry 

Dick 

Tom

As you can see, iterating forward and backward works precisely as you
expect. The BOOST_FOREACH and BOOST_REVERSE_FOREACH macros
support a number of container types:

Any Standard Template Library (STL) container
Arrays
Null-terminated strings (char and wchar_t)

STL iterator pair (essentially a range)

boost::iterator_range<> and boost::sub_range<>

 The macro STL container support is generalized. Any object
type that supports these two requirements will work:

Nested iterator and const_iterator types

begin() and end() methods

Accessing the Operating System
Using Filesystem

Working with files and directories is an important part of any application
you create. Book 6 shows some standard techniques you use to work



with both files and directories. However, these methods can become
cumbersome and somewhat limited. Boost augments your ability to
work with the file system using the Filesystem library. Creating and
deleting both files and directories becomes a single call process. You can
also perform tasks such as moving and renaming both files and
directories.

The most important addition that Boost makes is defining a method to
obtain error information from the operating system. This feature is found
in the System library, which you must include as part of your
application. Among other capabilities, the System library enables you to
convert a numeric error that the operating system returns into a human-
readable form. Unfortunately, the System library is still a work in
progress, so this chapter can’t demonstrate how to use it in any great
detail.

You must add references to the libboost_filesystem-mgw6-mt-x32-
1_73.a and libboost_system-mgw6-mt-x32-1_73.a files using the
technique found in the “Adding the RegEx library” section, earlier in
this chapter, for the example to work. The project file may require that
you change the library setting to match your system. When you set up
this application properly, you should see two libraries on the Linker
Settings tab of the Project Build Options dialog box, as shown in Figure
5-5.



FIGURE 5-5: Using the Filesystem library requires the System library as well.

THE FILESYSTEM LIBRARY AND THE
STANDARD LIBRARY

The developers of the Boost library continuously add to its capabilities. Some of the
additions developers make are so useful that they end up in the Standard Library. The
Filesystem library is one of these useful elements. In fact, it appears as part of C++ 17,
as described in the article at https://www.fluentcpp.com/2019/11/22/how-c17-benefits-
from-boost-libraries-part-two/.

Of course, standardized libraries require discussion from multiple groups, not just the
Boost developers. Consequently, the Boost library you use today may not be precisely
the same library you see added to the Standard Library. It’s important to keep up with
the proposed technical changes to the Boost library as they move to the Standard
Library by reviewing the documentation online.

The movement of code from one setting to another tends to confuse developers
because they suddenly find that a favorite library has seemingly disappeared. These
developers also question whether they should continue using the old library or move to
the new one. In all cases, you want to use the Standard Library when you can because
the Standard Library is fully supported by a standards group, and is, well, standard.
Consequently, when you begin creating new applications based on C++ 17 or above,
you may want to consider moving from Boost to the Standard Library for the Filesystem
library needs. (Ensure that your compiler also provides the required support.)

https://www.fluentcpp.com/2019/11/22/how-c17-benefits-from-boost-libraries-part-two/


 The OS example in Listing 5-5 shows only a modicum of the
capabilities of the Filesystem library. The big thing to remember
when using this example is that it requires both Filesystem and
System libraries because the System library provides error-handling
support. The example begins by creating a directory and a file. It
then adds data to the file, reads the file back in and displays it, and
then deletes both file and directory.

LISTING 5-5: Interacting with the File System Using
Boost
#include <iostream> 

#include "boost/filesystem.hpp" 

  

using namespace boost::filesystem; 

using namespace std; 

  

int main() { 

  if (! exists("Test")) { 

    create_directory(path("Test")); 

    cout << "Created Directory Test" << endl; 

  } else 

    cout << "Directory Test Exists" << endl; 

  

  if (! exists("Test/Data.txt")) { 

    boost::filesystem::ofstream File("Test/Data.txt"); 

    File << "This is a test!"; 

    File.close(); 

    cout << "Created File Data.txt" << endl; 

  } else 

    cout << "File Data.txt Exists" << endl; 

  

  if (exists("Test/Data.txt")) { 

    cout << "Data.txt contains " 

         << file_size("Test/Data.txt") 

         << " bytes." << endl; 

    boost::filesystem::ifstream File("Test/Data.txt"); 

    string Data; 

    while (! File.eof()) { 

      File >> Data; 

      cout << Data << " "; 



    } 

    cout << endl; 

    File.close(); 

  } else 

    cout << "File Data.txt Doesn't Exist!" << endl; 

  

  if (exists("Test/Data.txt")) { 

    remove(path("Test/Data.txt")); 

    cout << "Deleted Data.txt" << endl; 

  } 

  

  if (exists("Test")) { 

    remove(path("Test")); 

    cout << "Deleted Test" << endl; 

  } 

  

  return 0; 

}

The first feature you should notice about this example is that it
constantly checks to verify that the file or directory exists using the
exists() function. Your applications should follow this pattern because
you can’t know that a file or directory will exist when you need to work
with it, even if your application created it. A user or external application
can easily delete the file or directory between the time you create it and
when you need to work with it again.

To create a directory, you use create_directory(), which accepts a
path as input. You create a path object using path(). Many of the other
Filesystem library calls require a path object as well. For example, when
you want to remove (delete) either a file or directory, you must supply a
path object to remove(). Interestingly enough, remove() does remove a
file without creating a path object, but it won’t remove a directory. The
inconsistent behavior can make an application that incorrectly uses
remove() devilishly difficult to debug.

Notice that the example uses the boost::filesystem::ofstream and
boost::filesystem::ifstream classes. If you try to compile the
application without using the fully qualified name of the classes, you get
an ambiguous reference error from Code::Blocks. Using the Boost



version of the classes ensures maximum compatibility and fewer errors.
Here is what you see when you run this application:

Created Directory Test 

Created File Data.txt 

Data.txt contains 15 bytes. 

This is a test! 

Deleted Data.txt 

Deleted Test

One final element to look at in this example is file_size(), which
reports the size of the file in bytes. The Filesystem library provides a
number of helpful statistics that you can use to make your applications
robust and reliable. As previously mentioned, you want to spend time
working with this library because it contains so many helpful additions
to the standard capabilities that C++ provides.
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switch prefix, 166

/* */ (delimiters), 271

// (double slash), 270–271

: (colon)

conditional operators and comparisons, 99
range operator, 128

:: (two colons)

classes and functions, 337, 575, 583, 593
scope resolution operator, 238

; (semicolon), 59, 153, 234

? (question mark), 99

@ (at sign), 92

[ ] (square brackets), 92, 388

\ (backslash), 66, 90–92, 688, 734

^ (caret), 93

{ } (curly braces), 53, 55, 92–93

|| (or) operator, 110–111

~ (tilde), 92

+ (addition symbol), 60, 78, 97

++ (plus plus)

increment operator, 81, 92
prefix/postfix operators, 85

++i (pre-increment) operator, 126



+= (plus equal) notation, 81, 96

< (less than)

less than operator, 108–109
operator function, 653–654, 668

< > (angle brackets), 93, 181–182

<< (insertion) operator, 59–60, 102, 223, 300, 661, 672, 698–699, 726,
738–741
<= (less than or equal to) operator, 108

= (equals sign), 75, 417–418

= 0 (pure specifier), 333–334

== (equal equal), 92

equal to operator, 108–109
<=> (spaceship) operator, 109–110, 216

> (greater than) operator, 108–109

-> (arrow) operator, 245, 247, 250, 555, 608

>= (greater than or equal to) operator, 108

>> (extraction) operator, 102, 223, 277, 284, 712–714, 738, 741

" " (double quotes), 59, 67, 90, 93, 181–182

’ ’ (single quotes), 88, 90

\0 (null) character, 89

A
absolute paths, 846, 853
abstract classes, 333–334
abstract virtual methods, 334
Acronym Finder, 48



AddFiles example, 170

AddInteger example, 78–79

AddInteger2 example, 79–81

addition symbol (+), 60, 78, 97

AddOne example, 149

AddOne() function, 149–153

AIDE (Android IDE), 33–34
Alexander, Christopher, 336
algorithms, Standard Library, 755–757
allocating/deallocating memory

defined, 205
using new operator, 208

American National Standards Institute (ANSI), 515–516
ampersand (&), 92

reference operator, 197, 220, 496, 501, 505, 510, 647
and (&&) operator, 110–111

Android IDE (AIDE), 33–34
AndroidForums, 42
angle brackets (< >), 93, 181–182

anonymous functions, 398
ANSI (American National Standards Institute), 515–516
APIs (Application Programming Interfaces), 316



application flow, 105–138
conditions, 107–115

defined, 105
evaluating, 107–111
evaluating multiple, 110–111
evaluating with if statements, 111–115

in for loops, 118–122

operators, 108–110
satisfying, 107

decisions, 106–107
if statements, 111–115

defined, 105
with else keyword, 112–115

example of, 111–112
loops, 115–138

breaking, 133–135
continuing, 133, 135–136
defined, 105–106
do-while loops, 116–117, 132–133

for loops, 116–130

nesting, 136–138
while loops, 116–117, 130–132

Application Programming Interfaces (APIs), 316
arguments. See parameters
Array01 example, 484–485

Array02 example, 486



Array03 example, 487

Array04 example, 488

Array05 example, 498

Array06 example, 498

ArrayLoop example, 303

ArrayPassing example, 306–307

ArrayPointer example, 304–305



arrays, 302–308, 482–498
accessing, 302–304
adding and subtracting pointers, 307–308
allocating on heap, 494
array names, 484, 486
arrays of arrays, 495–498
arrays of pointers, 304–305, 495–498
command-line parameters and, 492–494
constant, 498
declaring, 303–304, 482–484
defined, 167, 208, 302
deleting from heap, 494–495
external declarations, 485–487
inner and outer, 496
members, 496
multidimensional arrays, 488–492
overcoming limitations of, 642–643
passing pointers to, 484–485
passing to functions, 306–307
pointer types, 487–488
sorting, 494–495
string arrays using pointers, 503–504

arrow (->) operator, 245, 247, 250, 555, 608

ASCII table, 88
assembly code, 452–454

defined, 473
tracing through, 475



AssignLambda example, 420–421

assignments, 108
asterisk (*), 92, 501

dereference operator, 201
multiplication symbol, 60, 84
pointer variables, 205, 220

at sign (@), 92

atomic operations, 757–759
attr element, 400

Auto example, 388–389

auto keyword, 388–390

lambda expressions, 404–405
pointing to functions, 506

automata programming, 312
automatic type determination

functions, 146
lambda expressions, 401–404
for loops, 129–130

B
backslash (\), 66, 90–92, 688, 734

bang (!), 92

BasicString example, 786

begin() function, 388, 655

BestFriends example, 589–590

Bitcoin, 820



body element, 401

boolalpha flag, 702–703

Boole, George, 100
Boolean expressions, 101
Boolean variables, 100–101

defined, 100
size and range, 516
using with conditional operators, 101



Boost, 817–868
AutoIndex utility, 834
bcp (Boost copy) utility, 833, 843–845
BOOST_FOREACH macro, 862–864

BOOST_REVERSE_FOREACH macro, 863

BoostBook format, 833, 840
Boost.Build, 833–837
building date/time application, 846–848
building libraries, 825–827
compiler support, 822
downloading, 821, 823
features backported to Standard Library, 818–819
features of, 821
Filesystem library, 864–868
folders, 824
header-only libraries, 825
Inspect utility, 833, 837–840
installing, 823–824
installing on 64-bit systems, 828, 852
licensing, 822
numeric conversion, 858–861
paid support, 823
QuickBook add-on, 833, 841–843
RegEx library, 850–857
smart pointers, 191
Standard Library vs., 819–820
testing, 827, 829–833



tokenizer, 857–858
tools, 833–835
Wave utility, 834, 845

BoostPro Computing, 823
break statements, 133–135, 137, 296, 299

breakpoints, 454, 457–467
defined, 457–458
enabling/disabling, 460–463
inspecting variables, 463–467
setting in Code::Blocks, 459–460

Breakpoints example, 458–450

Breakpoints2 example, 463–464

BuggyProgram example, 444



bugs, 429–442
anticipating and avoiding, 432–442

creating objects, 441–442
forgetting deleted objects, 441
indexes, 441
menus, 432–435
new and delete, 441

string processing, 437–440
textual input, 435–436

debugging, 443–456
Code::Blocks debugger, 444–455
command-line arguments, 456
Dev-C++ debugger, 456
gdb debugger, 456
programming with debuggers, 444–453
stacks, 469–478
Visual C++ debugger, 455

features that resemble bugs, 430–432
myth of bulletproof applications, 440
origin of term, 429

built-in literals, 780–781

C
C compatibility headers, 759



C++ 20, 269–308
application flow, 105–138
arrays, 302–308, 482–498
bugs, 429–442
characteristics of, 1
cin object, 277–281

classes, 227–268, 571–599
code editing, 53–55
comments, 270–272
compiling (building), 57, 67–68
conditional operators, 98–101
constants, 292–295
constructors, 542–563
design patterns, 335–366
desktop configuration, 9–26
destructors, 548–550, 558–563
directories, 727–736
exceptions, 563–569
executing (running), 52–53, 67–68
functional programming, 312, 369–395
functions, 139–168
linking, 67
mobile configuration, 27–43
namespaces, 534–539
objects, 309–334
pointers, 187–223, 498–510
popularity of, 45



preprocessor directives, 282–291
random numbers, 300–302
references, 510–513
saving code, 62
source code files, 169–186
Standard Library, 637–680, 753–778
streams, 683–726
strings, 93–98
structures, 515–539
switch statements, 295–298

templates, 795–815
type conversion, 272–277
User-Defined Literals, 779–794
variables, 69–91
wrapping enum types, 298–299

C++ Shell IDE, 35
C4Droid IDE, 29, 33
captures element, 400

caret (^), 93

CarParts example, 354–357

carriage return (\r) character, 90–91, 281



casting data, 520–529
const_cast, 528–529

converting data vs., 521–522
dynamic_cast, 524–527

narrowing casts, 523
static_cast, 527

CastOrConvert example, 521

catch blocks

catching any exception, 567–568
multiple, 565–566
try…catch blocks, 558, 563–565

.cbp files, 20

ChangePointer example, 203–204

ChangeVariable example, 74

character variables, 88–91
carriage return character, 90
defined, 88
initializing, 88
newline character, 89–90
nonprintable characters, 89
null character, 89
size and range, 516
tab character, 90
values, 88

Cheesecake example, 597–598

CheeseClass example, 253–254



Church, Alonzo, 398
cin (console input) object, 102–103, 277–281

class definitions, 230
defined, 234, 241
separating method code, 238

class keyword, 232



classes, 227–268, 571–599
accessing members, 241–244
class definitions, 230

defined, 234, 241
separating method code, 238

const parameters, 251–252

constructors
adding parameters to, 263–264
overview, 259–261
with stack variables, 262

creating with templates, 601–636
creating templates, 605–607
deriving templates, 623–630
function templates, 630–636
including static members in templates, 611–612
need for, 602–605
parametering templates, 612–622
separating templates from function code, 609–611
template keyword, 607–608

typedefs for templates, 622–623

types, 602
defined, 230, 240
destructors, 260–262
friend classes, 588–591



header files
class names and, 230
defined, 241
properties of, 232

hierarchies of, 264–267
implementing, 232–237
inheritance, 571–591

access adjustment, 574–575
avoiding polymorphism, 573–574
avoiding variable naming conflicts, 575–576
class-based access adjustment, 575–576
friend classes and functions, 588–591
multiple inheritance, 581–584
overriding functions, 577–580
polymorphism, 572
virtual inheritance, 584–588

instances
of classes, creating, 234–237
defined, 230
of objects, creating, 237

lambda expressions with, 407–408
making streamable classes, 737–749



methods, 232
defined, 241
naming, 238–239
overloading, 256–259
running, 235–236
separating code for, 237–240

modeling, 232
names and filenames, 230
nesting, 591–596
object aliases, 267–268
objects

capabilities of, 228–229
defined, 240
overview, 227–229
passing to functions, 249–251

parts of, 240–241
persistent classes, 738
properties, 231

accessing, 235
defined, 241

raw pointers and, 244–248
singleton, 230
smart pointers and, 248–249
source files, 240

defined, 241
method code, 230

structures vs., 530



this pointer, 252–256

types within, 597–599
ClassFromTemplate example, 624–625

ClassTemplate example, 804–806

close() method, 689



Code::Blocks IDE, 9–25
auto indentation, 60–61
Boost

building libraries, 825–827
testing, 827, 829–833

breakpoints, 454
enabling/disabling, 460–463
setting, 459–460

command-line arguments, 168
copy of C++ included with, 9
CppDroid vs., 39–40
creating multiple source code files, 170–177



debugger, 445–455
application stack, 471
assembly language version of code, 452–454
basic functionality, 450–453
breakpoints, 454
call stack, 454, 471–473
CPU registers, 454, 478
current stack frame information, 455
debug and symbol information, 445
Disassembly window, 452–454, 475–476
FPU status, 455
initial run, 446–448
instruction pointer, 447, 450–451
line-by-line code review, 449–450
loaded libraries, 455
memory dump, 454, 496
parts of, 453–455
running threads, 454
signal handling, 455
stepping into functions, 449
targets and files, 455
watches, 454, 465

defined, 11
downloading, 11
error reports, 57–58
features of, 17–25
file associations, 18



installing, 11–17
in Linux, graphical installation, 15–17
in Linux, standard installation, 14–15
in Mac OS/X, 13–14
storage location, 11–12, 19
in Windows, 12–13

libraries, 809–815
configuring, 812–813
defining, 810–812
support for, 809–810

projects, 45–52
application types, 46–49
building and executing applications, 52–53
creating, 46
defined, 46–47
defining, 47–52
elements of, 46
naming, 49–50
storage location, 49–50

recommended version of, 10–11
sample projects source code, 19–20
selecting compiler, 24–25
smart pointers, 212
starting for first time, 18–19
support for application types, 46–49
tip dialog boxes, turning on/off, 18–19
user interface, 21–24



CodeChef IDE, 35
CodeLite IDE, 26
colon (:)

conditional operators and comparisons, 99
range operator, 128
two colons (::)

classes and functions, 337, 575, 583, 593
scope resolution operator, 238

Combine example, 161–162

Command Line Tools for Xcode, 14
Command Prompt, 167
command-line arguments, 166–168

in Code:Blocks, 168
debugging with command-line arguments, 456
defined, 166

command-line parameters
accessing, 167
arrays and, 492–494

CommandLineParameters example, 167

CommandLineParams example, 492–493

comments, 270–272
delimiters, 271
double slash, 270–271
utility of, 270



compilers, 9–10
defined, 10
IDEs vs., 10
selected at Code::Blocks IDE install, 13

compiling (building), 63
defined, 57, 67
shortcuts for, 68

complex numbers, 788
ComplexNumber example, 788–789

CompoundData example, 533

concatenating strings, 96–97
concepts, Standard Library, 759–760
concurrency, 767
conditional expressions, 99
conditional operators, 98–101

defined, 98
using with Boolean variables, 101

conditions, 107–115
defined, 105
evaluating, 107–111
evaluating multiple, 110–111
evaluating with if statements, 111–115

in for loops, 118–122

operators, 108–110
satisfying, 107

ConnectNames example, 154–155



Console Application, 48
console input (cin) object, 102–103, 277–281

console output (cout) object, 58, 72–73, 300

const parameters, 251–252, 292

constant casts (const_cast), 527

constant expressions (constexpr), 378–380

ConstantExpression example, 379

constants, 251–252, 292–295
accessing shortcuts to math constants, 294–295
creating, 292–293
creating with #define directive, 283, 285–286

Constants example, 292–293

ConstCast example, 528–529

consteval specifier, 416–417

constexpr (constant expressions), 378–380

Constructor01 example, 542–543

Constructor02 example, 546–547

Constructor03 example, 547

Constructor04 example, 549

Constructor05 example, 551

Constructor06 example, 552

Constructor07 example, 552–553

Constructor08 example, 555–556



constructors, 542–563
adding and removing items in, 347–349
adding parameters to, 263–264
calling one constructor from another, 553–554
copy constructors, 555–557
defined, 542
errors, 557–558
functional constructors, 550–553
as initialization functions, 260
initializing members, 542–548

accessing base constructors, 545–546
adding initializers to classes, 544
default values, 547–548
overloading constructor, 546–547
passing variables, 544–545

ordering, 562
overloading, 542–543, 546–547
overview, 259–261
with stack variables, 262

container adapters, 419



container classes, 638–674
comparing instances, 649–654
copying, 648–649, 673–674
defined, 638
double-ended queues, 669–670
fixed-size arrays, 642–643
intersections, 662–664
iterators, 655–658
lists, 664–669
mapping data, 643–644
Pair template class, 658

pointers, 644–649
queues, 670–672
references, 644–648
sets, 658–664
stacks, 670–672
Standard Library, 760
storing instances, 644–649
streams and, 692–693
unions, 662–664
vectors, 639–642

continue statements, 133, 135–137

control characters, 88, 784
conversion UDLs, 792
Convert example, 858–860



converting data
built-in conversions, 522
casting data vs., 521–522

cooked literals, 784–785
CoolHolder example, 605–607

CopiedFiles example, 173–174

copy command, 734

copy constructors, 555–557
CopyContainer example, 673–674

CopyVariable example, 75

coroutines, 760
cout (console output) object, 58, 72–73, 300

.cpp files, 20, 638



CppDroid IDE, 27–32, 35–43
advantages of, 29
alternatives to, 29, 32–35
Code::Blocks vs., 39–40
downloading and installing, 31–32
examples and tutorials, 37, 42–43
features of, 30–31
free vs. paid versions, 28, 30–31
help resources, 40–42
projects, 37–39

accessing samples, 37–38
closing, 39
creating, 39
creating source code, 38–39
deleting, 39
opening existing, 39
saving, 39

user interface, 35–36
CrackingDiamonds example, 584–585

CrackingDiamonds2 example, 587

CreateMacro example, 405–406

CreateString example, 93

curly braces ({ }), 53, 55, 92–93

cursor, 53–54
custom type UDLs, 793
CustomManipulator example, 745–747



CustomUDL01 example, 792

CustomUDL02 example, 793

CxxDroid IDE, 29

D
data packs, 422
debug versions, 286–287



debugging, 443–456
Code::Blocks debugger, 444–455

application stack, 471
basic functionality, 450–453
debug and symbol information, 445
initial run, 446–448
line-by-line code review, 449–450
parts of, 453–455

command-line arguments, 456
debuggers, defined, 444
Dev-C++ debugger, 446, 456
gdb debugger, 446, 456
selecting at Code::Blocks install, 13
stacks, 469–478

application stack, 470
defined, 470
popping data off of, 470
pushing data onto, 470
registers, 470
stack frames, 473, 476–477
stack pointer, 470
storing local variables, 473–475
tracing through assembly code, 475–478
viewing threads, 475

Visual C++ debugger, 455
dec flag, 702–703



declarations
defined, 382
functions vs., 383–384
removing side effects, 385–387
side effects of, 383–384

Declarative example, 387

declarative programming, 370, 373, 387–388
decltype() operator, 415, 418

deep copies, 250
default constructors, 548–550
#define directive, 283, 285–286, 294

delete operator, 209, 441, 676–677

delimiters, 94, 271
deque (double-ended queue) class, 669–670

DereferencePointer example, 199

DerivingTwoDiff example, 581

DerivingTwoDiff2 example, 583

deserialization, 738



design patterns, 335–366
defined, 335
Façade pattern, 353
mediator pattern, 349–366

creating example, 354–366
outline of example, 351–354
overview, 350–351

observer pattern, 341–349
automatically adding observers, 347–349
creating observer pattern classes, 343–345
overview, 341–343
Standard Library and, 346–347

origin of, 336
reusability and, 336
singleton pattern, 337–340

Design Patterns (Gamma, Helm, Johnson, and Vlissides), 336
desktop configuration for C++, 9–26

compilers, 9–11
IDEs, 9–26

alternatives to Code::Blocks, 25–26
downloading Code::Blocks, 11
features of Code::Blocks, 17–25
installing Code::Blocks, 12–17

installing C++, 9–10
Destructor01 example, 558–559

Destructor02 example, 560

Destructor03 example, 561



destructors, 558–563
adding and removing items in, 347–349
adding default, 548–550
defined, 542
destroying instances, 558–560
as finalization functions, 260
ordering, 562
overview, 260–261
with stack variables, 262
virtually inheriting, 560–563

Dev-C++ debugger, 446, 456
Dev-C++ IDE, 26
diamond-shaped inheritance problem, 584–588
directories, 727–736

copying files, 733–734
creating, 728–730
deleting, 730
getting contents of, 731–733
moving, 736
moving files, 736
renaming, 735–736
renaming files, 735–736

DirectoryCheck01 example, 694

DirectX, 29
DisplayEnum example, 298–299

DivideInteger example, 87–88

DLLs (dynamic link libraries), 49, 810



do…while loops, 720

DocBook Document Type Definition (DTD), 841
DocBook eXtensible Stylesheet Language (XSL), 841
done variable, 131–132

DoorClass example, 256–258

dot (.) operator, 92, 250, 555

double keyword, 516

double quotes (" "), 59, 67, 90, 93, 181–182

double slash (//), 270–271

double-ended queue (deque) class, 669–670

do-while loops, 132–133

defined, 116–117
when to use, 117

DoWhileLoop example, 132–133

DTD (DocBook Document Type Definition), 841
Duration example, 790

dynamic allocation, using raw pointers for, 188
dynamic arrays, 675–677

creating, 675–676
deleting, 676–677

dynamic casts, 524–527
dynamic link libraries (DLLs), 49, 810
dynamic memory management, 205
DynamicArray example, 675–676

DynamicCast example, 524–525



E
-E switch, 283

Eclipse IDE, 26
#elif directive, 290

ellipsis (…)

general exception catcher, 567
variadic operator, 422

#else directive, 287

Emacs IDE, 26
emplace() function, 677, 679

encapsulation, 316–322
APIs, 316
process for, 318–319
properties

implementing, 319–322
overview of, 316–317
private vs. protected, 318

end() function, 388, 655–656

end of file (EOF) condition, 715–720
EOF check approach, 718–720
record count approach, 715–718

#endif directive, 290

endl manipulator, 738, 743–744



enumerations (enums)

naming types, 232
overview, 229
wrapping enum types, 298–299

EOF. See end of file condition
eof() function, 720

equal equal (==), 92

equal to operator, 108–109
EqualityCheck example, 99–100

equals sign (=), 75, 417–418

EquateStruct example, 531–532

erase() function, 164–165, 677

escape-sequences, 67
escaping characters, 688
event-driven programming, 312
exception element, 400

Exception01 example, 563–564

Exception02 example, 569

Exception03 example, 570



exceptions, 322, 563–569
catching any exception, 567–568
defined, 563
dynamic casts, 527
multiple catch blocks, 565–566

rethrowing exceptions, 568–569
specifying that lambda expressions throw, 413–414
standard category exceptions, 569
throwing direct instances, 566–567
try…catch blocks, 563–565

executable files
creating, 52
defined, 67

executing (running), 52–53, 67–68
shortcuts for, 68
stopping execution, 53

execution policy, 757
extraction (>>) operator, 102, 223, 277, 284, 712–714, 738, 741

F
fabs() function, 143–147

Fabs2 example, 145

Fabs3 example, 146–147

Façade pattern, 353
factorial() function, 379–380

fail() method, 694



__FILE__ macro, 288

FileLineCount example, 381–382

FileOutput01 example, 689

FileOutput02 example, 696

FileRead01 example, 690–691, 712–713

FileRead02 example, 715–717

FileRead03 example, 718–719

FileReadWrite01 example, 691

filesystem library, 729

<filesystem> header, 761

FileWrite01 example, 698

FileWrite02 example, 700–701

find() function, 678, 749, 774–776

_findclose() function, 731

_findfirst() function, 731

_findnext() function, 731

FindString example, 774

FirstFunction example, 142

fixed flag, 702–703

floating-point numbers, 70
fabs() function, 143–147

size and range, 516
type conversion, 276–277

flush() function, 692



for loops

automatic type determination, 129–130
changing conditions, 119–122
conditions in, 118–122
counting backward, 122–123
declaring counter variable within, 120
defined, 116–117
finalizers, 118
initializers, 118
multiple initialization variables, 123–126
placing conditions within declarations, 128–129
ranges, 126–128
simple, 118–119
when to use, 117

for_each() loops, 408

ForCountdown example, 122–123

ForLoop example, 119

ForLoop2 example, 121

ForLoop3 example, 134

ForLoop4 example, 135–136

ForLoop5 example, 136–137

ForLoop6 example, 137–138

ForLoopComplex example, 125

ForLoopCondition example, 128

ForLoopCondition2 example, 129

ForLoopMultiVariable example, 123–126



ForLoopRange example, 127

forward references (function prototypes), 159–161, 177–178, 237
forward slash (/), 92

division symbol, 60, 86
in pathnames, 688, 729
switch prefix, 166

frankenfunctions, 399
free software vs. paid software, 28
FreePointer example, 209–210

friend classes and functions, 588–591
friend keyword, 588

front() function, 670

fstream class, 687, 691

func parameter, 508–509, 744

function literals, 398
function prototypes (forward references), 159–161, 177–178, 237
function templates, 630–636

defined, 630
overloading and, 632–635
templatizing methods, 635–636

functional constructors, 550–553



functional programming, 312, 369–395
auto keyword, 388–390

declarations and functions, 382–388
first-class and higher-order functions, 373
immutable data, 370–371, 375–380

constant expressions, 378–380
immutability in classes and structures, 377–378
immutable variables, 375–377

lambda calculus, 373



lambda expressions, 394–425
advantages of, 398–399
assignable stateless, 420–421
automatic type determination, 401–404
capture clause, 408–411
captures with = and this, 417–418

container adapters, 419
decltype() operator, 415, 418

defined, 394
elements of, 399–401
full version, 399
immediate functions, 416–417
origin of, 398
pack expansions, 422–425
patterns for creating, 401
performing transforms using, 394–395
sorting data, 411–413
specifying to throw exceptions, 413–414
unevaluated contexts, 418–419
using as macros, 405–406
using auto keyword with, 404–405

using with classes and structures, 407–408
variadic templates, 416, 422–425

limitations of C++, 374–375
multiprocessing, 371, 375–376
other paradigms vs., 370–373
passing functions to functions, 390–394



pure functions, 371, 374
recursion, 374–375, 379
referential transparency, 374
state, 370–371, 381–382

FunctionFunction example, 391–392

FunctionOverloadingAndTemplates example, 632

FunctionPointer01 example, 505

FunctionPointer02 example, 508

FunctionPointer03 example, 509–510



functions, 139–168
anonymous functions, 398
automatic type determination, 146
calling, 144–145
declarations vs., 383–384
defined, 139, 141
defining custom functions, 148–153
division of work, 139–145
forward references, 159–161
frankenfunctions, 399
friend functions, 588–591
inner workings of, 150–151
local variables, 157–159
as machines, 141–142
main() function, 165–168

naming, 150, 152
nested calls, 471–472
operator, 653–654
overriding, 577–580
parameters, 148, 151–156
passing arrays to, 306–307
passing functions to functions, 390–394
passing multiple variables, 147–148
passing objects to, 249–251
passing pointer variables to, 218–221
passing to by reference, 221
passing to by value, 221



passing values of variables to, 146–147
passing values to, 144–145
pointing to, 505–506
public and private, 242–244
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